JPH0431818A - Displacing device - Google Patents

Displacing device

Info

Publication number
JPH0431818A
JPH0431818A JP2137519A JP13751990A JPH0431818A JP H0431818 A JPH0431818 A JP H0431818A JP 2137519 A JP2137519 A JP 2137519A JP 13751990 A JP13751990 A JP 13751990A JP H0431818 A JPH0431818 A JP H0431818A
Authority
JP
Japan
Prior art keywords
displacement
laminated piezoelectric
force acting
deformation
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2137519A
Other languages
Japanese (ja)
Inventor
Michio Doke
教夫 道家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2137519A priority Critical patent/JPH0431818A/en
Publication of JPH0431818A publication Critical patent/JPH0431818A/en
Pending legal-status Critical Current

Links

Landscapes

  • Dot-Matrix Printers And Others (AREA)
  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Exposure Or Original Feeding In Electrophotography (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

PURPOSE:To simplify the constitution of a displacing device and to drive the device with a high frequency by constituting a displacement enlarging mechanism by arranging plural blocks having a rectangular shape in a line and, at the same time, by using piezo-electric actuators connected in series. CONSTITUTION:A displacement enlarging mechanism 10 has rectangular block sections B1-B3 arranged in a line, force applying section C1 and C2, and stress concentrated sections D1-D4 and the mechanism 10 and laminated type piezo-electric actuators 13 and 15 are fixed to a supporting body 50. When, for example, reverse tensile forces are applied to the sections C1 and C, the blocks B1 and B3 are respectively turned clockwise and counterclockwise and the whole body of the mechanism 10 is deformed to an arch shape bent downward. Accordingly, the displacement of the sections C1 and C2 can be enlarged in the direction perpendicular to the displacing direction by utilizing the arch-like deformation. Therefore, the constitution of this displacement device becomes simpler and, since the laminated type piezo-electric actuators are drive in a state where they are connected in series, high-frequency displacement becomes possible.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は変位装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a displacement device.

[従来の技術] 応答が正確で高速の駆動が可能な電磁アクチュエーター
として知られた積層型圧電アクチュエーターは変位量が
小さいので使用目的によっては変位量を拡大する必要が
ある。
[Prior Art] A laminated piezoelectric actuator, which is known as an electromagnetic actuator that has an accurate response and can be driven at high speed, has a small amount of displacement, so it is necessary to increase the amount of displacement depending on the purpose of use.

例えば、光走査装置に於いて被走査面上における光スポ
ツト径の変動の原因となる結像光学系の像面湾曲を除去
するために、光源やレンズを光走査に同期して変位させ
ることが知られているし、最近では光源と光偏向装置の
間にあるシリンダーレンズを光軸方向へ変位させて像面
湾曲の除去・軽減を行うことが提案されている。このよ
うな像面湾曲の補正に必要なシリンダーレンズ等の変位
量は通常数100μmであるが、積層型圧電アクチユニ
ーターの変位量は通常数10μm程度であり、数倍ない
し数10倍の変位拡大が必要となる。
For example, in an optical scanning device, it is possible to displace the light source and lens in synchronization with optical scanning in order to eliminate field curvature of the imaging optical system, which causes fluctuations in the diameter of the optical spot on the scanned surface. This is known, and recently it has been proposed to remove or reduce field curvature by displacing a cylinder lens located between a light source and a light deflection device in the optical axis direction. The amount of displacement of a cylinder lens, etc. required to correct such field curvature is usually several hundred μm, but the amount of displacement of a laminated piezoelectric actuator is usually about several tens of μm, and the displacement is several to several tens of times larger. Expansion will be necessary.

また上記シリンダーレンズ等の変位の周波数は数KHz
と高周波数である。積層型圧電アクチュエーターは容量
性の負荷を有するため駆動回路を含めた電装系の時定数
が大きい場合、駆動電圧の周波数が高くなると積層型圧
電アクチュエーターの応答が駆動周波数に追従しなくな
る。
Also, the frequency of displacement of the cylinder lens etc. mentioned above is several KHz.
and high frequency. Since the multilayer piezoelectric actuator has a capacitive load, if the time constant of the electrical system including the drive circuit is large, the response of the multilayer piezoelectric actuator will no longer follow the drive frequency as the frequency of the drive voltage increases.

