JPH04319006A - Skew rolling method of seamless steel tube - Google Patents
Skew rolling method of seamless steel tubeInfo
- Publication number
- JPH04319006A JPH04319006A JP8504691A JP8504691A JPH04319006A JP H04319006 A JPH04319006 A JP H04319006A JP 8504691 A JP8504691 A JP 8504691A JP 8504691 A JP8504691 A JP 8504691A JP H04319006 A JPH04319006 A JP H04319006A
- Authority
- JP
- Japan
- Prior art keywords
- rolling
- rolled
- roll
- rolls
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005096 rolling process Methods 0.000 title claims abstract description 49
- 229910000831 Steel Inorganic materials 0.000 title claims description 21
- 239000010959 steel Substances 0.000 title claims description 21
- 238000000034 method Methods 0.000 title claims description 12
- 230000003746 surface roughness Effects 0.000 claims abstract description 21
- 238000004080 punching Methods 0.000 claims description 2
- 239000000463 material Substances 0.000 abstract description 23
- 235000019592 roughness Nutrition 0.000 description 19
- 238000010586 diagram Methods 0.000 description 15
- 229910000975 Carbon steel Inorganic materials 0.000 description 14
- 239000010962 carbon steel Substances 0.000 description 14
- 230000003247 decreasing effect Effects 0.000 description 9
- 230000007547 defect Effects 0.000 description 9
- 230000007423 decrease Effects 0.000 description 8
- 239000002436 steel type Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 238000005553 drilling Methods 0.000 description 4
- 229910000851 Alloy steel Inorganic materials 0.000 description 3
- 230000000669 biting effect Effects 0.000 description 2
- 238000005242 forging Methods 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Landscapes
- Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、傾斜ロールによる継目
無鋼管の穿孔圧延方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for piercing and rolling seamless steel pipes using inclined rolls.
【0002】0002
【従来の技術】マンネスマン型穿孔機は図1に示すよう
にして一対のバレル型ロール10,10aを有している
。この一対のロール10,10aは数度の表面角を付与
され、パスラインに対して傾斜して配置されている。
加熱されたビレット20はロール10,10aによって
回転を与えられつつ前進し、その間に受ける回転鍛造効
果によってその中心部に穴が明き易くなり、プラグ30
の先端により穿孔される。このような従来の穿孔法では
、9%Cr鋼、13%Cr鋼などの高合金鋼を連続して
穿孔するとロールと被圧延材とのすべりが増加し被圧延
材の前進速度が低下するので、被圧延材プラグの先端で
穿孔される前に回転鍛造により中心部に穴が明き、これ
が穿孔後に内面疵として残り易くなる。2. Description of the Related Art A Mannesmann type punching machine has a pair of barrel type rolls 10, 10a as shown in FIG. The pair of rolls 10, 10a are provided with a surface angle of several degrees and are arranged at an angle with respect to the pass line. The heated billet 20 moves forward while being rotated by the rolls 10 and 10a, and due to the rotary forging effect received during this process, a hole is easily formed in the center of the billet 20, and the plug 30
perforated by the tip of the With such conventional drilling methods, if high alloy steel such as 9% Cr steel and 13% Cr steel is continuously drilled, slippage between the rolls and the material to be rolled increases and the forward speed of the material to be rolled decreases. A hole is formed in the center by rotary forging before being drilled at the tip of the plug of the rolled material, and this tends to remain as an inner surface flaw after the hole is drilled.
【0003】このような問題点の防止対策として、ロー
ル改削時にローレット加工やナーリング加工によってあ
らかじめロール表面に凹形状を付与する方法がある。こ
れらの方法で付与されたロール表面の凹形状は、ロール
への被圧延材の噛み込み性を向上させる目的には適して
いるが、噛み込み後の被圧延材の前進速度を向上させる
目的を達成させるには非常に深い凹形状が必要となるた
め圧延後の被圧延材の表面に痕跡を残してしまい問題と
なっている。As a measure to prevent such problems, there is a method of imparting a concave shape to the roll surface in advance by knurling or knurling when modifying the roll. The concave shape on the roll surface imparted by these methods is suitable for the purpose of improving the biting property of the rolled material into the roll, but it is not suitable for the purpose of improving the forward speed of the rolled material after biting. Achieving this requires a very deep concave shape, which leaves traces on the surface of the rolled material after rolling, which poses a problem.
