JPH04319655A - Method for analyzing and measuring rutherford back scattering - Google Patents

Method for analyzing and measuring rutherford back scattering

Info

Publication number
JPH04319655A
JPH04319655A JP3088486A JP8848691A JPH04319655A JP H04319655 A JPH04319655 A JP H04319655A JP 3088486 A JP3088486 A JP 3088486A JP 8848691 A JP8848691 A JP 8848691A JP H04319655 A JPH04319655 A JP H04319655A
Authority
JP
Japan
Prior art keywords
sample
angle
measured
scattering
ion beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3088486A
Other languages
Japanese (ja)
Inventor
Minoru Sato
実 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3088486A priority Critical patent/JPH04319655A/en
Publication of JPH04319655A publication Critical patent/JPH04319655A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To remove an ion subjected to back scattering within an angle range wherein a cavity curve containing a compensation shoulder appears from measured data when a sample is measured at random while subjected to in-plane rotation. CONSTITUTION:A sample 2 is irradiated with ion beam 1 while the sample 2 is rotated so that the crystal axis of the sample 2 does not become parallel to the incident direction of the ion beam 1 and the scattering yield at each angle is measured. An angle range wherein a cavity curve containing a compensation shoulder appears is set on the basis of the measured data and, when the sample 2 is continuously measured at random while subjected to in-plane rotation, the ion subjected to back scattering within the angle range is removed from the measured data. By this method, highly accurate random measurement can be performed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、ラザフォ−ド後方散乱
分析の測定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Rutherford backscattering analysis method.

【0002】0002

【従来の技術】ラザフォ−ド後方散乱分析法は、数百k
eVから数MeVのエネルギ−の範囲のイオンビ−ム(
例えば、He+、He2+、またはH+)を試料に照射
し、後方散乱されたイオンのエネルギ−を半導体検出器
で測定する方法である。
[Prior Art] The Rutherford backscattering analysis method
Ion beams with energies ranging from eV to several MeV (
For example, there is a method in which a sample is irradiated with ions (He+, He2+, or H+) and the energy of backscattered ions is measured using a semiconductor detector.

【0003】本分析法の原理、測定方法および分析への
適用は、チュ−(W.−K.Chu)、メイヤ−(J.
W.Mayer )及びニコレット(M.−A.Nic
olet)著の文献“バックスキャッタリング・スペク
トロメトリ−(Backscattering Spe
ctrometry)”(出版社  Academic
 Press、NewYork、1978年)に詳細に
記載されている。上記文献で使用された専門用語を以下
の本発明の説明においても利用する。コリメ−トされた
イオンビ−ムが結晶性材料の結晶軸または結晶面にほぼ
平行に入射すると、ほとんどの粒子は結晶原子と近接衝
突することなく、原子列と連続的に相互作用し(ク−ロ
ン反発を受け)、周期的に振動しながら試料の中を進み
、後方散乱されるイオンの割合が大幅に減少する。これ
をチャンネリング現象という。特に、結晶軸によるチャ
ンネリングを“軸チャンネリング”、また結晶面による
チャンネリングを“面チャンネリング”という。チャン
ネリング現象を利用することにより、結晶性の評価、格
子欠陥の深さ方向分布または不純物の格子内の原子位置
の決定などを行うことができる。
The principle, measurement method, and application of this analytical method are described in W.-K. Chu, Mayer (J.
W. Mayer) and Nicolette (M.-A.Nic)
olet), “Backscattering Spectrometry”
ctrometry)” (Publisher Academic
Press, New York, 1978). The terminology used in the above documents will also be utilized in the following description of the invention. When a collimated ion beam is incident almost parallel to the crystal axis or crystal plane of a crystalline material, most particles do not have close collisions with crystal atoms, but continuously interact with atomic columns (coupling). The ions travel through the sample while oscillating periodically, and the proportion of backscattered ions is greatly reduced. This is called the channeling phenomenon. In particular, channeling by crystal axes is called "axial channeling," and channeling by crystal planes is called "plane channeling." By utilizing the channeling phenomenon, it is possible to evaluate crystallinity, determine the depth distribution of lattice defects, or determine the atomic positions in the lattice of impurities.