[発明が解決しようとする課題] 変位拡大機構には種々のものが知られ、また提案されて
いるが構成の複雑なものも多い。
[Problems to be Solved by the Invention] Various displacement amplifying mechanisms are known and have been proposed, but many of them have complex configurations.

本発明は積層型圧電アクチュエーターを変位発生源とし
て用い、変位拡大機構の構成が簡単で高周波数の駆動に
も良く応答する新規な変位装置の提供を目的とする。
The present invention aims to provide a novel displacement device that uses a laminated piezoelectric actuator as a displacement source, has a simple configuration of a displacement magnification mechanism, and responds well to high-frequency driving.

[課題を解決するための手段] 以下、本発明を説明する。[Means to solve the problem] The present invention will be explained below.

本発明の変位装置は「変位拡大機構と、偶数個の積層型
圧電アクチュエーターと、駆動回路と」を有する。
The displacement device of the present invention includes "a displacement magnification mechanism, an even number of laminated piezoelectric actuators, and a drive circuit."

「変位拡大機構」は「矩形形状を有する複数のブロック
部が直線状に配されるとともに、ブロック部配列の長手
方向両端部に変形力を受けるための力作用部を有し、各
ブロック部間およびブロック部と力作用部との間が応力
集中部により連結されて全体が一体的に形成され、力作
用部に互いに逆向きの1対の変形力を長手方向へ作用さ
せたとき応力集中部の変形により全体が弓なりに変形す
るように各応力集中部の位置が定められ、1対の変形力
の作用による両端部の変位を上記部なりの変形の振幅と
して拡大する」ように構成される。
The ``displacement magnification mechanism'' has ``a plurality of rectangular block sections arranged in a straight line, and a force acting section for receiving deformation force at both ends of the block section arrangement in the longitudinal direction, and between each block section. The block part and the force acting part are connected by a stress concentrating part and the whole is integrally formed, and when a pair of deforming forces in opposite directions are applied to the force acting part in the longitudinal direction, the stress concentrating part The position of each stress concentration part is determined so that the entire part deforms in an arched shape due to the deformation of the part, and the displacement of both ends due to the action of a pair of deforming forces is expanded as the amplitude of the deformation of the part. .

偶数個の「積層型圧電アクチュエーター」は、変位拡大
機構の両端部に等数個ずつ配備され1対の力作用部に1
対の変形力を作用させる。
An even number of "stacked piezoelectric actuators" are arranged at both ends of the displacement magnification mechanism, and one is placed at each pair of force application parts.
Apply a pair of deforming forces.

「駆動回路」は、積層型圧電アクチュエーターを駆動す
る。
The "drive circuit" drives the laminated piezoelectric actuator.

上記偶数個の積層型圧電アクチュエーターは互いに直列
に接続される。
The even number of laminated piezoelectric actuators are connected in series.

[作  用コ 第2図(A)は本発明の変位装置に用いられる変位拡大
機構の1例を示している。
[Operation] FIG. 2(A) shows an example of a displacement magnification mechanism used in the displacement device of the present invention.

この例では変位拡大機構は3つのブロック部Bl〜B3
と力作用部C1,C2と応力集中部DI−04とを有す
る。
In this example, the displacement magnification mechanism consists of three block parts Bl to B3.
, force acting portions C1 and C2, and stress concentration portion DI-04.

ブロック部81〜B3は矩形形状で直線状に配列され、
さらにその配列の長手方向両端部に力作用部C1とC2
とが配備されている。
The block parts 81 to B3 are rectangular and linearly arranged,
Furthermore, force acting portions C1 and C2 are provided at both ends of the array in the longitudinal direction.
are in place.

これらブロック部81〜B3と力作用部CI、C2相互
の間は応力集中部D1〜D4により連結されている。
These block portions 81 to B3 and force acting portions CI and C2 are connected to each other by stress concentration portions D1 to D4.

