JPH04319715A - Controller for suppressing axially torsional vibration - Google Patents
Controller for suppressing axially torsional vibrationInfo
- Publication number
- JPH04319715A JPH04319715A JP3088030A JP8803091A JPH04319715A JP H04319715 A JPH04319715 A JP H04319715A JP 3088030 A JP3088030 A JP 3088030A JP 8803091 A JP8803091 A JP 8803091A JP H04319715 A JPH04319715 A JP H04319715A
- Authority
- JP
- Japan
- Prior art keywords
- output
- torque
- speed
- value
- load
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000001133 acceleration Effects 0.000 claims description 14
- 238000013016 damping Methods 0.000 claims description 9
- 230000001629 suppression Effects 0.000 claims description 5
- 230000000694 effects Effects 0.000 abstract description 3
- 230000005540 biological transmission Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 13
- 238000001514 detection method Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 238000004870 electrical engineering Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 101000582320 Homo sapiens Neurogenic differentiation factor 6 Proteins 0.000 description 1
- 102100030589 Neurogenic differentiation factor 6 Human genes 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Landscapes
- Feedback Control In General (AREA)
- Control Of Velocity Or Acceleration (AREA)
- Control Of Electric Motors In General (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】この発明は電動機の速度制御に係
り、特に電動機と負荷とが弾性軸で結合されている2慣
性系のねじり振動抑制制御装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to speed control of an electric motor, and more particularly to a torsional vibration suppression control device of a two-inertia system in which an electric motor and a load are connected by an elastic shaft.
【0002】0002
【従来の技術】エレベータや鉄鋼の圧延機,ロボットの
アームなどにおいて電動機と負荷が剛性の低い軸で結合
されていると、軸ねじり振動が発生し、速度制御系の応
答を速くすることができなくなるという問題がある。軸
ねじり振動は電動機と負荷との慣性モーメントの比によ
って影響を受け、特に負荷の慣性モーメントが電動機よ
り小さい場合はより振動的となる。従来より提案されて
いる軸トルク推定オブザーバによる方式は、電動機より
負荷の慣性モーメントが小さい場合には軸ねじり振動抑
制効果が小さいことが明らかになっている。(参考文献
、昭和60年電学全国大会論文集604と電学論D.1
10巻4号.平成2年)[Prior Art] When an electric motor and a load are connected by a shaft with low rigidity in an elevator, a steel rolling mill, a robot arm, etc., shaft torsional vibration occurs, making it difficult to speed up the response of the speed control system. The problem is that it disappears. Shaft torsional vibration is influenced by the ratio of the moment of inertia of the motor to the load, and becomes more vibratory especially when the moment of inertia of the load is smaller than that of the motor. It has been revealed that the conventionally proposed method using a shaft torque estimation observer has a small shaft torsional vibration suppression effect when the moment of inertia of the load is smaller than that of the electric motor. (References: Proceedings of the 1985 National Conference on Electrical Engineering 604 and Theory of Electrical Engineering D.1
Volume 10, No. 4. 1990)
【0003】0003
【発明が解決しようとする課題】上記従来の問題を解決
するために、現代制御理論を用いた状態フィードバック
による補償方式が提案されているが、この方式も軸トル
クτSと負荷速度ωLを測定するのが困難な場合が多い
。
そのため、オブザーバが利用されている。このオブザー
バの構成も全ての状態量(電動機速度τM,軸トルクτ
S,外乱トルクτL,負荷速度ωL)をオブザーバによ
り推定し、状態フィードバックする方式から最低限の状
態量として軸トルクをオブザーバで推定する方式まであ
る。しかし、このオブザーバの構成が複雑になると、調
整箇所が多くなり、調整に時間を要する問題が新たに発
生する。[Problem to be Solved by the Invention] In order to solve the above conventional problems, a compensation method using state feedback using modern control theory has been proposed, but this method also measures shaft torque τS and load speed ωL. It is often difficult to Therefore, observers are used. The configuration of this observer also includes all state quantities (motor speed τM, shaft torque τ
There are a number of methods ranging from a method of estimating S, disturbance torque τL, and load speed ωL) using an observer and providing state feedback to a method of estimating the shaft torque as the minimum state quantity using an observer. However, when the configuration of this observer becomes complicated, the number of adjustment points increases, and new problems arise that require time for adjustment.