【0004】しかし、ラザフォ−ド後方散乱分析法で結
晶性材料の深さ方向の組成分析を行う場合、図2に示し
たように、チャンネリング現象が起こるのを防ぐために
、コリメ−トされたイオンビ−ム1の入射方向と試料2
の各結晶面とが平行とならないように試料2を試料台3
に装着するか、または試料2を試料台3に装着後、試料
台3を傾斜および/または面内回転させイオンビ−ム1
の入射方向と試料2の各結晶面とが平行とならないよう
にした状態で測定を行う。これをランダム測定という。
However, when analyzing the composition of a crystalline material in the depth direction using the Rutherford backscattering analysis method, as shown in FIG. Incident direction of ion beam 1 and sample 2
Sample 2 is placed on sample stand 3 so that the crystal planes are not parallel to each other.
or after mounting the sample 2 on the sample stage 3, tilt and/or rotate the sample stage 3 in the plane so that the ion beam 1
The measurement is performed in a state in which the incident direction of the sample 2 is not parallel to each crystal plane of the sample 2. This is called random measurement.

【0005】図3は、イオンビ−ム1としてHe2+(
加速エネルギ−:2MeV)を用い、試料2として(1
00)砒化ガリウム基板を試料台3に装着し、イオンビ
−ム1の入射方向と試料台3の面内回転中心軸4のなす
角度が7度となるように設定し、試料台3の面内回転中
心軸4を中心に 0.6度ごとに 360度回転させて
イオンビ−ム1を同一照射量ずつ試料に照射しながら各
角度における散乱収率を測定した結果である。数箇所で
散乱収率が大幅に減少しているのは、結晶面によるチャ
ンネリングのためである。しかし、たとえ面チャンネリ
ングおよび軸チャンネリングが起こらないように試料2
を装着しても、図3から明らかなように、散乱収率の統
計的なばらつきを考慮に入れても、試料2の角度により
散乱収率が異なるため、試料台3を静止した状態で測定
を行う方法では、再現性の良い測定結果を得ることは難
しい。
FIG. 3 shows He2+(
Acceleration energy: 2 MeV) was used as sample 2 (1
00) Mount the gallium arsenide substrate on the sample stage 3, and set the angle between the incident direction of the ion beam 1 and the in-plane rotation center axis 4 of the sample stage 3 to be 7 degrees. These are the results of measuring the scattering yield at each angle while irradiating the sample with the same amount of ion beam 1 while rotating the sample 360 degrees in 0.6 degree increments about the central axis of rotation 4. The significant decrease in scattering yield at several locations is due to channeling by crystal planes. However, even if the sample 2
As is clear from Figure 3, even if the sample stage 3 is attached, the scattering yield differs depending on the angle of the sample 2, even if statistical variations in the scattering yield are taken into consideration. With this method, it is difficult to obtain measurement results with good reproducibility.

【0006】上記問題点を解決するため、公知の方法と
して、試料2を試料台3に装着し、イオンビ−ム1の入
射方向と結晶軸のなす角度が数度となるように設定し、
試料台3を面内回転中心軸4を中心に回転させながらラ
ンダム測定を行い、各角度の散乱収率を平均化する方法
が行われている。
In order to solve the above problem, as a known method, the sample 2 is mounted on the sample stage 3, and the angle between the incident direction of the ion beam 1 and the crystal axis is set to be several degrees.
A method is used in which random measurements are performed while rotating the sample stage 3 around the in-plane rotation center axis 4, and the scattering yields at each angle are averaged.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記の
ような試料台を面内回転させながら測定する方法では、
各面チャンネリングのおこる角度のデ−タも取り込んで
平均化する。
[Problems to be Solved by the Invention] However, in the above-mentioned method of measuring while rotating the sample stage within the plane,
Data on the angle at which channeling occurs on each surface is also taken in and averaged.