【0004】その他にも、特開昭61−180603号
公報に示されるように、ロールの開き量を被圧延材の入
側直径に対してある範囲に特定する方法、あるいは特開
昭63−49308号公報に示されるようにロール開き
量だけではなくプラグリード、ロール傾斜角、ロール交
叉角などを変化させて圧延する方法などがあるが、これ
らの圧延条件設定を変更すると、圧延で被圧延材に所定
の寸法を付与できないという問題がある。[0004] In addition, as shown in Japanese Patent Application Laid-Open No. 61-180603, there is a method of specifying the opening amount of the rolls within a certain range with respect to the entrance diameter of the material to be rolled, or Japanese Patent Application Laid-Open No. 63-49308. As shown in the publication, there is a method of rolling by changing not only the roll opening amount but also the plug lead, roll inclination angle, roll intersection angle, etc., but when these rolling condition settings are changed, the material to be rolled during rolling There is a problem in that it is not possible to give a predetermined dimension to.
【0005】[0005]
【発明が解決しようとする課題】そこで、本発明は被圧
延材の外面の表面性状を損ねることなく、かつ圧延条件
の設定変更も行うことなしに、被圧延材とロールとの間
のすべりを軽減して、内面疵の防止をはかるものである
。SUMMARY OF THE INVENTION Therefore, the present invention aims to prevent slippage between the rolled material and the rolls without impairing the surface properties of the outer surface of the rolled material and without changing the settings of the rolling conditions. This is intended to prevent internal surface flaws.
【0006】[0006]
【課題を解決するための手段】本発明者らはロール替え
から数千本ごとに被圧延材の表面を調査した。また高合
金鋼圧延時及びその後には数十本ごとにロール表面を調
査した。その結果、以下のことが明らかになった。ロー
ル表面粗度に関して、円周方向の粗さは圧延本数と圧延
鋼種の影響を受け易いが、軸方向の粗さはこれらにあま
り影響を受けない。被圧延材とロールとの間のすべりに
与えるロールの円周方向の表面粗さの影響は大きい。し
かし中心線平均粗さや最大粗さだけでは評価できない。[Means for Solving the Problems] The present inventors investigated the surface of the rolled material every several thousand rolls after changing the rolls. In addition, during and after rolling of high-alloy steel, the roll surface was inspected every few dozen rolls. As a result, the following became clear. Regarding the roll surface roughness, the roughness in the circumferential direction is easily influenced by the number of rolled rolls and the type of rolled steel, but the roughness in the axial direction is not so affected by these factors. The surface roughness of the roll in the circumferential direction has a large influence on the slip between the rolled material and the roll. However, the center line average roughness and maximum roughness alone cannot be used for evaluation.
【0007】前述の問題点を解決するため上記のような
調査を繰返し行った結果をもとに本発明が開発された。
本発明は傾斜穿孔機において、傾斜ロールの円周方向の
表面粗度を、中心線平均粗さRaで5μm以上40μm
以下及び凹凸の平均ピーク間隔DHSで30μm以上8
50μm以下の範囲内に管理して、圧延を行うことを特
徴とする継目無鋼管の傾斜圧延方法である。[0007] In order to solve the above-mentioned problems, the present invention was developed based on the results of repeated investigations as described above. The present invention provides an inclined perforation machine in which the surface roughness of the inclined roll in the circumferential direction is set to 5 μm or more and 40 μm in center line average roughness Ra.
30 μm or more in DHS and average peak spacing of unevenness 8
This is a method for inclined rolling of seamless steel pipes, which is characterized by performing rolling while controlling the thickness to be within a range of 50 μm or less.
【0008】[0008]
【作用】被圧延材とロールとの間のすべりを評価する指
標として、穿孔効率を用いた。穿孔効率ηとは、傾斜ロ
ールの周速度の被圧延材前進方向成分VR−x と、被
圧延材の前進速度VM−x とを用いて、(1)式のよ
うに定義される値で、ηが小さいほど被圧延材とロール
との間のすべりが大きいと判断できる。[Operation] The perforation efficiency was used as an index for evaluating the slippage between the rolled material and the rolls. The perforation efficiency η is a value defined as in equation (1) using the component VR-x of the circumferential speed of the inclined roll in the forward direction of the rolled material VR-x and the forward speed VM-x of the rolled material, It can be determined that the smaller η is, the greater the slippage between the rolled material and the rolls is.