【0004】この発明は上記の事情に鑑みてなされたも
ので、オブザーバの構成の簡素化を図って調整箇所を少
なくして調整に要する時間を短縮し、しかも負荷の慣性
モーメントが電動機の慣性モーメントより大きいときで
も、小さいときでも、また負荷加速度制御を行うことに
よっても軸ねじり振動抑制効果が得られる軸ねじり振動
抑制制御装置を提供することを目的とする。The present invention was made in view of the above circumstances, and it simplifies the configuration of the observer, reduces the number of adjustment points, and shortens the time required for adjustment. It is an object of the present invention to provide a shaft torsional vibration suppression control device that can obtain shaft torsional vibration suppression effects even when the load acceleration is larger or smaller, and also by performing load acceleration control.
【0005】[0005]
【課題を解決するための手段】この発明は上記の目的を
達成するために、電動機のトルク指令と電動機の速度と
が入力され、電動機と負荷の機械時定数の和をモデル機
械時定数に設定し、最小次元オブザーバまたは完全次元
オブザーバで負荷トルクを推定して、出力に負荷トルク
推定値を得る近似負荷トルク推定オブザーバ部と、前記
電動機のトルク指令と電動機の速度を微分した値とを減
算し、出力に高速の軸トルク推定値を得る高速軸トルク
推定部と、この高速軸トルク推定部からの推定値と前記
近似負荷トルク推定オブザーバ部からの負荷トルク推定
値とを減算し、出力にづか加速度相当の値を得る減算部
と、この減算部の出力に得られた負荷加速度相当の値が
入力されるダンピング決定用のアンプと、速度指令と前
記電動機の速度との偏差出力が供給される第1の制御ア
ンプと、この第1の制御アンプの出力と前記ダンピング
決定用のアンプの出力との偏差出力が供給され、トルク
指令にフィードバック補償を行う第2の制御アンプと、
この第2の制御アンプの出力と前記近似負荷トルク推定
オブザーバ部からの推定値出力とが供給され、両出力を
加算して前記電動機のトルク指令にフィードフォワード
補償を行う加算部と、この加算部から出力された電動機
のトルク指令が供給され、このトルク指令により電動機
の速度を制御する伝達関数部とを備えたことを特徴とす
るものである。[Means for Solving the Problems] In order to achieve the above object, the present invention inputs the torque command of the electric motor and the speed of the electric motor, and sets the sum of the mechanical time constants of the electric motor and the load as a model mechanical time constant. and an approximate load torque estimation observer section that estimates the load torque using a minimum dimension observer or a full dimension observer and obtains the load torque estimated value as an output, and subtracts the torque command of the electric motor and the value obtained by differentiating the speed of the electric motor. , a high-speed shaft torque estimating section that obtains a high-speed shaft torque estimated value as an output, and subtracting the estimated value from this high-speed shaft torque estimating section and the load torque estimated value from the approximate load torque estimation observer section; A subtraction unit that obtains a value equivalent to the acceleration, an amplifier for damping determination into which the obtained value equivalent to the load acceleration is input to the output of the subtraction unit, and a deviation output between the speed command and the speed of the electric motor is supplied. a first control amplifier; a second control amplifier to which a deviation output between the output of the first control amplifier and the output of the damping determining amplifier is supplied and performs feedback compensation on the torque command;
The output of the second control amplifier and the estimated value output from the approximate load torque estimation observer section are supplied, and an adding section that adds both outputs to perform feedforward compensation to the torque command of the electric motor; The present invention is characterized in that it is provided with a transfer function unit which is supplied with a torque command for the electric motor outputted from the motor and controls the speed of the electric motor based on the torque command.