【0008】図5は、ケイ素単結晶の{110}面を中
心に{110}面を横切るように試料を微小角度ずつ回
転させながら1.8MeVのHeイオンを同一量ずつ照
射し、後方散乱されたHeイオンの散乱収率を測定した
結果を示したものである(引用文献は、E.Rimin
i,E.Lugujjo,and J.W.Mayer
,Phys.Rev.B6,718(1972).)。 この曲線を凹み曲線(dip curve)、 また凹
み6の両側の散乱収率が1より大きい部分を補償ショル
ダ−7と呼び、現在の理論解釈では、凹み6の減少面積
は両側の補償ショルダ−7により補償されると考えられ
ている。しかし、図5からも明らかなように凹み6の減
少面積の方がはるかに大きい。凹み6の散乱収率が最小
値となる角度を中心として前後1度における散乱収率の
総和を比較すると、散乱収率がすべて1となる完全な非
晶質の場合に比べて約7%少ない。また凹み6の減少面
積および補償ショルダ−7の面積、また凹み曲線の形状
は、試料の結晶性、またはイオンビ−ムの平行性などに
大きく依存する。
[0008] FIG. 5 shows that the same amount of 1.8 MeV He ions are irradiated while the sample is rotated by small angles so as to cross the {110} plane with the {110} plane of a silicon single crystal as the center, and the backscattered This figure shows the results of measuring the scattering yield of He ions (cited reference is E. Rimin
i, E. Lugujjo, and J. W. Mayer
, Phys. Rev. B6, 718 (1972). ). This curve is called a dip curve, and the part where the scattering yield on both sides of the dip 6 is larger than 1 is called the compensation shoulder 7. According to the current theoretical interpretation, the reduced area of the dip 6 is the compensation shoulder 7 on both sides. It is believed that this will be compensated by. However, as is clear from FIG. 5, the reduced area of the recess 6 is much larger. Comparing the sum of the scattering yields at 1 degree before and after the angle at which the scattering yield of the depression 6 has the minimum value, it is about 7% lower than the completely amorphous case where the scattering yields are all 1. . Further, the reduced area of the recess 6, the area of the compensation shoulder 7, and the shape of the recess curve largely depend on the crystallinity of the sample or the parallelism of the ion beam.

【0009】本来ランダム測定とは、試料を非晶質とみ
なして測定する方法であり、チャンネリング現象のおこ
る範囲のデ−タを取り込みながら測定すると正確なデ−
タが得られないという問題点があった。
[0009] Originally, random measurement is a method in which the sample is assumed to be amorphous and measured, and accurate data can be obtained by measuring while taking in data in the range where the channeling phenomenon occurs.
There was a problem that data could not be obtained.

【0010】本発明は、上記課題を解決するために、補
償ショルダ−を含む凹み曲線が現れる角度範囲内におい
て後方散乱されたイオンを測定デ−タから除外すること
により高精度なランダム測定方法を提供することを目的
とする。
In order to solve the above problems, the present invention provides a highly accurate random measurement method by excluding from measurement data ions that are backscattered within an angular range in which a concave curve including a compensation shoulder appears. The purpose is to provide.

【0011】[0011]

【課題を解決するための手段】本発明は、上記目的を達
成するために、試料の結晶軸とイオンビ−ムの入射方向
とが平行にならないように試料を回転させながら前記イ
オンビ−ムを前記試料に照射し、各角度における散乱収
率を測定し、この測定デ−タより補償ショルダ−を含む
凹み曲線が現れる角度範囲を設定し、続いて面内回転を
しながら前記試料のランダム測定を行う際に、前記角度
範囲内において後方散乱されたイオンを測定デ−タから
除外することを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention is directed to directing the ion beam while rotating the sample so that the crystal axis of the sample and the direction of incidence of the ion beam are not parallel to each other. The sample is irradiated, the scattering yield at each angle is measured, and from this measurement data the angle range in which the concave curve including the compensation shoulder appears is set, and then the sample is randomly measured while rotating in the plane. When carrying out this method, ions backscattered within the angular range are excluded from the measurement data.