【0009】
η = {(VM−x )/(V
R−x )}×100 …(1)以下に図を
用いて本発明の作用について詳しく説明する。傾斜ロー
ルの表面を研削仕上し、直径110mmの被圧延材14
000本の圧延チャンスに供した。本圧延チャンスはほ
とんどが一般炭素鋼の圧延であるが、8001本目から
8150本目の150本のみ13%Cr鋼を圧延した。[0009] η = {(VM-x)/(V
R-x)}×100 (1) The operation of the present invention will be explained in detail below using the drawings. The surface of the inclined roll is ground and finished, and the rolled material 14 has a diameter of 110 mm.
000 rolls were subjected to rolling chances. Most of the actual rolling chances were rolling of general carbon steel, but only 150 pieces, from 8001st to 8150th, were rolled with 13% Cr steel.
【0010】表1に示すように圧延開始から1000本
目、2000本目、及びその後は2000本毎に圧延を
中断し、ロール表面を調査した。また8001本目から
8350本目については50本毎に調査した。As shown in Table 1, rolling was interrupted at the 1000th roll, 2000th roll after the start of rolling, and every 2000 rolls thereafter, and the roll surface was examined. In addition, for the 8001st to 8350th lines, each 50th line was investigated.
【0011】[0011]
【表1】
─────────────────────────
───── ロール観察(回目) 圧延本数(
本) 圧延鋼種 1
0
圧延前 2
1000 一般
炭素鋼 3
2000 一般炭素鋼
4 4
000 一般炭素鋼 5
6000
一般炭素鋼 6
8000 一
般炭素鋼 7
8050 13%Cr鋼
8
8100 13%Cr鋼
9 8150
13%Cr鋼 10
8200
一般炭素鋼 11
8250 一般炭素鋼
12
8300 一般炭素鋼 1
3 8350
一般炭素鋼 14
10000 一般
炭素鋼 15
12000 一般炭素鋼
16 14000
一般炭素鋼─────────────
─────────────────ロール表面性状は
粗さで評価される。粗さの指標としては粗さの大きさを
用いたものと、凹凸の間隔を用いたものがある。本発明
では、粗さの大きさを用いた指標である中心線平均粗さ
Raと凹凸の間隔を用いた指標である平均ピーク間隔D
HSとによってロール表面性状を定量化した。[Table 1] ──────────────────────────
───── Roll observation (time) Number of rolled rolls (
This) Rolled steel type 1
0
Before rolling 2
1000 General carbon steel 3
2000 General carbon steel
4 4
000 General carbon steel 5
6000
General carbon steel 6
8000 General carbon steel 7
8050 13%Cr steel
8
8100 13%Cr steel
9 8150
13%Cr steel 10
8200
General carbon steel 11
8250 General carbon steel 12
8300 General carbon steel 1
3 8350
General carbon steel 14
10000 General carbon steel 15
12000 General carbon steel
16 14000
General carbon steel──────────────
────────────────── Roll surface quality is evaluated by roughness. As an index of roughness, there are two methods: one using the magnitude of roughness and the other using the interval between protrusions and recesses. In the present invention, the centerline average roughness Ra is an index using the size of roughness, and the average peak spacing D is an index using the spacing between concavities and convexities.
The roll surface properties were quantified by HS.
【0012】Raは図2(a)に示されるように、粗さ
曲線からその中心線の方向に基準長さLの部分を抜き取
り、この抜き取り部分の中心線をx軸、縦倍率の方向を
y軸とし、粗さ曲線をy=f(x)で表わしたとき、(
2)式によって求められる値Raをμmで表わしたもの
である。As shown in FIG. 2(a), Ra is obtained by extracting a portion of reference length L from the roughness curve in the direction of its center line, and using the center line of this sampled portion as the x-axis and the vertical magnification direction as When the roughness curve is expressed as y=f(x) on the y axis, (
2) The value Ra determined by the formula is expressed in μm.