【0006】[0006]
【作用】近似負荷トルク推定オブザーバ部から得られた
負荷トルク推定値と、高速軸トルク推定部から得られた
高速軸トルク推定値とを減算して、負荷加速度相当の値
を得る。この値はダンピング決定用のアンプに入力して
増幅し、そのアンプからの出力を用いて電動機のトルク
指令にフィードバック近似負荷加速度制御を行う。これ
とともに負荷トルク推定値を電動機のトルク指令に加算
してフィードフォワード補償を行う。[Operation] A value corresponding to the load acceleration is obtained by subtracting the load torque estimate obtained from the approximate load torque estimation observer section and the high-speed shaft torque estimate obtained from the high-speed shaft torque estimation section. This value is input to an amplifier for damping determination and amplified, and the output from the amplifier is used to perform feedback approximate load acceleration control on the motor torque command. At the same time, feedforward compensation is performed by adding the estimated load torque value to the motor torque command.
【0007】[0007]
【実施例】以下この発明の実施例を図面に基づいて説明
する。図1において、11は電動機の速度指令ωM※と
電動機の速度ωMとの偏差を得る偏差検出部で、この偏
差検出部11の出力はゲインKWCの第1の制御アンプ
12で増幅されて第1の減算部13のプラス入力端に供
給される。第1の減算部13のマイナス入力端には後述
するダンピング決定用のアンプ26からの出力値が供給
され、前記プラス入力端に供給される第1の制御アンプ
12の出力からダンピング決定用のアンプ26の出力値
が減算される。この減算値を第2の制御アンプ14で増
幅して電動機のトルク指令にフィードバック補償を行う
。DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described below with reference to the drawings. In FIG. 1, reference numeral 11 denotes a deviation detection unit that obtains the deviation between the motor speed command ωM* and the motor speed ωM. is supplied to the plus input terminal of the subtraction unit 13. An output value from an amplifier 26 for determining damping, which will be described later, is supplied to the minus input terminal of the first subtractor 13, and an output value from the amplifier 26 for determining damping is supplied to the plus input terminal from the output of the first control amplifier 12. 26 output values are subtracted. This subtracted value is amplified by the second control amplifier 14 to perform feedback compensation on the torque command of the electric motor.
【0008】第2の制御アンプ14の出力は加算部15
の第1入力端に供給され、その第2入力端には後述の負
荷トルク推定値τSが供給される。この加算部15は負
荷トルク推定値τSをトルク指令に加算してフィードフ
ォワード補償を行う。加算部15の出力端に得られた電
動機のトルク指令τMは伝達関数部16で演算されて電
動機の速度ωMを得る。The output of the second control amplifier 14 is sent to the adder 15.
A load torque estimated value τS, which will be described later, is supplied to a second input terminal thereof. This adder 15 adds the estimated load torque value τS to the torque command to perform feedforward compensation. The torque command τM of the electric motor obtained at the output end of the adder 15 is calculated by the transfer function unit 16 to obtain the speed ωM of the electric motor.
【0009】17は近似負荷トルク推定オブザーバ部で
、このオブザーバ部17は電動機のトルク指令τMがプ
ラス入力端に供給される偏差検出部18と、この偏差検
出部18の出力が供給されるモデル機械時定数Tmから
なる一次遅れ要素19と、この遅れ要素19の出力がプ
ラス入力端に供給され、マイナス入力端に電動機の速度
ωMが供給される偏差検出部20と、この偏差検出部2
0の出力が供給されるオブザーバゲイン部21とから構
成され、オブザーバゲイン部21の出力は偏差検出部1
8のマイナス入力端に供給されるとともに前記加算部1
5に供給される。Reference numeral 17 denotes an approximate load torque estimation observer section, and this observer section 17 includes a deviation detection section 18 to which the torque command τM of the electric motor is supplied to the plus input terminal, and a model machine to which the output of this deviation detection section 18 is supplied. a first-order delay element 19 having a time constant Tm; a deviation detection unit 20 to which the output of the delay element 19 is supplied to a plus input terminal and a motor speed ωM to a minus input terminal;
and an observer gain section 21 to which an output of 0 is supplied, and the output of the observer gain section 21 is supplied to the deviation detection section 1.
8 is supplied to the negative input terminal of the adder 1.
5.