【0012】0012

【作用】本発明によれば、面内回転をしながら前記試料
のランダム測定を行う際に、補償ショルダ−を含む凹み
曲線が現れる角度範囲内において後方散乱されたイオン
を測定デ−タから除外することにより、高精度なランダ
ム測定が可能となる。
[Operation] According to the present invention, when performing random measurements of the sample while rotating in the plane, ions backscattered within the angular range where a concave curve including a compensation shoulder appears are excluded from the measurement data. By doing so, highly accurate random measurement becomes possible.

【0013】[0013]

【実施例】以下に、本発明の一実施例について、図面を
用いて詳細に説明する。図1は本発明の実施例を示す測
定方法のフロ−チャ−ト、図2は本発明の実施例を示す
ラザフォ−ド後方散乱分析装置の概略構成図である。図
3は本発明の実施例の(100)砒化ガリウム基板の散
乱収率の測定結果である。図4は本発明の実施例を示す
各凹み曲線において測定デ−タとして取り込まない角度
範囲を設定する方法の概念図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a flowchart of a measuring method according to an embodiment of the present invention, and FIG. 2 is a schematic diagram of a Rutherford backscattering analyzer according to an embodiment of the present invention. FIG. 3 shows the measurement results of the scattering yield of a (100) gallium arsenide substrate according to an example of the present invention. FIG. 4 is a conceptual diagram of a method for setting an angular range that is not captured as measurement data in each concave curve according to an embodiment of the present invention.

【0014】結晶性材料には複数の結晶軸および結晶面
が存在するが、試料表面に垂直な結晶軸が存在する結晶
性材料(例えば、砒化ガリウム基板またはケイ素基板)
のうちで、(100)砒化ガリウム基板を測定する場合
について説明する。 (1)  まず、試料2を面内回転機構を有する試料台
3に装着する。(100)砒化ガリウム基板は、試料台
3の平面にほぼ垂直に<100>軸が存在する。 (2)  イオンビ−ム1と試料2の結晶軸とが平行に
ならないように試料台3を数度傾け、イオンビ−ム1を
同一照射量ずつ試料2に照射しながら試料台3を面内回
転中心軸4を中心に微小角度ずつ回転させ、各角度にお
ける散乱収率を測定する。
A crystalline material has a plurality of crystal axes and crystal planes, and a crystalline material (for example, a gallium arsenide substrate or a silicon substrate) has a crystal axis perpendicular to the sample surface.
Among these, the case where a (100) gallium arsenide substrate is measured will be explained. (1) First, the sample 2 is mounted on the sample stage 3 having an in-plane rotation mechanism. The (100) gallium arsenide substrate has a <100> axis substantially perpendicular to the plane of the sample stage 3. (2) Tilt the sample stage 3 several degrees so that the crystal axes of ion beam 1 and sample 2 are not parallel, and rotate the sample stage 3 in the plane while irradiating sample 2 with the same amount of ion beam 1. It is rotated by small angles around the central axis 4, and the scattering yield at each angle is measured.