これらブロック部B1〜B3、力作用部CI、C2、応
力集中部D1〜D4は全体が単一の材料で一体的に構成
されている。変位の拡大は以下に説明するように応力集
中部の変形により行われるので、変位拡大装置の材料は
変位拡大に必要な応力集中部の変形が弾性変形として実
現されるような材料が用いられる。
These block portions B1 to B3, force acting portions CI and C2, and stress concentration portions D1 to D4 are all integrally constructed of a single material. Since the displacement is expanded by deforming the stress concentration part as explained below, the material used for the displacement expansion device is such that the deformation of the stress concentration part required for displacement expansion is realized as elastic deformation.

応力集中部DI、D4とD2. D3とはブロック部の
幅方向即ち第1図(A)の上下方向で形成位置が異なっ
ている。このため、変位拡大装置の長手方向に於いて互
いに逆向きの力を力作用部に作用させるとブロック部B
lとB3には、互いに逆向きの偶力が作用することにな
る。
Stress concentration parts DI, D4 and D2. The formation position differs from D3 in the width direction of the block portion, that is, in the vertical direction in FIG. 1(A). Therefore, if forces in opposite directions are applied to the force acting parts in the longitudinal direction of the displacement magnifying device, the block part B
Couples in opposite directions will act on l and B3.

例えば上記逆向きの力が引っ張り力であると第1図(B
)に示すようにブロック部Blは時計回り、ブロック部
B3は反時計回りに回転し、変位拡大装置の全体は図の
ように下向きの弓形に変形する。
For example, if the force in the opposite direction is a tensile force, Figure 1 (B
), the block portion Bl rotates clockwise, the block portion B3 rotates counterclockwise, and the entire displacement magnifying device deforms into a downward arcuate shape as shown in the figure.

逆に力作用部C1,C2に一対の圧縮力を作用すると変
形は第1図(C)示すように上向きの弓形になる。
Conversely, when a pair of compressive forces is applied to the force applying portions C1 and C2, the deformation becomes an upward arcuate shape as shown in FIG. 1(C).

従って、この弓なりの変形を利用して力作用部の変位を
この変位と直交する方向へ拡大することができる。
Therefore, by utilizing this arched deformation, the displacement of the force applying portion can be expanded in a direction perpendicular to this displacement.

この第1図の例ではブロック部は3つであるが、これに
限らずブロック部は2個でもよいし、4個以上のブロッ
ク部を有するように変位拡大機構を構成することもでき
る。但し直線運動を得るためにはブロック部の数は奇数
個が望ましく、移動物体を中央に直接配置すればブロッ
ク部の数は偶数個となる。
In the example shown in FIG. 1, there are three block portions, but the displacement magnification mechanism is not limited to this, and may have two block portions, or may have four or more block portions. However, in order to obtain linear motion, it is desirable that the number of block parts be an odd number, and if the moving object is placed directly in the center, the number of block parts will be an even number.

次に第2図に示す例に即して、変位の拡大率を説明する
Next, the magnification rate of displacement will be explained based on the example shown in FIG.

上に説明した例に於いて拡大された変位量はブロック部
B1とB3の互いに逆向きの回転により生じていること
は明らかである。
It is clear that the increased displacement in the example described above is caused by the rotation of the block parts B1 and B3 in opposite directions.

そこで第3図(A)に示すようにブロック部B1に就き
、その長さをa、ブロック部幅方向に於ける応力集中部
Di、 D2間の距離をbとし、第3図(B)に示すよ
うにブロック部B1を、その両端をそれぞれX、Y軸上
に拘束された棒状体として考える。
Therefore, as shown in Fig. 3 (A), the block part B1 is set, its length is a, and the distance between the stress concentration parts Di and D2 in the width direction of the block part is b, and as shown in Fig. 3 (B). As shown, the block portion B1 is considered as a rod-shaped body whose both ends are restrained on the X and Y axes, respectively.