【0010】22は高速軸トルク推定部で、この推定部
22は電動機の速度ωMが供給される微分部23と、こ
の微分部23の出力がマイナス入力端に、プラス入力端
に電動機のトルク指令τMが供給される偏差検出部24
とから構成される。この高速軸トルク推定部22から出
力される高速軸トルク推定値τS′は第2の減算部25
のプラス入力端に供給され、マイナス入力端には負荷ト
ルク推定値τSが供給され、第2の減算部25の出力端
には負荷加速度(負荷の加速度トルク)トルク値(τS
′−τS)が得られる。この負荷加速度トルク値はゲイ
ンKPFのダンピング決定用のアンプ26で増幅されて
前記第1の減算部13のマイナス入力端に供給される。Reference numeral 22 denotes a high-speed shaft torque estimating section, and this estimating section 22 includes a differentiating section 23 to which the speed ωM of the electric motor is supplied, an output of this differentiating section 23 is input to a negative input terminal, and a torque command of the electric motor is input to a positive input terminal. Deviation detection unit 24 to which τM is supplied
It consists of The high-speed shaft torque estimated value τS' output from the high-speed shaft torque estimator 22 is passed to the second subtractor 25.
The estimated load torque value τS is supplied to the plus input terminal of the second subtractor 25, the load torque estimated value τS is supplied to the minus input terminal, and the load acceleration (load acceleration torque) torque value (τS
'-τS) is obtained. This load acceleration torque value is amplified by a damping determining amplifier 26 with a gain KPF and is supplied to the minus input terminal of the first subtractor 13.
【0011】上記のように実施例を構成すると、近似負
荷トルク推定オブザーバ部17から出力される負荷トル
ク推定値τSをトルク指令に加算してフィードフォワー
ド補償(トルク補償)を行うと同時に、高速軸トルク推
定部22の推定値τS′と近似負荷トルク推定オブザー
バ部17の推定値τSとの負荷加速度トルク値をトルク
指令にフィードバックする。このような制御を行うこと
により、軸ねじり振動を抑制する制御ができる。When the embodiment is configured as described above, the load torque estimated value τS outputted from the approximate load torque estimation observer section 17 is added to the torque command to perform feedforward compensation (torque compensation), and at the same time, the high speed axis The load acceleration torque value of the estimated value τS' of the torque estimation unit 22 and the estimated value τS of the approximate load torque estimation observer unit 17 is fed back to the torque command. By performing such control, it is possible to perform control to suppress shaft torsional vibration.
【0012】次に図1に示した実施例が得られる過程を
数式等を用いて詳細に述べるに当たり、まず、回転運動
系の要素について説明する。2慣性系で利用する回転運
動系の要素には次の3つがある。Next, in order to describe in detail the process of obtaining the embodiment shown in FIG. 1 using mathematical formulas, etc., first, the elements of the rotational motion system will be explained. There are the following three elements of the rotational motion system used in the two-inertia system.
【0013】(a)慣性モーメントJと図4(a)に示
すTとの関係は、T=J・dωm/dtとなり、(b)
ねじり素子Kθと図4(b)に示すTとの関係は、T=
θ1−θ2/Kθ=Km(θ1−θ2)(ただし、Km
=1/Kθ)となり、(c)回転制御Rωと図4(c)
に示すTとの関係は、T=Rω・d(θ1−θ2)/d
tとなる。(a) The relationship between the moment of inertia J and T shown in FIG. 4(a) is T=J・dωm/dt, and (b)
The relationship between the torsion element Kθ and T shown in FIG. 4(b) is T=
θ1-θ2/Kθ=Km(θ1-θ2) (However, Km
= 1/Kθ), (c) rotation control Rω and Fig. 4(c)
The relationship with T shown in is T=Rω・d(θ1−θ2)/d
It becomes t.
【0014】次に、軸ねじり振動系(2慣性系)の運動
方程式を示す。図2に示す2慣性系のモデルから次の運
動方程式が得られる。Next, the equation of motion of the axial torsional vibration system (two-inertia system) will be shown. The following equation of motion is obtained from the two-inertial frame model shown in FIG.
【0015】[0015]
【数1】[Math 1]
【0016】(3)式は次のように表すことができる。Equation (3) can be expressed as follows.