【0015】図3は、(100)砒化ガリウム基板を装
着した試料台を7度傾け、0.6 度ずつ回転してHe
2+(加速エネルギ−:2MeV)を照射しながら測定
した散乱収率の結果である。 (3)  散乱収率の平均値(N)を計算する。 (4)  上記平均値(N)の平方根(σ)を計算する
。 (5)  判定値を計算する。上記平均値(N)より、
上記平均値の平方根(σ)の3倍の値を差し引いた値(
N−3σ)を計算し、これを判定値とする。 (6)  各面チャンネリングによる凹み曲線において
散乱収率が最小となる角度(ψi)を検出する。まず、
各角度の散乱収率を比較し、最小値の角度を求める。次
に、最小値の角度の散乱収率と判定値との大小を比較し
、判定値より小さければ、この角度を凹み曲線の最小値
の角度と判定する。次に、この最小値の角度の前後3度
ずつを除いた角度範囲の中で各角度の散乱収率を比較し
、その角度範囲の中で最小値となる角度を求め、前記と
同様に判定値と比較し、判定値より小さければ第2の凹
み曲線の最小値とする。このような手順を最小値の角度
の散乱収率が判定値より大きくなるまで繰り返し、各凹
み曲線において散乱収率が最小となる角度(ψi)を複
数箇所決定する。
FIG. 3 shows a sample stage mounted with a (100) gallium arsenide substrate tilted 7 degrees and rotated 0.6 degrees at a time.
These are the results of scattering yields measured while irradiating with 2+ (acceleration energy: 2 MeV). (3) Calculate the average value (N) of scattering yield. (4) Calculate the square root (σ) of the above average value (N). (5) Calculate the judgment value. From the above average value (N),
The value obtained by subtracting three times the square root (σ) of the above average value (
N-3σ) is calculated, and this is used as the judgment value. (6) Detect the angle (ψi) at which the scattering yield is minimum in the concave curve due to channeling on each surface. first,
Compare the scattering yields at each angle and find the angle with the minimum value. Next, the magnitude of the scattering yield at the angle of the minimum value is compared with the determination value, and if it is smaller than the determination value, this angle is determined to be the angle of the minimum value of the concave curve. Next, compare the scattering yield of each angle within the angle range excluding 3 degrees before and after this minimum value angle, find the angle that has the minimum value within that angular range, and judge in the same way as above. If it is smaller than the determination value, it is set as the minimum value of the second concave curve. Such a procedure is repeated until the scattering yield at the angle having the minimum value becomes larger than the determination value, and a plurality of angles (ψi) at which the scattering yield becomes the minimum are determined in each concave curve.

【0016】(100)砒化ガリウム基板の<100>
軸を約7度傾けて散乱収率を測定した場合には、8箇所
で主要な面による面チャンネリングが起こる。図3より
、各凹み曲線の最小値の角度(ψi)は、4.80度,
52.2度,98.4度,143.4 度,187.8
度,231.0 度,274.8 度,319.2 度
という値が上記判定結果より得られた。 (7)  各面チャンネリングによる凹み曲線の半値幅
(C)を求める。まず、上記で決定した各(ψi)のす
ぐ右隣の大きな角度(ψi+1)の散乱収率と平均値の
1/2の値(1/2N)との大小を比較し、1/2Nよ
り大きければその角度をAとし、1/2Nより小さけれ
ば、さらにすぐ右隣の大きな角度の散乱収率と1/2N
との大小比較を繰り返し、Aを求める。同様にして、(
ψi)のすぐ左隣の小さな角度(ψi−1)の散乱収率
と1/2Nとの大小を比較し、1/2Nより大きければ
その角度をBとし、1/2Nより小さければ、さらにす
ぐ左隣の小さな角度の散乱収率と1/2Nとの大小比較
を繰り返し、Bを求める。次に、各凹み曲線においてA
とBの差の絶対値をそれぞれ計算し、これを各凹み曲線
の半値幅(C)とする。 (8)  各最小値の角度(ψi)を中心として、各角
度において求めた半値幅の3倍の角度を両側にとり、こ
の角度範囲(ψi±3C)を測定デ−タを取り込まない
角度範囲として複数箇所設定する。 (9)  上記にて設定した角度範囲内においては、デ
−タの取り込みを行わないようにして試料台3を面内回
転させながらランダム測定を行った。
(100) <100> of gallium arsenide substrate
When the scattering yield is measured with the axis tilted by about 7 degrees, surface channeling occurs at eight major surfaces. From Figure 3, the minimum angle (ψi) of each concave curve is 4.80 degrees,
52.2 degrees, 98.4 degrees, 143.4 degrees, 187.8 degrees
The values of 231.0 degrees, 274.8 degrees, and 319.2 degrees were obtained from the above judgment results. (7) Find the half width (C) of the concave curve due to channeling on each surface. First, compare the scattering yield of the large angle (ψi+1) immediately to the right of each (ψi) determined above with the value of 1/2 of the average value (1/2N), and if it is larger than 1/2N, Let the angle be A, and if it is smaller than 1/2N, then the scattering yield of the larger angle immediately to the right and 1/2N
A is obtained by repeatedly comparing the size with . Similarly, (
Compare the scattering yield of the small angle (ψi-1) immediately to the left of ψi) with 1/2N, and if it is larger than 1/2N, set that angle as B, and if it is smaller than 1/2N, then B is obtained by repeatedly comparing the scattering yield of the small angle on the left with 1/2N. Next, in each concave curve, A
The absolute value of the difference between and B is calculated, and this is taken as the half width (C) of each concave curve. (8) Centering on the angle (ψi) of each minimum value, take an angle three times the half width determined at each angle on both sides, and use this angle range (ψi±3C) as the angle range in which no measurement data is taken. Set multiple locations. (9) Within the angle range set above, random measurements were performed while rotating the sample stage 3 within the plane without taking data.