力作用部に力の作用していない状態を符号B1o(第2
図(A)の状態に対応)とし、圧縮力の作用により変位
拡大装置が第2図(C)のように上向き弓なりに変形し
たときの状態を符号B11で表し、この変形に伴うX、
Y軸上の変位をu、、uアとする。
The state where no force is acting on the force acting part is denoted by code B1o (second
(corresponding to the state in Figure (A)), and the state when the displacement amplifying device is deformed in an upward arched manner as shown in Figure 2 (C) due to the action of the compressive force is represented by the symbol B11, and due to this deformation, X,
Let the displacement on the Y axis be u, , ua.

このとき明らかに次の関係が成り立つ。In this case, the following relationship clearly holds.

a2+ b2= (a−u、)2+ (b+uy)2=
a2+b2+ux”+u、”−2au、l+2buyU
工tuyがa、bに比して微小量であることを考慮し、
uxluyの2乗の項を他の項に対して無視すると、次
の関係が得られる。
a2+ b2= (a-u,)2+ (b+uy)2=
a2+b2+ux”+u,”-2au,l+2buyU
Considering that tuy is a minute amount compared to a and b,
Ignoring the square of uxluy with respect to other terms, the following relationship is obtained.

2(au、−buy)=0 これから変位の拡大率(Hu、/u、)は(a/b)と
なることが分かる。
2(au, -buy)=0 From this, it can be seen that the displacement expansion rate (Hu, /u,) is (a/b).

a=9.0mm 、 b=1.5mmとした場合の第2
図の変位拡大装置の拡大変位量の駆動周波数特性を有限
要素法によりシミュレーションした結果を第3図(C)
に示す。駆動源すなわち変位拡大装置の両端部の力作用
部に変位を与える積層型圧電アクチュエータとしては積
層型圧電アクチュエーターを用いた。この積層型圧電ア
クユニーターの変位量は図に示すように周波数Oから3
000Hzまで略1101L程度で安定している。
The second case when a=9.0mm and b=1.5mm
Figure 3 (C) shows the results of simulating the driving frequency characteristics of the expanded displacement amount of the displacement magnifying device shown in the figure using the finite element method.
Shown below. A laminated piezoelectric actuator was used as the driving source, that is, the laminated piezoelectric actuator that applies displacement to the force application portions at both ends of the displacement magnifying device. The amount of displacement of this laminated piezoelectric actuator is as shown in the figure, from frequency O to 3
It is stable at approximately 1101L up to 000Hz.

周波数○のときの拡大変位量uyは51.3μmである
。一方、理論的に求めた拡大率(a/b)は9.0/1
.56であり、積層型圧電アクチュエーターの変位量U
工=9.3を用いると理論上の拡大変位量は55.8μ
mとなりシミレーションの結果と良く一致する。
The enlarged displacement amount uy when the frequency is ○ is 51.3 μm. On the other hand, the theoretically determined expansion ratio (a/b) is 9.0/1
.. 56, and the displacement U of the laminated piezoelectric actuator is
When using =9.3, the theoretical expansion displacement amount is 55.8μ
m, which agrees well with the simulation results.

また駆動周波数3000Hzに対しては、シミュレーシ
ョンによる拡大変位量61μmに対して理論上の値は6
0μmで両者は極めて良く一致する。このことは本発明
の変位装置における変位拡大機構の設計が容易であるこ
とを意味している。
Furthermore, for a driving frequency of 3000 Hz, the theoretical value is 61 μm for the expanded displacement amount according to the simulation.
At 0 μm, the two coincide extremely well. This means that the displacement magnifying mechanism in the displacement device of the present invention can be easily designed.

また本発明の変位装置で上記の如き変位拡大機構に対し
て1対の変形力を作用させる偶数個の積層型圧電アクチ
ュエーターは変位拡大機構の両端部にそれぞれ同数ずつ
配備されるが、これら偶数個の積層型圧電アクチュエー
ターは互いに直列に接続されて駆動されるため全体とし
ての静電容量が小さい。
In addition, in the displacement device of the present invention, an even number of laminated piezoelectric actuators that apply a pair of deforming forces to the displacement amplification mechanism as described above are arranged in the same number at both ends of the displacement amplification mechanism. The stacked piezoelectric actuators are connected in series and driven, so the overall capacitance is small.

[実施例] 以下に具体的な実施例を説明する。[Example] Specific examples will be described below.

