JPH04318446A - Foreign matter detecting system - Google Patents

Foreign matter detecting system

Info

Publication number
JPH04318446A
JPH04318446A JP11236491A JP11236491A JPH04318446A JP H04318446 A JPH04318446 A JP H04318446A JP 11236491 A JP11236491 A JP 11236491A JP 11236491 A JP11236491 A JP 11236491A JP H04318446 A JPH04318446 A JP H04318446A
Authority
JP
Japan
Prior art keywords
wafer
microscope
foreign matter
lens
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11236491A
Other languages
Japanese (ja)
Inventor
Ryoji Nemoto
亮二 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi Electronics Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Electronics Engineering Co Ltd filed Critical Hitachi Electronics Engineering Co Ltd
Priority to JP11236491A priority Critical patent/JPH04318446A/en
Publication of JPH04318446A publication Critical patent/JPH04318446A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make a foreign matter inspecting system commonly usable for both a researching and inspecting lines by performing X-direction scanning by changing the step interval in the Y-direction of an X-Y stage in corresponding to the narrow and wide visual fields of a microscope produced by a change in the magnification of a repeating lens. CONSTITUTION:An objective 311 having 40 magnifications is provided in the direction perpendicular to a wafer 1 and the fixed section 61 of a mobile table 6 is fixed. A repeating lens section 7 provided with repeating lenses 312A and 312B respectively having 2.5 and 1 magnifications is fitted to the mobile section 62 of the table 6 and the section 7 is manually selected. A microscope 31A for research having 100 magnifications is constituted by using the 2.5-power lens and a microscope 31B for inspection having 40 magnifications is constituted by using the 1-power lens. At the time of performing inspections, one of the repeating lenses is selected and an X-Y stage 5 is moved in the Y direction in steps for scanning. Any lens magnification other than those mentioned above can be used according to the actual condition.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、パターン付きウエハ
に付着した異物に対する検査方式である。
BACKGROUND OF THE INVENTION The present invention is an inspection method for foreign matter attached to a patterned wafer.

【0002】0002

【従来の技術】半導体ICの製造用のウエハは、素材の
鏡面ウエハに対してパターン配線が形成され、その表面
に異物が付着すると品質が劣化するので異物検査装置に
より検査される。異物の検出には光学式が専ら使用され
、ウエハの表面に対してレーザビームを照射し、異物が
散乱する散乱光を受光して異物を検出し、この検出信号
を適当な処理回路により処理してえられる異物データを
ディスプレイ装置にマップ表示するものである。
2. Description of the Related Art Wafers used for manufacturing semiconductor ICs are inspected using a foreign matter inspection device because pattern wiring is formed on a mirror-surfaced wafer, and the quality deteriorates if foreign matter adheres to the surface of the wafer. Optical methods are exclusively used to detect foreign objects, in which the surface of the wafer is irradiated with a laser beam, the foreign objects are detected by receiving the scattered light, and this detection signal is processed by an appropriate processing circuit. The foreign object data obtained is displayed as a map on a display device.

【0003】さて、パターン配線が形成されたウエハ(
パターン付きウエハ、または単にウエハという)におい
ては、照射されたレーザビームは、異物とともにパター
ンによっても反射されるので、両者を区別して異物のみ
を検出することが極めて重要である。これに対して、両
者を区別して異物のみを検出する方法およびその装置が
開発され、まず「特願昭61−103596 号、異物
検査装置」(以下便宜上、検出方法1とする)が出願さ
れ、ついで「特開昭61−104243 号、異物検出
方法およびその装置」(以下、検出方法2とする)が公
開されている。検出方法1の検出光学系はパターンの段
差が低いウエハ(異物の検出が比較的容易)に対して有
効であり、検出方法2は段差が高いウエハ(異物の検出
が比較的困難)に対して好適であるとされている。さら
に、これらの検出光学系を兼ね合わせてやや簡略化され
た装置が出願され、「特開昭63−296348 号、
ウエハ異物検査装置」が公開されている。
Now, a wafer (
On a patterned wafer (or simply referred to as a wafer), the irradiated laser beam is reflected by the pattern as well as the foreign matter, so it is extremely important to distinguish between the two and detect only the foreign matter. In response to this, a method and device for distinguishing between the two and detecting only the foreign matter were developed, and the first application was filed in Japanese Patent Application No. 103596/1983, Foreign Matter Inspection Apparatus (hereinafter referred to as Detection Method 1 for convenience). Next, ``Unexamined Japanese Patent Publication No. 104243/1983, Foreign Matter Detection Method and Apparatus Therefor'' (hereinafter referred to as Detection Method 2) has been published. Detection method 1's detection optical system is effective for wafers with low pattern height differences (relatively easy to detect foreign objects), and detection method 2 is effective for wafers with high pattern height differences (relatively difficult to detect foreign objects). It is said to be suitable. Furthermore, a slightly simplified device combining these detection optical systems was filed, and was disclosed in Japanese Patent Application Laid-Open No. 63-296348,
"Wafer Foreign Matter Inspection System" has been released to the public.