【0013】[0013]
【数1】[Math 1]
【0014】次にDHSは図2の(b)に示すように中
心線から上の部分に突出した山の数、又は平均線に平行
で任意に定めた平均線から又は最高山頂からの距離pを
通る線より上に突出した山の数で与えられるハイスポッ
トカウントHSCと呼ばれる値で測定全長L* を割っ
た値をμmで表わしたものである。図2(b)を例にと
って具体的に説明すれば、このプロフィールの場合測定
全長L* に対してHSCは7である。したがってDH
Sは(3)式のように算出される。[0014] Next, DHS is the number of peaks protruding above the center line as shown in FIG. The value obtained by dividing the measured total length L* by a value called high spot count HSC, which is given by the number of peaks protruding above a line passing through the line, is expressed in μm. To explain specifically using FIG. 2(b) as an example, in the case of this profile, the HSC is 7 for the measured total length L*. Therefore DH
S is calculated as in equation (3).
【0015】
DHS = (L* )/(HSC)
= (L* )/7 …(3)ロール替えから
対象圧延チャンス終了までの、圧延本数が穿孔効率ηに
及ぼす影響を図3に示す。特に8000本から8350
本目についてを抜粋して図4に示す。圧延開始から30
00本程度圧延するとηは安定し、80%前後となるが
圧延本数が10000本を超えるとηは減少し始め14
000本の時点では40%程度になる。
また、このηの減少に起因して、圧延本数13000本
近辺から、本圧延チャンス終了にかけて、圧延後の被圧
延材の内面には高い確率で内面疵が発見された。DHS = (L*)/(HSC)
= (L*)/7...(3) Figure 3 shows the influence of the number of rolling rolls on the perforation efficiency η from the roll change to the end of the target rolling chance. Especially from 8000 to 8350
Figure 4 shows an excerpt of the main points. 30 from the start of rolling
When about 000 pieces are rolled, η becomes stable and becomes around 80%, but when the number of rolled pieces exceeds 10000 pieces, η begins to decrease14
At the time of 000 copies, it will be about 40%. Furthermore, due to this decrease in η, internal flaws were found with a high probability on the internal surface of the rolled material after rolling from around 13,000 rolled sheets to the end of the main rolling chance.
【0016】また、圧延開始から8001本目から81
50本目の150本は13%Cr鋼が圧延されたが、圧
延本数の増加にしたがってηは急激に減少し、13%C
r鋼を100本程度連続して圧延するとηは50%以下
となり、内面疵が発生し易かった。その後被圧延材を一
般炭素鋼に変更するとηは増加し始め、100〜150
本の圧延でηは13%Cr鋼圧延前のレベルに戻った。[0016] Also, from the 8001st roll after the start of rolling, 81
The 50th 150 pieces were rolled with 13% Cr steel, but as the number of pieces rolled increased, η decreased rapidly, and 13% Cr steel was rolled.
When approximately 100 pieces of r-steel were rolled continuously, η was less than 50%, and internal defects were likely to occur. After that, when the material to be rolled was changed to general carbon steel, η started to increase and became 100 to 150.
After rolling, η returned to the level before rolling the 13% Cr steel.
【0017】図5に、ロール替えから対象圧延チャンス
終了までの圧延本数がロール表面の円周方向の中心線平
均粗さRaに及ぼす影響を示す。特に8000本から8
350本目についてを抜粋して図6に示す。図3に示さ
れたηの増減傾向は、図5に示されたRaの増減傾向と
よく一致する。しかし図4に示された圧延鋼種に影響さ
れるηの減増傾向は、図6に示されたRaの減増傾向と
完全には一致しない。したがって、ηの増減をRaの増
減だけで説明することはできない。FIG. 5 shows the influence of the number of rolling rolls from roll change to the end of the target rolling chance on the center line average roughness Ra of the roll surface in the circumferential direction. Especially from 8000 to 8
An excerpt of the 350th line is shown in Figure 6. The increasing/decreasing tendency of η shown in FIG. 3 matches well with the increasing/decreasing tendency of Ra shown in FIG. 5. However, the decreasing tendency of η influenced by the rolling steel type shown in FIG. 4 does not completely match the decreasing tendency of Ra shown in FIG. 6. Therefore, the increase or decrease in η cannot be explained only by the increase or decrease in Ra.