【0017】上記本発明の測定方法により、高精度なラ
ンダム測定が可能となった。なお、試料台が上記にて設
定した角度範囲内では、面内回転の速度を上げ、測定時
間の短縮化をはかることも可能である。
[0017] The measurement method of the present invention enables highly accurate random measurement. Note that within the angle range of the sample stage set above, it is also possible to increase the speed of in-plane rotation and shorten the measurement time.

【0018】また、測定デ−タを取り込まない角度範囲
は、少なくとも凹み曲線がすべて含まれていれば良いの
で、それ以上の広い角度範囲を設定しても本発明の課題
を解決するにあたって問題とはならない。
Furthermore, the angular range in which measurement data is not taken needs only to include at least all the concave curves, so even if a wider angular range is set, there will be no problem in solving the problems of the present invention. Must not be.

【0019】また、測定デ−タを取り込まない角度範囲
を複数箇所設定する別の方法としては、装置のディスプ
レイなどの表示装置上に図3を表示させ、各凹み曲線の
散乱収率の最も低い角度をカ−ソルにより測定者が読み
取り、前記角度をマウスあるいはキ−ボ−ドなどの入力
装置によりコンピュ−タに入力し、その前後数度を測定
デ−タを取り込まない角度範囲として複数箇所設定する
ことも可能である。
Another method for setting a plurality of angular ranges from which measurement data is not taken is to display the diagram shown in FIG. The measurer reads the angle using a cursor, inputs the angle into a computer using an input device such as a mouse or keyboard, and selects several angles within several degrees before and after that as an angle range in which no measurement data is taken. It is also possible to set

【0020】また測定デ−タを取り込まない角度範囲を
複数箇所設定する別の方法として、装置のディスプレイ
などの表示装置上に図3を表示させ、測定デ−タを取り
込まない角度の両端を測定者が読み取り、マウスまたは
キ−ボ−ドなどの入力装置によりコンピュ−タ入力し、
複数箇所設定することも可能である。
Another method for setting multiple angle ranges from which measurement data is not captured is to display the diagram in FIG. A person reads the information and inputs it into the computer using an input device such as a mouse or keyboard,
It is also possible to set multiple locations.

【0021】なお、本発明の実施例においては、試料表
面に垂直である結晶軸についてのみ説明したが、試料表
面に垂直でない結晶軸についても同様に適用できる。
In the embodiments of the present invention, only crystal axes that are perpendicular to the sample surface have been described, but the present invention can be similarly applied to crystal axes that are not perpendicular to the sample surface.

【0022】また、結晶性材料以外にも、結晶性のある
層を少なくとも一層以上含む多層薄膜試料、または結晶
性基板に作製した薄膜試料などに適用できるのはもちろ
んのこと、いずれの試料にも同様に適用できる。
In addition to crystalline materials, the present invention can of course be applied to multilayer thin film samples containing at least one crystalline layer, or thin film samples fabricated on crystalline substrates. The same applies.