【0004】図3の(a) は上記の「特開昭63−2
96348 号、ウエハ異物検査装置」の構成を示すも
ので、被検査のウエハ1に対して照射系2が設けられ、
対向した2個1組の光源21a,21b より、波長が
λ1 でS偏光のレーザビームが低角度θ1(1〜5°
)で照射され、同様の光源22a,22b より、波長
がλ2 でS偏光のレーザビームが高角度θ2(例えば
30°)で照射される。ウエハ1に対して垂直方向に顕
微鏡31を有する受光系3が設けられ、各レーザビーム
の反射光は顕微鏡31の対物レンズ311 により集光
され、中継レンズ312 より出力する。出力した反射
光は波長分離ミラー32によりλ1 とλ2 の波長が
分離され、それぞれがCCD素子34a,34b に受
光されて電圧VL,VH が出力される。出力電圧VL
 とVH は信号処理部4において割り算器41により
比数VL /Vh が計算され、この比数がコンパレー
タ42により閾値mと比較されて異物が検出され、検出
信号paがえられる。この場合の検出光学系は上記の検
出方法1に相当する。以上に対して、波長分離ミラー3
2に代わって偏光ビームスプリッタ33を交換して使用
すると、各反射光は波長分離されない代わりに偏光方向
がSとPの偏光波に分離され、それぞれがCCD素子3
5a と35b に受光されて電圧VL,VH が出力
され、以下上記と同様に比上数VL /VH が計算さ
れて異物信号pa がえられる。この場合は上記の検出
方法2に相当する。
[0004] FIG.
No. 96348, Wafer Foreign Matter Inspection Apparatus", in which an irradiation system 2 is provided for a wafer 1 to be inspected,
A pair of opposing light sources 21a and 21b emit an S-polarized laser beam with wavelength λ1 at a low angle θ1 (1 to 5 degrees).
), and from similar light sources 22a and 22b, a laser beam of wavelength λ2 and S polarization is irradiated at a high angle θ2 (for example, 30°). A light receiving system 3 having a microscope 31 is provided in a direction perpendicular to the wafer 1, and the reflected light of each laser beam is focused by an objective lens 311 of the microscope 31 and outputted from a relay lens 312. The output reflected light is separated into wavelengths λ1 and λ2 by a wavelength separation mirror 32, which are received by CCD elements 34a and 34b, respectively, and outputted as voltages VL and VH. Output voltage VL
and VH in the signal processing unit 4, a divider 41 calculates a ratio VL/Vh, and a comparator 42 compares this ratio with a threshold m to detect a foreign object and obtain a detection signal pa. The detection optical system in this case corresponds to detection method 1 described above. Regarding the above, the wavelength separation mirror 3
When a polarizing beam splitter 33 is used instead of 2, each reflected light is not wavelength-separated but is separated into S and P polarized waves, each of which is transmitted to the CCD element 3.
The light is received by 5a and 35b, voltages VL and VH are output, and the ratio VL/VH is calculated in the same manner as above to obtain the foreign object signal pa. This case corresponds to detection method 2 above.

【0005】以上により、上記のウエハ異物検査装置に
おいてはウエハのプロセスに従って順次に変化するパタ
ーンの段差に対応して、検出方法1または2を使い分け
て効果的に異物の検出が行われるものである。
As described above, in the above-mentioned wafer foreign object inspection apparatus, foreign objects can be detected effectively by selectively using detection method 1 or 2 in response to pattern steps that change sequentially according to the wafer process. .