【0017】[0017]
【数2】[Math 2]
【0018】上記式を用いてねじり振動系のブロック図
を描くと、図3のようになる。ここで、τMは電動機の
発生トルク、τSは軸トルク、τLは負荷トルク、ωM
,ωLは電動機及び負荷の角速度、θM,θLは電動機
の角変位、TM,TLは電動機の機械時定数(定格トル
ク⇒定格回転数)、TSは軸のばね時定数=1/Km,
Rmは軸の粘性係数である。When a block diagram of the torsional vibration system is drawn using the above equation, it becomes as shown in FIG. Here, τM is the generated torque of the electric motor, τS is the shaft torque, τL is the load torque, ωM
, ωL is the angular velocity of the motor and load, θM, θL is the angular displacement of the motor, TM, TL are the mechanical time constants of the motor (rated torque ⇒ rated rotation speed), TS is the spring time constant of the shaft = 1/Km,
Rm is the viscosity coefficient of the shaft.
【0019】次に軸ねじり振動系の伝達関数について述
べる。粘性係数Rm(Rm=0とする)を無視したモデ
ルでの発生トルクτMから電動機速度(角速度)ωM,
負荷速度(角速度)ωLまでの伝達関数GMM(S)と
GML(S)を求める。τMからωMまでの伝達関数G
MM(S)を求めると(5)式のようになる。Next, the transfer function of the shaft torsional vibration system will be described. From the generated torque τM in the model ignoring the viscosity coefficient Rm (Rm=0), the motor speed (angular velocity) ωM,
Find the transfer functions GMM(S) and GML(S) up to the load speed (angular velocity) ωL. Transfer function G from τM to ωM
The calculation of MM(S) is as shown in equation (5).
【0020】[0020]
【数3】[Math 3]
【0021】また、τLからωMまでの伝達関数GLM
(S)は(6)式のようになる。[0021] Also, the transfer function GLM from τL to ωM
(S) becomes as shown in equation (6).
【0022】[0022]
【数4】[Math 4]
【0023】次に、τMからωLまでの伝達関数GML
(S)を求めると、(7)式のようになる。Next, the transfer function GML from τM to ωL
When (S) is determined, it becomes as shown in equation (7).
【0024】[0024]
【数5】[Math 5]
【0025】さらに、τLからωLまでの伝達関数GL
L(S)は(8)式のようになる。Furthermore, the transfer function GL from τL to ωL
L(S) is expressed as equation (8).
【0026】[0026]
【数6】[Math 6]
【0027】ここで、二次遅れ系の伝達関数Kωn2/
S2+2ζωn+ωn2の一般表現と比較すると、(9
)式となる。Here, the transfer function Kωn2/ of the second-order lag system is
When compared with the general expression of S2+2ζωn+ωn2, (9
).
【0028】[0028]
【数7】[Math 7]
【0029】つまり、粘性係数Rm=0と近似したこと
によりζ=0となり、永久振動系となる。また、その共
振周波数はωnとなる。伝達関数の分母In other words, by approximating the viscosity coefficient Rm to 0, ζ=0, resulting in a permanently oscillating system. Further, its resonance frequency is ωn. Denominator of transfer function
【0030】[0030]
【数8】[Math. 8]
【0031】とする極を求めると(11)式のようにな
る。When the pole is determined, the equation (11) is obtained.
【0032】[0032]
【数9】[Math. 9]
【0033】(11)式から極が虚軸上に存在するため
、振動系である。From equation (11), the pole is on the imaginary axis, so it is an oscillating system.
【0034】図1に示した近似負荷加速度推定による補
償装置のブロック図を変形すると、図5に示すようにな
る。この図5をさらに変形したブロック図が図6である
。この図6からこの発明の実施例は等価的にIDP制御
となる。またオブザーバにより図6にPIで示す比例ー
積分要素が現れるので、第1、第2の制御アンプ12、
14は比例要素のみで構成してよい。When the block diagram of the compensation device based on approximate load acceleration estimation shown in FIG. 1 is modified, it becomes as shown in FIG. FIG. 6 is a block diagram that is a further modification of FIG. 5. From FIG. 6, the embodiment of the present invention is equivalently IDP control. Also, since a proportional-integral element shown by PI in FIG. 6 appears due to the observer, the first and second control amplifiers 12,
14 may be composed of only proportional elements.