【0023】なお、本発明は、試料の各々の結晶面にお
ける補償ショルダ−を含む凹み曲線が現れる角度範囲が
設定できれば、本発明における課題を解決できるため、
上記実施例に限定されるものではなく、本発明の趣旨に
基づいて、種々の変形が可能であり、これらを本発明の
範囲から排除するものではない。
Note that the present invention can solve the problems of the present invention if the angle range in which the concave curve including the compensation shoulder appears on each crystal plane of the sample can be set.
The present invention is not limited to the above embodiments, and various modifications can be made based on the spirit of the present invention, and these are not excluded from the scope of the present invention.

【0024】本発明者は、上記測定方法により、高精度
なランダム測定ができることを発明した。
[0024] The present inventor has invented that highly accurate random measurement can be performed by the above measurement method.

【0025】[0025]

【発明の効果】以上の説明から明らかなように、本発明
によれば、面内回転をしながら前記試料のランダム測定
を行う際に、補償ショルダ−を含む凹み曲線が現れる角
度範囲内において後方散乱されたイオンを測定デ−タか
ら除外することにより、高精度なランダム測定が可能と
なった。
As is clear from the above description, according to the present invention, when random measurements are made on the sample while rotating in the plane, it is possible to perform a backward measurement within the angle range in which the concave curve including the compensation shoulder appears. By excluding scattered ions from the measurement data, highly accurate random measurements are now possible.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例の測定方法のフロ−チャ−トで
ある。
FIG. 1 is a flowchart of a measurement method according to an embodiment of the present invention.

【図2】本発明の実施例のラザフォ−ド後方散乱分析装
置の概略構成図である。
FIG. 2 is a schematic configuration diagram of a Rutherford backscattering analyzer according to an embodiment of the present invention.

【図3】本発明の実施例の(100)砒化ガリウム基板
の散乱収率の測定結果である。
FIG. 3 is a measurement result of the scattering yield of a (100) gallium arsenide substrate according to an example of the present invention.

【図4】本発明の実施例の各凹み曲線において測定デ−
タを取り込まない角度範囲を設定する方法の概念図であ
る。
FIG. 4: Measured data for each concave curve of the embodiment of the present invention.
FIG. 4 is a conceptual diagram of a method for setting an angular range in which no data is included.

【図5】1.8MeVのHeによるケイ素結晶の{10
0}面の凹み曲線の測定結果である。
Figure 5: {10
0} surface concavity curve measurement results.

【符号の説明】[Explanation of symbols]

1  イオンビ−ム 2  試料 3  試料台 4  試料台の面内回転中心軸 5  検出器 6  凹み 7  補償ショルダ− 1 Ion beam 2 Sample 3 Sample stage 4 In-plane rotation center axis of the sample stage 5 Detector 6 Dent 7 Compensation shoulder

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  試料の結晶軸とイオンビ−ムの入射方
向とが平行にならないように試料を回転させながら前記
イオンビ−ムを前記試料に照射し、各角度における散乱
収率を測定し、この測定デ−タより補償ショルダ−を含
む凹み曲線が現れる角度範囲を設定し、続いて面内回転
をしながら前記試料のランダム測定を行う際に、前記角
度範囲内において後方散乱されたイオンを測定デ−タか
ら除外することを特徴とするラザフォ−ド後方散乱分析
の測定方法。
1. The ion beam is irradiated onto the sample while rotating the sample so that the crystal axis of the sample and the direction of incidence of the ion beam are not parallel, and the scattering yield at each angle is measured. An angular range in which a concave curve including a compensation shoulder appears from the measurement data is set, and then, when performing random measurements of the sample while rotating in the plane, backscattered ions within the angular range are measured. A measurement method of Rutherford backscattering analysis characterized by excluding data from the data.
【請求項2】  前記凹み曲線の半値幅より補償ショル
ダ−を含む凹み曲線が現れる角度範囲を設定することを
特徴とする請求項1のラザフォ−ド後方散乱分析の測定
方法。
2. The Rutherford backscattering analysis measurement method according to claim 1, wherein an angular range in which a concave curve including a compensation shoulder appears is set from a half width of the concave curve.
JP3088486A 1991-04-19 1991-04-19 Method for analyzing and measuring rutherford back scattering Pending JPH04319655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3088486A JPH04319655A (en) 1991-04-19 1991-04-19 Method for analyzing and measuring rutherford back scattering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3088486A JPH04319655A (en) 1991-04-19 1991-04-19 Method for analyzing and measuring rutherford back scattering