【0006】ここで上記の顕微鏡31の視野とレーザビ
ームの走査幅について説明する。顕微鏡31によりウエ
ハの表面が拡大され、図(b) のようにその視野A内
にあるCCD素子35a,35b に反射光を結像し、
CCD素子をスキャンして異物を検出するもので、CC
D素子35a または35b の画素の範囲がレーザビ
ームの走査幅Wとなる。この場合、顕微鏡の倍率は異物
の検出感度に関係し、高倍率ほど感度が良好である。従
来においては対物レンズとして40×(倍)を、中継レ
ンズとして2.5×を使用して倍率が100×の顕微鏡
が構成され、視野Aの直径Wa はウエハの表面に換算
して約700μm、レーザビームの走査幅wは、同じく
約200μmとされている。
The field of view of the microscope 31 and the scanning width of the laser beam will now be explained. The surface of the wafer is magnified by a microscope 31, and the reflected light is imaged on CCD elements 35a and 35b within its field of view A, as shown in Figure (b).
It detects foreign objects by scanning the CCD element.CC
The pixel range of the D element 35a or 35b becomes the scanning width W of the laser beam. In this case, the magnification of the microscope is related to the detection sensitivity of foreign matter, and the higher the magnification, the better the sensitivity. Conventionally, a microscope with a magnification of 100x is constructed using a 40x objective lens and a 2.5x relay lens, and the diameter Wa of the field of view A is approximately 700 μm when converted to the surface of the wafer. The scanning width w of the laser beam is also approximately 200 μm.

【0007】[0007]

【発明が解決しようとする課題】さて、上記においてウ
エハに対するレーザビームの走査はXY走査方式により
行われ、これを図4の(a) に示す。ウエハ1をその
オリエンティション・フラットOFをX方向としてXY
ステージ(図示省略)に載置し、ステージをX方向に往
復移動するとともにY方向に順次にステップ移動するこ
とによりウエハの全面が走査される。この場合、ウエハ
に対する走査速度は一定とすることが必要であるが、往
復のためにステージは折り返し点の近くで減速されるの
で、全体としての走査速度は低くなり、従って検査時間
が長くなる欠点がある。研究的な異物検査の場合にはそ
れでも構わないが、検査ラインで多数のウエハを連続し
て検査する場合にはできる限り検査時間を短縮すること
が望ましい。これに対してウエハをより高速に移動する
ことが考えられるが、XYステージとその移動機構の構
造上多くを期待できない。一方、上記の顕微鏡は倍率に
よりウエハ表面に換算した視野Aの範囲が変わり、視野
が狭いほど走査幅wが狭くて検査時間が長くかかる。上
記の倍率100×は前記した検出方法2、すなわち異物
の検出が比較的困難な、段差の高いパターンに対応した
ものであるが、検査ラインに適用する場合は、検出感度
の若干の低下を許すこととして倍率を低下すれば、視野
Aが拡大されて走査幅wが広くなり、検査時間を短縮す
ることが可能である。ただし、異物検査装置は研究用と
検査ライン用の両方に使用するので、両者に適用できる
方式とすることが必要である。
In the above, the laser beam scans the wafer using an XY scanning method, which is shown in FIG. 4(a). The orientation of wafer 1 is XY with its orientation flat OF as the X direction.
The wafer is placed on a stage (not shown), and the entire surface of the wafer is scanned by reciprocating the stage in the X direction and sequentially stepwise moving in the Y direction. In this case, it is necessary to keep the scanning speed relative to the wafer constant, but since the stage is decelerated near the turning point for reciprocating, the overall scanning speed is low and the inspection time is therefore long. There is. Although this is acceptable in the case of research-based foreign matter inspection, it is desirable to shorten the inspection time as much as possible when a large number of wafers are inspected in succession on an inspection line. In response to this, it is possible to move the wafer at a higher speed, but this cannot be expected due to the structure of the XY stage and its moving mechanism. On the other hand, in the above-mentioned microscope, the range of the field of view A converted to the wafer surface changes depending on the magnification, and the narrower the field of view, the narrower the scanning width w and the longer the inspection time. The above magnification of 100x corresponds to the above-mentioned detection method 2, that is, a pattern with high steps where detection of foreign objects is relatively difficult, but when applied to an inspection line, a slight decrease in detection sensitivity is allowed. In particular, by lowering the magnification, the field of view A is enlarged, the scanning width w becomes wider, and the inspection time can be shortened. However, since the foreign matter inspection device is used for both research and inspection lines, it is necessary to adopt a method that can be applied to both.