【0035】前述した実施例の制御対象は直流機制御用
の静止レオナードや誘導電動機制御用のベクトル制御に
よるインバータで構成されていてもよい。トルク指τM
※は直流機の場合は電機子−電流指令となり、誘導電動
機のベクトル制御の場合はトルク分電流指令となる。The object to be controlled in the above-described embodiments may be composed of a stationary Leonardo for controlling a DC machine or an inverter using vector control for controlling an induction motor. Torque finger τM
*In the case of a DC machine, it is the armature-current command, and in the case of vector control of an induction motor, it is the torque component current command.
【0036】トルク指令τM※から電流制御系の遅れの
後、実際の電動機トルク指令τMとなる。このため、図
7に示すように電流検出を行って、その値をオブザーバ
や軸トルク推定に用いてもよい。After a delay in the current control system from the torque command τM*, the actual motor torque command τM becomes the actual motor torque command τM. For this reason, current detection may be performed as shown in FIG. 7, and the detected value may be used for the observer and shaft torque estimation.
【0037】定出力範囲を有する電動機では界磁弱め制
御があるため、オブザーバ等の構成を図8に示すように
すれば定トルク、定出力両方に使用できる。図8におい
て、a′をPIアンプにすれば完全次元オブザーバとな
る。また、図1に示した近似負荷トルク推定オブザーバ
部17のオブザーバゲイン部21のゲインa′をPIア
ンプに置き換えれば完全次元オブザーバとなる。Since a motor having a constant output range has field weakening control, if the configuration of the observer etc. is as shown in FIG. 8, it can be used for both constant torque and constant output. In FIG. 8, if a' is made into a PI amplifier, it becomes a complete dimensional observer. Further, if the gain a' of the observer gain unit 21 of the approximate load torque estimation observer unit 17 shown in FIG. 1 is replaced with a PI amplifier, a complete dimensional observer will be obtained.
【0038】[0038]
【発明の効果】以上述べたように、この発明によれば、
次のような種々の効果が得られる。[Effects of the Invention] As described above, according to the present invention,
The following various effects can be obtained.
【0039】(1)近似負荷トルク推定オブザーバ部の
モデル機械時定数Tmは電動機と負荷機械時定数に設定
し、オブザーバ出力として軸ねじり振動がない場合の負
荷トルク推定値を得るようにしているため、構成を簡素
化できる、(2)高速軸トルク推定部の構成を簡素化で
きる、(3)負荷トルク推定値をトルク指令に加算する
ことにより負荷外乱の抑制が可能である、(4)高速軸
トルク推定値と負荷トルク推定値の差をフィードバック
し、近似的に負荷加速度制御を行うことにより、軸ねじ
り振動を抑制できる、(5)電動機と負荷の慣性モーメ
ントの比が大きいときでも、小さいときでも共に軸ねじ
り振動抑制効果がある、(6)調製要素が少ないため、
調整方法が簡単である。(1) Approximate load torque estimation The model machine time constant Tm of the observer section is set to the time constant of the electric motor and the load machine, so that the load torque estimate in the absence of shaft torsional vibration is obtained as the observer output. , the configuration can be simplified, (2) the configuration of the high-speed shaft torque estimator can be simplified, (3) load disturbances can be suppressed by adding the load torque estimate to the torque command, (4) high-speed Shaft torsional vibration can be suppressed by feeding back the difference between the estimated shaft torque value and the estimated load torque value and approximately controlling the load acceleration. (5) Even when the ratio of the inertia moment of the motor to the load is large, (6) Because there are few adjustment elements,
The adjustment method is simple.
【図1】この発明の一実施例を示すブロック図。FIG. 1 is a block diagram showing an embodiment of the present invention.
【図2】軸ねじり振動系のモデルを示す説明図。FIG. 2 is an explanatory diagram showing a model of an axial torsional vibration system.
【図3】軸ねじり振動系のブロック図。FIG. 3 is a block diagram of the shaft torsional vibration system.