【0018】図7にロール替えから対象圧延チャンス終
了までの圧延本数がロール表面の円周方向の凹凸の平均
ピッチ間隔DHSに及ぼす影響を示す。特に8000本
〜8350本目についてを抜粋して図8に示す。図3に
示されたηの増減傾向は、図7に示されたDHSの減増
傾向と完全に一致しない。しかし、図4に示された圧延
鋼種に影響されるηの減増傾向は、図8に示されたDH
Sの増減傾向とよく一致する。FIG. 7 shows the influence of the number of rolling rolls from the change of rolls until the end of the target rolling chance on the average pitch interval DHS of irregularities in the circumferential direction of the roll surface. Particularly, the 8000th to 8350th lines are excerpted and shown in FIG. The increasing/decreasing tendency of η shown in FIG. 3 does not completely match the decreasing/increasing tendency of DHS shown in FIG. 7 . However, the decreasing tendency of η affected by the type of rolled steel shown in Fig. 4 is different from the tendency of DH shown in Fig. 8.
This agrees well with the increase/decrease trend of S.
【0019】これらの結果からηの増減はRaの増減と
DHS減増の組合わせで説明できることが分かった。圧
延本数及び被圧延材の鋼種がロール表面粗さと、内面疵
の発生に及ぼす影響を図9に示す。図9から内面疵を発
生させないためには、Ra≧5μm、DHS≦850μ
mが必要条件である。From these results, it was found that the increase/decrease in η can be explained by a combination of the increase/decrease in Ra and the decrease/increase in DHS. FIG. 9 shows the influence of the number of rolling rolls and the steel type of the rolled material on the roll surface roughness and the occurrence of internal flaws. From Fig. 9, in order to prevent inner surface flaws, Ra≧5μm, DHS≦850μm
m is a necessary condition.
【0020】次にRaの上限値及びDHSの下限値を見
極めるために、傾斜ロールに機械的に種々の粗さを付与
し、実際に圧延に供した。ロールは付与された表面粗さ
の条件と圧延結果について表2に示す。Next, in order to determine the upper limit value of Ra and the lower limit value of DHS, various roughnesses were mechanically imparted to the inclined rolls and the rolls were actually rolled. Table 2 shows the surface roughness conditions and rolling results for the rolls.
【0021】[0021]
【表2】
─────────────────────────
────────── ロール円周方向の表面粗
さ 内面疵 外面疵 スリップ
による Ra(μm) DHS(μm)
圧延不能
11 32
〇 〇
〇 15 21
× ×
× 15
26 × 〇
〇 16
30 〇
〇 〇 2
2 33
〇 〇 〇
39 223
〇 〇
〇 40 383
〇 〇
〇 40 6
18 〇 〇
〇 46
388 〇
× 〇 49
392 〇
× 〇───────
─────────────────────────
───被圧延材の内面疵を防止するためにはDHSが3
0μm以上必要であること、また外面疵を防止するため
にはRaが40μm以下であることが必要であることが
わかった。[Table 2] ──────────────────────────
────────── Surface roughness in the circumferential direction of the roll Internal flaws External flaws Due to slip Ra (μm) DHS (μm)
Unable to roll
11 32
〇 〇
〇 15 21
× ×
× 15
26 × 〇 〇 16
30 〇
〇 〇 2
2 33
〇 〇 〇
39 223
〇 〇
〇 40 383
〇 〇
〇 40 6
18 〇 〇
〇 46
388 〇
× 〇 49
392 〇
× 〇────────
──────────────────────────
───DHS is 3 to prevent inner surface defects of rolled material.
It was found that Ra is required to be 0 μm or more, and that Ra is required to be 40 μm or less in order to prevent external flaws.