【0008】この発明は以上に鑑みてなされたもので、
研究と検査ラインとに共通使用し、研究用には検出感度
を従来どおりに維持し、検査ラインにおいては検査時間
を短縮できる異物検査方式を提供することを目的とする
ものである。
[0008] This invention was made in view of the above,
The purpose of this invention is to provide a foreign substance inspection method that can be used commonly for research and inspection lines, maintains the same detection sensitivity as before for research, and shortens inspection time for inspection lines.

【0009】[0009]

【課題を解決するための手段】この発明は、被検査のパ
ターン付きウエハを載置してXまたはY方向に移動する
XYステージと、ウエハの表面に対して互いに異なる波
長のレーザビームの一方を低角度とし、他方を高角度と
して照射する照射系と、ウエハに対して垂直方向に設け
られた受光系とを具備し、対物レンズと中継レンズより
なり、各レーザビームの反射光を集光してウエハの表面
の映像を結像する顕微鏡と、反射光を波長分離、または
偏光方向分離する選択可能な波長分離ミラーおよび偏光
ビームスプリッタ、ならびに波長分離または偏光方向分
離された反射光を受光して、ウエハの表面の映像が結像
される2個のCCD素子より構成された受光系を有する
ウエハ異物検査装置における異物検査方式であって、倍
率の異なる2個の中継レンズを選択可能として設け、選
択された中継レンズの倍率の高低による顕微鏡の視野の
狭広に対応して、XYステージのY方向のステップ間隔
を変化してX方向の走査を行うものである。
[Means for Solving the Problems] The present invention comprises an It is equipped with an irradiation system that irradiates at a low angle and the other at a high angle, and a light receiving system that is installed perpendicular to the wafer, and consists of an objective lens and a relay lens, and condenses the reflected light of each laser beam. A microscope that forms an image of the wafer surface, a selectable wavelength separation mirror and polarization beam splitter that separates the reflected light in wavelength or polarization direction, and a wavelength separation mirror and polarization beam splitter that receives the reflected light that has been separated in wavelength or polarization direction. , a foreign matter inspection method in a wafer foreign matter inspection apparatus having a light receiving system composed of two CCD elements on which an image of the surface of the wafer is formed, wherein two relay lenses with different magnifications are selectably provided, Scanning in the X direction is performed by changing the step interval in the Y direction of the XY stage in response to the narrowing and widening of the field of view of the microscope due to the magnification of the selected relay lens.

【0010】0010

【作用】以上の異物検査方式においては、中継レンズと
して倍率の異なる2個を選択可能として設け、選択され
た中継レンズの倍率の高低による顕微鏡の視野の狭広に
対応して、XYステージのY方向のステップ間隔を変化
してX方向の走査を行うもので、倍率の高い中継レンズ
を使用するときは視野が狭くて高い検出感度がえられる
が、反面、レーザビームの走査幅が狭くて検査時間が長
い。これに対して、倍率の低い中継レンズのときは検出
感度は若干低下するが、走査幅を広くとることができて
検査時間が短縮される。
[Function] In the foreign object inspection method described above, two relay lenses with different magnifications are selectable, and the Y of the XY stage is Scanning is performed in the X direction by changing the step interval in the direction, and when using a relay lens with high magnification, the field of view is narrow and high detection sensitivity can be obtained, but on the other hand, the scanning width of the laser beam is narrow and inspection is difficult. It's a long time. On the other hand, when using a relay lens with a low magnification, the detection sensitivity is slightly lowered, but the scanning width can be widened and the inspection time can be shortened.