第4図に示すような公知の光走査装置における像面湾曲
の補正に本発明の変位装置を利用した。
The displacement device of the present invention was used to correct field curvature in a known optical scanning device as shown in FIG.

第4図に於いて半導体レーザーLDとコリメートレンズ
CLにより構成される光源装置1からの平行な光束はア
パーチュア8でビーム形状を整形されたのち副走査対応
方向(図面に直交する方向)にのみパワーを持つシリン
ダーレンズ2Aにより回転多面鏡3の偏向反射面4の近
傍に主走査対応方向に長い線像として結像する。偏向反
射面4により反射された光束は回転多面鏡3の回転によ
り偏向され、レンズ5,6により構成されるfθレンズ
に入射し同fθレンズの作用により被走査面7上に光ス
ポットとして結像して被走査面7を光走査する。
In Fig. 4, the parallel light beam from the light source device 1 composed of the semiconductor laser LD and the collimating lens CL is shaped into a beam shape by the aperture 8, and then is powered only in the direction corresponding to the sub-scanning (direction perpendicular to the drawing). The cylinder lens 2A forms an image in the vicinity of the deflection reflection surface 4 of the rotating polygon mirror 3 as a long line image in the main scanning direction. The light beam reflected by the deflection reflecting surface 4 is deflected by the rotation of the rotating polygon mirror 3, enters an fθ lens constituted by lenses 5 and 6, and is imaged as a light spot on the scanned surface 7 by the action of the fθ lens. The surface to be scanned 7 is then optically scanned.

feレンズは主走査方向の像面湾曲を極めて良好に補正
されているが、副走査方向には第5図(A)に示すよう
な像面湾曲を有する。
Although the FE lens has very well corrected field curvature in the main scanning direction, it has field curvature in the sub-scanning direction as shown in FIG. 5(A).

このときシリンダーレンズ2Aを、第5図(B)に示す
ような正弦曲線に従って変位させると副走査方向の像面
湾曲を第5図(C)のように軽減できる。
At this time, if the cylinder lens 2A is displaced along a sine curve as shown in FIG. 5(B), the curvature of field in the sub-scanning direction can be reduced as shown in FIG. 5(C).

なお第5図(B)でβはfθレンズの副走査方向の結像
倍率である。
Note that in FIG. 5(B), β is the imaging magnification of the fθ lens in the sub-scanning direction.

第5図(B)の正弦曲線は、偏向光束の偏向角をθとし
て 0、1322・cos (e +Q、5033)mmと
表すことができ、その周波数は光走査速度から2.8K
Hzとなる。
The sine curve in Fig. 5(B) can be expressed as 0,1322 cos (e + Q, 5033) mm, where the deflection angle of the deflected light beam is θ, and its frequency is 2.8K from the optical scanning speed.
Hz.

従って、シリンダーレンズ2Aに周波数2.8KHzで
振幅264μmの単振動を行わせれば、副走査方向の像
面湾曲を第5図(C)のように改良できる。
Therefore, by making the cylinder lens 2A perform a simple harmonic motion with a frequency of 2.8 KHz and an amplitude of 264 μm, the curvature of field in the sub-scanning direction can be improved as shown in FIG. 5(C).

この単振動を実現するために、第1図の如き変位装置を
使用した。
In order to realize this simple harmonic motion, a displacement device as shown in FIG. 1 was used.

符号10は第1図及び第2図に即して説明したのと同様
の変位拡大機構を示す。変位拡大機構10は3つのブロ
ック部を有しシリンダーレンズ2Aは中央のブロック部
に固定した。この変位拡大機構の拡大倍率は12倍であ
る。
Reference numeral 10 designates a displacement magnification mechanism similar to that described with reference to FIGS. 1 and 2. The displacement magnifying mechanism 10 has three block parts, and the cylinder lens 2A is fixed to the central block part. The magnification factor of this displacement magnification mechanism is 12 times.

符号13.15は圧電アクチュエーターを示す。Reference numeral 13.15 indicates a piezoelectric actuator.