【図4】(a)慣性モーメントで利用する回転運動系の
要素を示す説明図、(b)ねじり素子で利用する回転運
動系の要素を示す説明図、(c)回転制動で利用する回
転運動系の要素を示す説明図。FIG. 4: (a) An explanatory diagram showing the elements of the rotary motion system used in the moment of inertia, (b) An explanatory diagram showing the elements of the rotary motion system used in the torsion element, (c) Rotary motion used in rotational braking. An explanatory diagram showing the elements of the system.
【図5】この発明の実施例を変形して示すブロック図。FIG. 5 is a block diagram showing a modified embodiment of the invention.
【図6】図5を変形して示すブロック図。FIG. 6 is a block diagram showing a modification of FIG. 5;
【図7】電流制御系を一次遅れで近似したときのブロッ
ク図。FIG. 7 is a block diagram when a current control system is approximated by a first-order lag.
【図8】定出力範囲を有する電動機におけるオブザーバ
の構成図。FIG. 8 is a configuration diagram of an observer in an electric motor having a constant output range.
11…偏差検出部、12…第1の制御アンプ、13…第
1の減算部、14…第2の制御アンプ、15…加算部、
16…伝達関数部、17…近似負荷トルク推定オブザー
バ部、22…高速軸トルク推定部、25…第2の減算部
、26…ダンピング決定用のアンプ。DESCRIPTION OF SYMBOLS 11... Deviation detection part, 12... First control amplifier, 13... First subtraction part, 14... Second control amplifier, 15... Addition part,
16... Transfer function section, 17... Approximate load torque estimation observer section, 22... High speed shaft torque estimation section, 25... Second subtraction section, 26... Amplifier for damping determination.
Claims (1)
が入力され、電動機と負荷の機械時定数の和をモデル機
械時定数に設定し、最小次元オブザーバまたは完全次元
オブザーバで負荷トルクを推定して、出力に負荷トルク
推定値を得る近似負荷トルク推定オブザーバ部と、前記
電動機のトルク指令と電動機の速度を微分した値とを減
算し、出力に高速の軸トルク推定値を得る高速軸トルク
推定部と、この高速軸トルク推定部からの推定値と前記
近似負荷トルク推定オブザーバ部からの負荷トルク推定
値とを減算し、出力に負荷加速度相当の値を得る減算部
と、 この減算部の出力に得られた負荷加速度相当の
値が入力されるダンピング決定用のアンプと、速度指令
と前記電動機の速度との偏差出力が供給される第1の制
御アンプと、この第1の制御アンプの出力と前記ダンピ
ング決定用のアンプの出力との偏差出力が供給され、ト
ルク指令にフィードバック補償を行う第2の制御アンプ
と、この第2の制御アンプの出力と前記近似負荷トルク
推定オブザーバ部からの負荷トルク推定値出力とが供給
され、両出力を加算して前記電動機のトルク指令にフィ
ードフォワード補償を行う加算部と、この加算部から出
力された電動機のトルク指令が供給され、このトルク指
令により電動機の速度を制御する伝達関数部とを備えた
ことを特徴とする軸ねじり振動抑制制御装置。[Claim 1] The torque command of the electric motor and the speed of the electric motor are input, the sum of the mechanical time constants of the electric motor and the load is set as a model mechanical time constant, and the load torque is estimated using a minimum dimension observer or a full dimension observer. , an approximate load torque estimation observer section that obtains an estimated load torque value as an output; and a high-speed shaft torque estimation section that subtracts a value obtained by differentiating the torque command of the motor and the speed of the motor to obtain a high-speed shaft torque estimation value as an output. and a subtraction unit that subtracts the estimated value from the high-speed shaft torque estimation unit and the load torque estimation value from the approximate load torque estimation observer unit to obtain a value equivalent to the load acceleration as an output; a damping determining amplifier to which a value corresponding to the obtained load acceleration is input; a first control amplifier to which a deviation output between the speed command and the speed of the motor is supplied; and an output of the first control amplifier. a second control amplifier to which a deviation output from the output of the damping determining amplifier is supplied and performs feedback compensation on the torque command; and a second control amplifier that performs feedback compensation on the torque command; An adder is supplied with the estimated value output, and an adder that adds both outputs to provide feedforward compensation to the torque command of the electric motor, and a torque command of the electric motor outputted from this adder. What is claimed is: 1. A shaft torsional vibration suppression control device comprising: a transfer function section that controls speed;
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3088030A JPH04319715A (en) | 1991-04-19 | 1991-04-19 | Controller for suppressing axially torsional vibration |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3088030A JPH04319715A (en) | 1991-04-19 | 1991-04-19 | Controller for suppressing axially torsional vibration |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04319715A true JPH04319715A (en) | 1992-11-10 |