【0022】[0022]
【実施例】本発明によるロール表面管理規定を直径21
0mm以下のビレットの圧延に適用した。本発明により
管理された表面粗さRa及びDHSを従来の表面粗さと
比較して表3に示す。このようにロール表面粗さを管理
した本発明方法の実施による圧延不良減少効果の調査結
果を図10〜図12に示す。図10は内面疵発生率の比
較図、図11はスリップによる圧延不能発生率の比較図
、図12は外面疵発生率の比較図である。ロール改削時
の表面粗さを本発明で規定される適正粗さ範囲内に管理
することにより、ロール替え直後の内面疵の発生及びス
リップによる圧延不能の発生はほとんど無くなった。
また高合金鋼圧延時も数十本の圧延毎に圧延を停止して
ロール表面粗度を測定し、ロール表面粗さが適正範囲を
逸脱する前に軽手入れして粗度を回復させるなど、ロー
ル表面粗さを本発明で規定される適正粗さ範囲内にして
操業することにより、内面疵の発生率は図10に示すよ
うに従来の1/4以下に、スリップによる圧延不能発生
率は図11に示すように、1/10以下に減少した。さ
らに圧延本数が10000本を超した後にも、500〜
1000本の圧延毎に圧延を停止してロール表面粗度を
測定し、前記のロール表面の軽手入れをするか、早期に
ロール替えするなどして、内面疵の発生率とスリップに
よる圧延不能の発生率を極めて小さくすることができた
。[Example] The roll surface management provisions according to the present invention are
It was applied to rolling billets of 0 mm or less. Table 3 shows the surface roughness Ra and DHS managed by the present invention in comparison with the conventional surface roughness. The results of an investigation into the effect of reducing rolling defects by implementing the method of the present invention in which the roll surface roughness is controlled in this manner are shown in FIGS. 10 to 12. FIG. 10 is a comparison diagram of the occurrence rate of internal defects, FIG. 11 is a comparison diagram of the occurrence rate of failure to roll due to slip, and FIG. 12 is a comparison diagram of the occurrence rate of external defects. By controlling the surface roughness during roll modification within the appropriate roughness range specified in the present invention, the occurrence of inner surface flaws immediately after roll change and the occurrence of inability to roll due to slip were almost eliminated. Also, when rolling high-alloy steel, we stop rolling every few dozen rolls and measure the roll surface roughness, and perform light maintenance to restore the roughness before the roll surface roughness deviates from the appropriate range. By operating with the roll surface roughness within the appropriate roughness range defined by the present invention, the incidence of internal defects is reduced to less than 1/4 of the conventional rate, as shown in Figure 10, and the incidence of unrolling due to slips is reduced. As shown in FIG. 11, it decreased to 1/10 or less. Furthermore, even after the number of rolled rolls exceeds 10,000, 500~
After every 1,000 rolls are rolled, the rolling is stopped and the roll surface roughness is measured, and the roll surface roughness is lightly maintained as described above, or the rolls are changed early to reduce the incidence of internal flaws and the possibility of rolling failure due to slipping. We were able to reduce the incidence to an extremely low level.
【0023】なお、本発明の実施により、圧延後の被圧
延材の外面疵の発生率も極めて小さくすることができた
。Furthermore, by carrying out the present invention, it was possible to extremely reduce the incidence of defects on the outer surface of the rolled material after rolling.
【0024】[0024]
【表3】[Table 3]
【0025】[0025]
【発明の効果】本発明により、継目無し鋼管の内外面の
表面性状の悪化を防止することができるようになった。[Effects of the Invention] According to the present invention, it has become possible to prevent deterioration of the surface properties of the inner and outer surfaces of a seamless steel pipe.
【図1】マンネスマン穿孔機の概略図である。FIG. 1 is a schematic diagram of a Mannesmann drilling machine.
【図2】本発明に用いる粗さの定義に係る図である。FIG. 2 is a diagram related to the definition of roughness used in the present invention.
【図3】圧延本数と圧延鋼種が穿孔効率に及ぼす影響を
示す図である。FIG. 3 is a diagram showing the influence of the number of rolled steel and the type of rolled steel on drilling efficiency.
【図4】圧延本数と圧延鋼種が穿孔効率に及ぼす影響を
示す図である。FIG. 4 is a diagram showing the influence of the number of rolled steel and the type of rolled steel on drilling efficiency.
【図5】圧延本数と圧延鋼種がロール表面粗さRaに影
響を示す図である。FIG. 5 is a diagram showing the influence of the rolling number and rolling steel type on roll surface roughness Ra.
【図6】圧延本数と圧延鋼種がロール表面粗さRaに影
響を示す図である。FIG. 6 is a diagram showing the influence of the rolling number and rolling steel type on roll surface roughness Ra.
【図7】圧延本数と圧延鋼種がロール表面粗さのピーク
間隔に及ぼす影響を示す図である。FIG. 7 is a diagram showing the influence of the rolling number and rolling steel type on the peak interval of roll surface roughness.
【図8】圧延本数と圧延鋼種がロール表面粗さのピーク
間隔に及ぼす影響を示す図である。FIG. 8 is a diagram showing the influence of the rolling number and rolling steel type on the peak interval of roll surface roughness.