この圧電アクチュエーター13.15は何れも、変位量
略10μmの積層型圧電アクチュエーターであり総変位
量20μmを実現したものである。
These piezoelectric actuators 13 and 15 are all laminated piezoelectric actuators with a displacement of approximately 10 μm, and achieve a total displacement of 20 μm.

第1図(B)に示す様に積層型圧電アクチュエーター1
3.15は直列に接続され駆動回路16により駆動され
る。
As shown in Fig. 1 (B), a laminated piezoelectric actuator 1
3.15 are connected in series and driven by a drive circuit 16.

変位拡大機構10、積層型圧電アクチュエーター13、
15は第1図(A)に示す様に双又状の支持体50に固
定されている。
displacement magnification mechanism 10, laminated piezoelectric actuator 13,
15 is fixed to a bifurcated support 50 as shown in FIG. 1(A).

積層型圧電アクチュエータ13.15を駆動回路16に
より光走査に同期して2.8KHzの周波数で駆動して
、シリンダーレンズ2Aを光軸方向・\振幅略240μ
mで単振動させることができ、第5図(C)に近い副走
査方向の像面湾曲補正を実現できた。
The laminated piezoelectric actuator 13.15 is driven by the drive circuit 16 at a frequency of 2.8 KHz in synchronization with optical scanning, and the cylinder lens 2A is moved in the optical axis direction with an amplitude of approximately 240μ.
It was possible to perform simple harmonic vibration at m, and to achieve correction of field curvature in the sub-scanning direction similar to that shown in FIG. 5(C).

積層型圧電アクチュエーター13.15は互いに直列に
接続されて駆動されるため駆動源に於ける静電容量が単
独使用の場合の1/2となり時定数が大幅に小さくなる
ため2.8KHzという高周波駆動にも拘らず積層型圧
電クチユニーター13.15の変位が駆動に良く追従し
た為である。
Since the laminated piezoelectric actuators 13 and 15 are connected in series and driven, the capacitance of the drive source is 1/2 of that when used alone, and the time constant is significantly reduced, so it is possible to drive at a high frequency of 2.8 KHz. Despite this, the displacement of the laminated piezoelectric cut unit 13, 15 followed the drive well.

[発明の効果コ 以上、本発明によれば新規な変位装置を提供できる。こ
の装置は上述の如く構成が極めて簡単であるから低コス
トで製造できる。また積層型圧電アクチュエーターを直
列に接続して駆動するので高岡波数の変位が可能である
[Effects of the Invention] As described above, according to the present invention, a novel displacement device can be provided. This device has an extremely simple configuration as described above, and therefore can be manufactured at low cost. Furthermore, since stacked piezoelectric actuators are connected in series and driven, displacement of Takaoka wave number is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の変位装置の1実施例を説明するため
の図、第2図及び第3図は変位拡大機構を説明するため
の図、第4図は、実施例の変位装置を用いた光走査装置
を説明するための図、第5図は実施例の効果を説明する
ための図である。 io、、、変位拡大機構、B1〜B3.、、ブロック部
、C1゜C2,、、力作用部、Dl−D4.、、応力集
中部、13.15.。 、積層型圧電アクチュエーター
FIG. 1 is a diagram for explaining one embodiment of the displacement device of the present invention, FIGS. 2 and 3 are diagrams for explaining the displacement magnifying mechanism, and FIG. 4 is a diagram for explaining the displacement device of the embodiment. FIG. 5 is a diagram for explaining the optical scanning device used, and FIG. 5 is a diagram for explaining the effects of the embodiment. io, , displacement magnification mechanism, B1 to B3. ,,Block portion, C1°C2,,,Force acting portion, Dl-D4. ,, Stress concentration part, 13.15. . , laminated piezoelectric actuator

Claims (1)