【0011】[0011]

【実施例】図1はこの発明の一実施例を示す。被検査の
ウエハ1はXYステージ5に載置されてXまたはY方向
に移動し、ウエハに対して前記した図3の照射系2によ
り各レーザビームが照射されて走査される。一方、ウエ
ハに対して垂直方向に倍率が40×の対物レンズ311
 が設けられ、その上部に移動台6の固定部61が固定
される。移動台の移動部62には、倍率がそれぞれ2.
5×、1×の中継レンズ312Aと312Bを有する中
継レンズ部7が取り付けられ、手動により中継レンズ部
を移動して中継レンズが選択される。研究用には主とし
て2.5×を使用して倍率が100×の顕微鏡31Aが
構成され、また検査ライン用には主として1×を使用し
て40×の顕微鏡31Bが構成される。検査においては
、いずれかの中継レンズを選択して、これに対応した走
査幅でXYステージ5をY方向にステップ移動する。レ
ーザビームの反射光は顕微鏡31Aまたは31Bを通り
、以下前記した図3の場合と同様に、波長分離ミラー3
2または偏光ビームスプリッタ33により波長分離また
は偏光方向分離され、それぞれがCCD素子34a,3
4b に入力して電圧VL,VH が出力され、これら
を信号処理部4により処理して異物信号pa がえられ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment of the present invention. A wafer 1 to be inspected is placed on an XY stage 5 and moved in the X or Y direction, and the wafer is irradiated with each laser beam and scanned by the irradiation system 2 shown in FIG. 3 described above. On the other hand, an objective lens 311 with a magnification of 40× in the direction perpendicular to the wafer
is provided, and a fixing part 61 of the moving table 6 is fixed to the upper part thereof. The moving parts 62 of the moving table each have a magnification of 2.
A relay lens unit 7 having 5× and 1× relay lenses 312A and 312B is attached, and a relay lens is selected by manually moving the relay lens unit. For research use, a microscope 31A with a magnification of 100x is constructed using mainly 2.5x, and for inspection lines, a microscope 31B with a magnification of 40x is constructed using mainly 1x. In the inspection, one of the relay lenses is selected and the XY stage 5 is moved in steps in the Y direction with a scanning width corresponding to the selected relay lens. The reflected light of the laser beam passes through the microscope 31A or 31B, and as in the case of FIG. 3 described above, the wavelength separation mirror 3
2 or polarization beam splitter 33, and the CCD elements 34a and 3
4b, voltages VL and VH are output, and these are processed by the signal processing section 4 to obtain a foreign object signal pa.

【0012】図2は、図1において選択された中継レン
ズに対応した顕微鏡の視野Aとレーザビームの走査幅w
を示す。(a) は2.5×の中継レンズ312Aを使
用した場合で、視野A1 の直径Wa1はウエハの表面
に換算して約700μm、レーザビームの走査幅w1 
は同じく約200μmであり、(b) はXYステージ
5を走査幅w1 でウエハをY方向にステップ移動して
X方向に走査することを示す。つぎに(c) は1.0
×の中継レンズ312Bの場合で、その視野A2 の直
径は約1750μm、走査幅w2 は約500μmとな
り、検査時間は2.5分の1に大幅に短縮される。
FIG. 2 shows the field of view A of the microscope and the scanning width w of the laser beam corresponding to the relay lens selected in FIG.
shows. (a) is the case when a 2.5× relay lens 312A is used, the diameter Wa1 of the field of view A1 is approximately 700 μm converted to the wafer surface, and the scanning width w1 of the laser beam is
is also about 200 μm, and (b) shows that the XY stage 5 moves the wafer stepwise in the Y direction and scans it in the X direction with a scanning width w1. Then (c) is 1.0
In the case of the × relay lens 312B, the diameter of its field of view A2 is about 1750 μm, the scanning width w2 is about 500 μm, and the inspection time is significantly shortened to 1/2.5.

【0013】以上の実施例においては、対物レンズとし
て40×を、中継レンズとして2.5×および1.0×
のものを使用したが、実情に合わせてこれら以外の倍率
のレンズを使用することも勿論差し支えない。
In the above embodiment, the objective lens is 40×, and the relay lenses are 2.5× and 1.0×.
Although these lenses were used, it is of course possible to use lenses with other magnifications depending on the actual situation.