【図9】本発明の粗さ指標の限界決定に係る図である。FIG. 9 is a diagram related to limit determination of the roughness index of the present invention.
【図10】本発明の実施効果を示す内面疵発生率の比較
図である。FIG. 10 is a comparison diagram of the incidence of internal defects showing the effects of implementing the present invention.
【図11】本発明の実施効果を示すスリップによる圧延
不能発生率の比較図である。FIG. 11 is a comparison diagram of the occurrence rate of failure to roll due to slip, showing the effects of implementing the present invention.
【図12】本発明の実施効果を示す外面疵発生率の比較
図である。FIG. 12 is a comparison diagram of the incidence of external defects showing the effect of implementing the present invention.
10,10a 傾斜ロール 20 ビレット 30 プラグ 10,10a Inclined roll 20 billet 30 Plug
Claims (1)
表面粗度を、中心線平均粗さRaで5μm以上40μm
以下及び凹凸の平均ピーク間隔DHSで30μm以上8
50μm以下の範囲内に管理して圧延を行うことを特徴
とする継目無鋼管の傾斜圧延方法。Claim 1: The surface roughness in the circumferential direction of the inclined roll of the inclined punching machine is 5 μm or more and 40 μm in terms of center line average roughness Ra.
30 μm or more in DHS and average peak spacing of unevenness 8
A method for inclined rolling of seamless steel pipes, characterized in that the rolling is controlled within a range of 50 μm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8504691A JP2898775B2 (en) | 1991-04-17 | 1991-04-17 | Inclined rolling method for seamless steel pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8504691A JP2898775B2 (en) | 1991-04-17 | 1991-04-17 | Inclined rolling method for seamless steel pipe |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04319006A true JPH04319006A (en) | 1992-11-10 |
JP2898775B2 JP2898775B2 (en) | 1999-06-02 |
Family
ID=13847735
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8504691A Expired - Lifetime JP2898775B2 (en) | 1991-04-17 | 1991-04-17 | Inclined rolling method for seamless steel pipe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2898775B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009118957A1 (en) * | 2008-03-28 | 2009-10-01 | 住友金属工業株式会社 | High-alloy seamless steel pipe manufacturing method |
-
1991
- 1991-04-17 JP JP8504691A patent/JP2898775B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009118957A1 (en) * | 2008-03-28 | 2009-10-01 | 住友金属工業株式会社 | High-alloy seamless steel pipe manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JP2898775B2 (en) | 1999-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4586921B2 (en) | Seamless pipe manufacturing method | |
US20060174670A1 (en) | Piercing method for manufacturing of seamless pipe | |
EP2098310B1 (en) | Manufacturing method for seamless pipe | |
JP4471134B2 (en) | Manufacturing method for seamless pipes for automobile parts | |
JPH04319006A (en) | Skew rolling method of seamless steel tube | |
EP2286934B1 (en) | High-alloy seamless steel pipe manufacturing method | |
RU2309810C2 (en) | Piercing method for making seamless pipe | |
US9254511B2 (en) | Method for producing seamless tube/pipe | |
JPH07124612A (en) | Piercing method of seamless metallic tube | |
JP3785916B2 (en) | Rolling method for seamless metal pipe | |
JP3401118B2 (en) | Method of manufacturing thick steel plate without seam flaws | |
JP3036356B2 (en) | Seamless pipe manufacturing apparatus and seamless pipe manufacturing method | |
JPH0569011A (en) | Skew rolling method for tube | |
JPH105820A (en) | Manufacture of seamless metallic tube | |
JP2001219205A (en) | Method of manufacturing seamless tube | |
JP2996124B2 (en) | Perforation rolling method for seamless metal pipe | |
JP2605541B2 (en) | Rolling method with inclined rolling mill | |
JPH07308703A (en) | Rolling method with elongator | |
JPH05185132A (en) | Method for rolling seamless steel tube | |
JPH06190408A (en) | Device for manufacturing seamless steel tube and its manufacture | |
JPH07284818A (en) | Method for hot-rolling seamless steel tube | |
JP2002301504A (en) | Method for manufacturing seamless metallic tube | |
JPS6352709A (en) | Rolling control method for mandrel mill | |
JPH0569602B2 (en) | ||
JPH05305310A (en) | Inclined stretch rolling method for hot seamless steel tube |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19990302 |