【特許請求の範囲】 矩形形状を有する複数のブロック部が直線状に配される
とともに、ブロック部配列の長手方向両端部に変形力を
受けるための力作用部を有し、上記各ブロック部間およ
びブロック部と力作用部との間が応力集中部により連結
されて全体が一体的に形成され、上記力作用部に互いに
逆向きの1対の変形力を長手方向へ作用させたとき、応
力集中部の変形により全体が弓なりに変形するように各
応力集中部の位置が定められ、上記1対の変形力の作用
による両端部の変位を上記弓なりの変形の振幅として拡
大するように構成された変位拡大機構と、 上記変位拡大機構の両端部に等数個ずつ配備され上記1
対の力作用部に1対の変形力を作用させる偶数個の積層
型圧電アクチュエーターと、これら積層型圧電アクチュ
エーターを駆動する駆動回路とを有し、 上記偶数個の積層型圧電アクチュエーターを直列に接続
したことを特徴とする変位装置。
[Scope of Claims] A plurality of rectangular block portions are arranged in a straight line, and have force acting portions for receiving deformation force at both ends in the longitudinal direction of the array of block portions. The block part and the force acting part are connected by a stress concentration part and the whole is integrally formed, and when a pair of deforming forces in opposite directions are applied to the force acting part in the longitudinal direction, the stress The position of each stress concentration portion is determined so that the entire stress concentration portion deforms in an arched manner due to the deformation of the concentrated portion, and the structure is configured such that the displacement of both ends due to the action of the pair of deforming forces is magnified as the amplitude of the aforementioned arched deformation. and an equal number of displacement amplifying mechanisms disposed at both ends of the displacement amplifying mechanism described above.
It has an even number of laminated piezoelectric actuators that apply a pair of deforming forces to a pair of force acting parts, and a drive circuit that drives these laminated piezoelectric actuators, and the even number of laminated piezoelectric actuators are connected in series. A displacement device characterized by:
JP2137519A 1990-05-28 1990-05-28 Displacing device Pending JPH0431818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2137519A JPH0431818A (en) 1990-05-28 1990-05-28 Displacing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2137519A JPH0431818A (en) 1990-05-28 1990-05-28 Displacing device

Publications (1)

Publication Number Publication Date
JPH0431818A true JPH0431818A (en) 1992-02-04

Family

ID=15200577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2137519A Pending JPH0431818A (en) 1990-05-28 1990-05-28 Displacing device

Country Status (1)

Country Link
JP (1) JPH0431818A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109283683A (en) * 2018-10-15 2019-01-29 成都理想境界科技有限公司 A kind of fibre optic scanner of large vibration amplitude

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109283683A (en) * 2018-10-15 2019-01-29 成都理想境界科技有限公司 A kind of fibre optic scanner of large vibration amplitude

Similar Documents

Publication Publication Date Title
JP4457093B2 (en) Micromirror device and array thereof
KR100218826B1 (en) Thin film actuated mirror array
US5295014A (en) Two-dimensional laser beam scanner using PVDF bimorph
US9395536B2 (en) Optical deflector including separated piezoelectric portions on piezoelectric actuators and its designing method
EP2293135A1 (en) Movable structure and micro-mirror element using the same
US10241323B2 (en) Micromechanical device and method for the two-dimensional deflection of light
JP2003209981A (en) Piezoelectric actuator and electronic apparatus comprising it
JPH06180428A (en) Electrostatic force driven small-sized optical scanner
JP2007006587A (en) Actuator
JP7395001B2 (en) Micromirror device and optical scanning device
JP2006018250A (en) Mems mirror scanner
JP4358788B2 (en) Optical scanner
JPH0431818A (en) Displacing device
JP2983238B2 (en) Cylinder lens driving device in optical scanning device
JP6092589B2 (en) Optical deflector
JP2003262803A (en) Movable structure, and deflecting mirror element, optical switch element, and shape variable mirror each using the same
JP2003258330A (en) Piezoelectric actuator having function for increasing displacement, and electronic apparatus provided with the same
JPH04198807A (en) Displacement enlarging device
JPH0437813A (en) Displacement expanding device
WO2002004991A2 (en) Piezoelectric bimorphs as microelectromechanical building blocks and constructions made using same
JP4976063B2 (en) Micro oscillating device and optical element
JPH0416818A (en) Displacement enlarging device
JPH0437815A (en) Displacement expanding device
JPH0416819A (en) Displacement enlarging device
JPH0437814A (en) Displacement expanding device