【0014】[0014]

【発明の効果】以上の説明のとおり、この発明による異
物検査方式においては、顕微鏡の中継レンズとして倍率
の異なる2個を選択可能として設け、選択された中継レ
ンズの倍率の高低による顕微鏡の視野の狭広に対応して
、ステージのY方向のステップ間隔を変化してX方向の
走査を行うもので、倍率の高い中継レンズを選択して高
い検出感度とし、または倍率の低い中継レンズを選択し
、若干の感度低下を犠牲として検査時間が短縮され、研
究用と検査ライン用に共用して装置の稼働効率が向上さ
れる効果には大きいものがある。
As explained above, in the foreign object inspection method according to the present invention, two lenses with different magnifications are selectable as relay lenses of the microscope, and the field of view of the microscope is changed by the higher or lower magnification of the selected relay lens. In response to narrow and wide conditions, scanning is performed in the X direction by changing the step interval in the Y direction of the stage, and a relay lens with high magnification is selected to achieve high detection sensitivity, or a relay lens with low magnification is selected. , the test time is shortened at the expense of a slight decrease in sensitivity, and the operational efficiency of the device is improved by being used for both research and test lines, which has a significant effect.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】  この発明の一実施例の構成図である。FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】  図1における顕微鏡の視野と走査方法の説
明図である。
FIG. 2 is an explanatory diagram of the field of view and scanning method of the microscope in FIG. 1.

【図3】  特許公開にかかるウエハ異物検査装置の構
成図と、顕微鏡の視野の説明図である。
FIG. 3 is a configuration diagram of the wafer foreign matter inspection apparatus disclosed in the patent and an explanatory diagram of the field of view of the microscope.

【図4】  図3のウエハ検査装置におけるウエハに対
するレーザビームの走査方法の説明図である。
4 is an explanatory diagram of a method of scanning a wafer with a laser beam in the wafer inspection apparatus of FIG. 3. FIG.

【符号の説明】[Explanation of symbols]

1…パターン付きウエハ(単にウエハ)、2…照射系、
21a,21b,22a,22b …光源、3…受光系
、31、31A,31B…顕微鏡、311 …対物レン
ズ、 312,312A,312B …中継レンズ、32…波
長分離ミラー、33…偏光ビームスプリッタ、34a,
34b …CCD素子、4…信号処理部、41…割り算
器、42…コンパレータ、5…XYステージ、 6…移動台、61…固定部、62…移動部、7…中継レ
ンズ部。
1... Patterned wafer (simply wafer), 2... Irradiation system,
21a, 21b, 22a, 22b...Light source, 3...Light receiving system, 31, 31A, 31B...Microscope, 311...Objective lens, 312, 312A, 312B...Relay lens, 32...Wavelength separation mirror, 33...Polarizing beam splitter, 34a ,
34b... CCD element, 4... Signal processing section, 41... Divider, 42... Comparator, 5... XY stage, 6... Moving table, 61... Fixed part, 62... Moving part, 7... Relay lens part.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  被検査のパターン付きウエハを載置し
てXまたはY方向に移動するXYステージと、該ウエハ
の表面に対して互いに異なる波長のレーザビームの、一
方を低角度とし他方を高角度として照射する照射系と、
該ウエハに対して垂直方向に設けられた受光系とを具備
し、対物レンズおよび中継レンズよりなり、前記各レー
ザビームの反射光を集光して該ウエハの表面の映像を結
像する顕微鏡と、該反射光を波長分離、または偏光方向
分離する選択可能な波長分離ミラーおよび偏光ビームス
プリッタ、ならびに該波長分離または偏光方向分離され
た反射光を受光して前記ウエハの表面の映像が結像され
る2個のCCD素子とより構成された前記受光系を有す
るウエハ異物検査装置において、倍率の異なる2個の前
記中継レンズを選択可能として設け、該選択された中継
レンズの倍率の高低による前記顕微鏡の視野の狭広に対
応して、前記XYステージのY方向のステップ間隔を変
化してX方向の走査を行うことを特徴とする異物検査方
式。
1. An XY stage on which a patterned wafer to be inspected is placed and moved in the X or Y direction, and a laser beam of different wavelengths directed toward the surface of the wafer, one of which is set at a low angle and the other is set at a high angle. An irradiation system that irradiates at an angle,
a light receiving system installed in a direction perpendicular to the wafer, comprising an objective lens and a relay lens, and condensing the reflected light of each of the laser beams to form an image of the surface of the wafer; , a selectable wavelength separation mirror and a polarizing beam splitter that separate the reflected light in wavelength or direction of polarization, and an image of the surface of the wafer is formed by receiving the reflected light separated in the wavelength or direction of polarization. In the wafer foreign matter inspection apparatus having the light receiving system constituted by two CCD elements, the two relay lenses having different magnifications are selectably provided, and the microscope is adjusted according to the magnification of the selected relay lens. A foreign matter inspection method characterized in that scanning in the X direction is performed by changing the step interval in the Y direction of the XY stage in response to a narrow or wide field of view.
JP11236491A 1991-04-17 1991-04-17 Foreign matter detecting system Pending JPH04318446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11236491A JPH04318446A (en) 1991-04-17 1991-04-17 Foreign matter detecting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11236491A JPH04318446A (en) 1991-04-17 1991-04-17 Foreign matter detecting system