Publications (1)

Publication Number Publication Date
JPH04319655A true JPH04319655A (en) 1992-11-10

Family

ID=13944133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3088486A Pending JPH04319655A (en) 1991-04-19 1991-04-19 Method for analyzing and measuring rutherford back scattering

Country Status (1)

Country Link
JP (1) JPH04319655A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003511845A (en) * 1999-10-13 2003-03-25 アプライド マテリアルズ インコーポレイテッド Beam alignment measurement in ion implantation using Rutherford backscattering

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003511845A (en) * 1999-10-13 2003-03-25 アプライド マテリアルズ インコーポレイテッド Beam alignment measurement in ion implantation using Rutherford backscattering
JP4838470B2 (en) * 1999-10-13 2011-12-14 アプライド マテリアルズ インコーポレイテッド Beam alignment measurement in ion implantation using Rutherford backscattering

Similar Documents

Publication Publication Date Title
Sinha Reflectivity using neutrons or X-rays? A critical comparison
Roth et al. Self-assembled gradient nanoparticle-polymer multilayers investigated by an advanced characterization method: microbeam grazing incidence x-ray scattering
Batavičiutė et al. Revision of laser-induced damage threshold evaluation from damage probability data
JP2003506673A (en) Apparatus and method for semiconductor wafer texture analysis
Seah et al. Ultrathin SiO2 on Si: III mapping the layer thickness efficiently by XPS
JP2004045369A (en) Method for evaluating orientation of polycrystalline material
US6678347B1 (en) Method and apparatus for quantitative phase analysis of textured polycrystalline materials
Schwenke et al. Treatment of roughness and concentration gradients in total reflection X-ray fluorescence analysis of surfaces
TWI753490B (en) X-ray reflectometry and method thereof for measuring three dimensional nanostructures on flat substrate
JPH04319655A (en) Method for analyzing and measuring rutherford back scattering
Dunn The Analysis of Quantitative Pole‐Figure Data
Menyhard et al. Study of ion mixing during Auger depth profiling of Ge–Si multilayer system. II. Low ion energy (0.2–2 keV) range
JP2906924B2 (en) Wafer surface roughness measurement method
Munkholm et al. Ordering in thermally oxidized silicon
An et al. Simultaneous real time spectroscopic ellipsometry and reflectance for monitoring semiconductor and thin film preparation
Lohner et al. Ellipsometric characterization of oxidized porous silicon layer structures
JP3297736B2 (en) Method and apparatus for analyzing element distribution in the depth direction using precision section processing by focused ion beam
JP3373698B2 (en) X-ray analysis method and X-ray analyzer
Ding et al. Quantification of surface roughness effect on elastically backscattered electrons
JP2580953B2 (en) Crystal structure determination method
JPH08327566A (en) Method and device for quantitative determination in total reflection x-ray fluorescence analysis
Pape et al. Grazing incidence X-ray scattering measurement of silicate glass surfaces
Saka A sensitive method to detect strain in silicon crystals using X-ray dynamical diffraction
JP2715999B2 (en) Evaluation method for polycrystalline materials
Werho et al. Calibration of reference materials for total-reflection X-ray fluorescence analysis by heavy ion backscattering spectrometry