Family
ID=13931427
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3088030A Pending JPH04319715A (en) | 1991-04-19 | 1991-04-19 | Controller for suppressing axially torsional vibration |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04319715A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0676681A2 (en) * | 1994-04-04 | 1995-10-11 | Kabushiki Kaisha Meidensha | Inertia lowering control apparatus for suppressing axial torsional vibration in two-mass resonant system |
EP0693333A1 (en) * | 1994-07-21 | 1996-01-24 | SCHULER PRESSEN GmbH & Co. | Vibration damping method for driven elements in workpiece transfer devices |
CN101877569A (en) * | 2009-04-28 | 2010-11-03 | 株式会社日立制作所 | The driving method of electric motor drive system, control device of electric motor and motor |
-
1991
- 1991-04-19 JP JP3088030A patent/JPH04319715A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5729111A (en) * | 1979-11-10 | 1998-03-17 | Kabushiki Kaisha Meidensha | Inertia lowering control apparatus capable of suppressing axially torsional vibration occurring on flexible drive shaft of two-mass inertia resonant system |
EP0676681A2 (en) * | 1994-04-04 | 1995-10-11 | Kabushiki Kaisha Meidensha | Inertia lowering control apparatus for suppressing axial torsional vibration in two-mass resonant system |
EP0693333A1 (en) * | 1994-07-21 | 1996-01-24 | SCHULER PRESSEN GmbH & Co. | Vibration damping method for driven elements in workpiece transfer devices |
US5692736A (en) * | 1994-07-21 | 1997-12-02 | Schuler Pressen Gmbh & Co. | Method for vibration damping of workpiece transport device driven elements |
US6039310A (en) * | 1994-07-21 | 2000-03-21 | Schuler Pressen Gmbh & Co. | Method for vibration damping of workpiece transport device driven elements |
CN101877569A (en) * | 2009-04-28 | 2010-11-03 | 株式会社日立制作所 | The driving method of electric motor drive system, control device of electric motor and motor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR0163638B1 (en) | Intertia lowering control apparatus for suppressing axial torsional in two-mass resonant system | |
JPH04145886A (en) | Speed control method and apparatus for motor | |
JP3227000B2 (en) | Motor speed control device | |
CN104993766A (en) | Two-mass system resonance suppression method | |
JPH07298667A (en) | Motor control equipment | |
JP2004005469A (en) | Control method and control device for electric motor | |
JP4914979B2 (en) | Motor control device and motor control method | |
KR970003192B1 (en) | Method and system for estimating inertia of 2-mass system during speed control | |
JPH09121580A (en) | Vibration suppressor of two-inertia resonance system by low inertia control | |
JPH04319715A (en) | Controller for suppressing axially torsional vibration | |
JP3339246B2 (en) | Vibration Suppression Device for Two-Inertial Resonant System by Low Inertia Control | |
JP2011160574A (en) | Speed control device for motor | |
JPH09282008A (en) | Servo controller | |
JPH04304181A (en) | Suppressor/controller for torsional vibration of shaft | |
JPH09305239A (en) | Backlash damping control method | |
JP3360935B2 (en) | Machine resonance detection device and vibration suppression control device in motor control system | |
JP2958600B2 (en) | Motor control device | |
JP2838578B2 (en) | Motor control device, disturbance load torque estimation device | |
JP4491904B2 (en) | Electric motor position control device | |
US20210194402A1 (en) | Electric motor control device | |
JP2001157478A (en) | Controller for motor | |
JPH10323071A (en) | Coefficient determining method for secondary serial compensator for two-inertia resonance system velocity control | |
JP5200714B2 (en) | Electric inertia control device | |
JPH08137503A (en) | Vibration suppression device for 2 inertial resonance system by resonance ratio control | |
JPH05300781A (en) | Speed controller for motor |