Publications (1)

Publication Number Publication Date
JPH04318446A true JPH04318446A (en) 1992-11-10

Family

ID=14584843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11236491A Pending JPH04318446A (en) 1991-04-17 1991-04-17 Foreign matter detecting system

Country Status (1)

Country Link
JP (1) JPH04318446A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060106256A (en) * 2005-04-07 2006-10-12 범광기전(주) Apparatus for obtaining image
WO2016070469A1 (en) * 2014-11-04 2016-05-12 浙江温医雷赛医用激光科技有限公司 Imaging conversion system for flat field scanning lens working face and surgery microscope working face

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60214209A (en) * 1984-04-11 1985-10-26 Hitachi Ltd Method and device for detecting pattern
JPS643545A (en) * 1987-06-26 1989-01-09 Hitachi Ltd Method and apparatus for inspection
JPH01217246A (en) * 1988-02-26 1989-08-30 Hitachi Ltd Appearance inspecting device
JPH039340A (en) * 1989-06-07 1991-01-17 Mitsui Eng & Shipbuild Co Ltd Projector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60214209A (en) * 1984-04-11 1985-10-26 Hitachi Ltd Method and device for detecting pattern
JPS643545A (en) * 1987-06-26 1989-01-09 Hitachi Ltd Method and apparatus for inspection
JPH01217246A (en) * 1988-02-26 1989-08-30 Hitachi Ltd Appearance inspecting device
JPH039340A (en) * 1989-06-07 1991-01-17 Mitsui Eng & Shipbuild Co Ltd Projector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060106256A (en) * 2005-04-07 2006-10-12 범광기전(주) Apparatus for obtaining image
WO2016070469A1 (en) * 2014-11-04 2016-05-12 浙江温医雷赛医用激光科技有限公司 Imaging conversion system for flat field scanning lens working face and surgery microscope working face

Similar Documents

Publication Publication Date Title
KR102362657B1 (en) Wafer inspection
JP5132982B2 (en) Pattern defect inspection apparatus and method
KR930008773B1 (en) Method and apparatus for detecting circuit pattern detect
US8885037B2 (en) Defect inspection method and apparatus therefor
US6621570B1 (en) Method and apparatus for inspecting a patterned semiconductor wafer
US6693664B2 (en) Method and system for fast on-line electro-optical detection of wafer defects
US7847927B2 (en) Defect inspection method and defect inspection apparatus
US11366069B2 (en) Simultaneous multi-directional laser wafer inspection
KR101223881B1 (en) An image forming method and an image forming apparatus
US6774991B1 (en) Method and apparatus for inspecting a patterned semiconductor wafer
JP2001525919A (en) Variable spot size scanner
US20110141463A1 (en) Defect inspection method, and defect inspection device
JP2005283190A (en) Foreign matter inspection method and device therefor
JP2004264287A (en) Method and apparatus for identifying defect in substrate surface using dithering for reconstructing image of insufficient sampling
KR20190027390A (en) Surface defect inspection using large particle monitoring and laser power control
US6879391B1 (en) Particle detection method and apparatus
JP5571969B2 (en) Defect inspection method and apparatus
JP4320132B2 (en) Defect observation method and defect observation apparatus
JP2013217703A (en) Inspection device
JPH08327557A (en) Device and method for inspecting defect
JPH0636016A (en) Optical inspection method and device for fault of surface of body
JP5276833B2 (en) Defect inspection method and defect inspection apparatus
JPH04318446A (en) Foreign matter detecting system
EP1439385A1 (en) Method and system for fast on-line electro-optical detection of wafer defects
JP2002116155A (en) Apparatus and method for inspecting foreign matter and defect