JPH04318129A - Recovery for nickel from copper-removed precipitate - Google Patents

Recovery for nickel from copper-removed precipitate

Info

Publication number
JPH04318129A
JPH04318129A JP3110793A JP11079391A JPH04318129A JP H04318129 A JPH04318129 A JP H04318129A JP 3110793 A JP3110793 A JP 3110793A JP 11079391 A JP11079391 A JP 11079391A JP H04318129 A JPH04318129 A JP H04318129A
Authority
JP
Japan
Prior art keywords
copper
nickel
precipitate
sulfuric acid
leaching rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3110793A
Other languages
Japanese (ja)
Inventor
Atsushi Aida
厚志 合田
Tomitatsu Yano
矢野 仁美樹
Ikuo Fukagawa
深川 郁雄
Naoyuki Tsuchida
土田 直行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP3110793A priority Critical patent/JPH04318129A/en
Publication of JPH04318129A publication Critical patent/JPH04318129A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

PURPOSE:To recover Ni in a short time while maintaining a high yield by mixing a sulfuric acid soln. having specified chlorine concn. and a copper- removed precipitate produced in a Ni refining process with specified time and water content after the production of the precipitate, and then effecting the reaction under specified conditions. CONSTITUTION:In the process of recovering nickel from a copper-removed precipitate produced in a Ni refining process, a copper-removed precipitate containing <17% water content within 24 hours from its production is mixed with a sulfuric acid soln. having <10g/l chlorine concn. to make a slurry. This slurry is controlled to have 90-100g/l free sulfuric acid concn. and is made to react at >95 deg.C. Thereby, Ni can be recovered in a short time from a copper- removed precipitate while a high yield is maintained.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、ニッケルマットをアノ
ードとして用いた電解により、ニッケルを精製する工程
で発生する脱銅澱物中のニッケルを回収する方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for recovering nickel from decoppered precipitate generated in the process of refining nickel by electrolysis using a nickel matte as an anode.

【0002】0002

【従来の技術】ニッケルを得る方法として、ニッケルマ
ットを溶解し、鋳造して得たアノードを用いて電解精製
する方法がある。この方法では、ニッケルマット中の不
純物が電解液中に溶出するため、溶出した不純物を除去
するための各種の浄液工程が設けられている。
2. Description of the Related Art As a method of obtaining nickel, there is a method of melting nickel matte and electrolytically refining it using an anode obtained by casting. In this method, since impurities in the nickel matte are eluted into the electrolytic solution, various liquid purification steps are provided to remove the eluted impurities.

【0003】ところで、この不純物の一つとして銅があ
る。電解液中の銅の除去は、一般に還元ニッケル粉を電
解液中に添加して、ニッケルと銅との置換反応により銅
を脱銅澱物として沈澱させている。
By the way, copper is one of these impurities. To remove copper from an electrolytic solution, reduced nickel powder is generally added to the electrolytic solution, and copper is precipitated as a decoppered precipitate through a substitution reaction between nickel and copper.

【0004】この脱銅澱物は、銅が70%以上、ニッケ
ルが8〜14%の物で、このニッケルを回収する必要が
ある。しかし、この脱銅澱物を酸で溶解すると、銅とニ
ッケルとが共に溶解し、そのままではニッケル電解精製
工程へ繰り返すことができないので、通常は銅製練の精
製工程で処理し、ニッケルを硫酸ニッケルとして回収し
ている。
[0004] This decoppered precipitate contains 70% or more of copper and 8 to 14% of nickel, and it is necessary to recover this nickel. However, when this copper-removed precipitate is dissolved in acid, copper and nickel are dissolved together, and the nickel electrolytic refining process cannot be repeated as it is. are being collected as.

【0005】具体的には、銅製練の精製工程では、例え
ば、前記脱銅澱物を硫酸に溶解し、加熱濃縮し、冷却し
て硫酸銅を回収した後、回収終液中に残留する銅を電解
により除去し、硫酸ニッケル溶液を得、該硫酸ニッケル
溶液を加熱濃縮し、ついで冷却して硫酸ニッケルとして
回収する。
Specifically, in the refining process of copper smelting, for example, the copper-removed precipitate is dissolved in sulfuric acid, concentrated by heating, and cooled to recover copper sulfate. is removed by electrolysis to obtain a nickel sulfate solution, which is heated and concentrated, then cooled and recovered as nickel sulfate.

【0006】このように、銅精錬の精製工程を利用する
硫酸ニッケルの回収では、ニッケルの実收率は50%程
度と低くならざるを得ず、また、該精製工程での硫酸ニ
ッケルの生産は通常間欠的であり、そのため脱銅澱物か
らニッケルが硫酸ニッケルとして回収されるまでに1月
以上の期間が要される。
[0006] As described above, in the recovery of nickel sulfate using the refining process of copper refining, the actual yield of nickel must be as low as about 50%, and the production of nickel sulfate in the refining process is It is usually intermittent, and therefore it takes a month or more for nickel to be recovered as nickel sulfate from the decoppered precipitate.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、ニッ
ケル実収率が高く、かつ短期間に脱銅澱物よりニッケル
を回収しうる方法の提供にある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method that has a high actual nickel yield and can recover nickel from copper-free precipitates in a short period of time.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
、脱銅澱物よりニッケルを回収する本発明の方法は、発
生後24時間未満で、含水率17%以下の脱銅澱物と、
塩素濃度が10g/l以下の硫酸溶液とを混合してスラ
リーを得、該スラリー中の遊離硫酸濃度を90〜100
g/lとし、95℃以上で反応させてニッケルを浸出す
ることを特徴とする。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the method of the present invention for recovering nickel from decoppered precipitates collects decoppered precipitates with a water content of 17% or less less than 24 hours after generation,
A slurry is obtained by mixing a sulfuric acid solution with a chlorine concentration of 10 g/l or less, and the free sulfuric acid concentration in the slurry is adjusted to 90 to 100.
g/l, and is characterized by leaching nickel by reacting at 95°C or higher.

【0009】[0009]

【作用】脱銅澱物よりニッケルを回収するに際し、脱銅
澱物の発生後24時間未満に処理することで、銅の浸出
率を低く抑えられる。また、脱銅澱物の含水率を17%
以下とすることで、ニッケルの浸出率を高められる。ま
た、硫酸溶液中の塩素濃度を10g/lとすることで、
銅の浸出率を低く抑えられる。さらに、スラリー中の遊
離硫酸濃度を90〜100g/lとすることで、ニッケ
ル浸出率を高く且つ銅の浸出率を低く維持できる。さら
にスラリーの温度を95℃以上に保持することで、ニッ
ケル浸出率を高く維持できる。従って、これらの条件の
組合せにより、65%以上のニッケル浸出率が得られる
。本発明の方法で得られた浸出液(硫酸ニッケル)はニ
ッケル精製工程に繰り返される。浸出液中の銅はニッケ
ル精製工程での脱銅工程の負荷を押し上げることになる
ので、得られる浸出液中の銅品位は可能な限り低くする
ことが必要であり、本発明では、1g/l以下とするこ
とができる。
[Operation] When recovering nickel from decoppered precipitate, the leaching rate of copper can be kept low by treating the decoppered precipitate less than 24 hours after its generation. In addition, the moisture content of the copper-free precipitate was reduced to 17%.
By setting the following, the leaching rate of nickel can be increased. In addition, by setting the chlorine concentration in the sulfuric acid solution to 10 g/l,
Copper leaching rate can be kept low. Furthermore, by setting the free sulfuric acid concentration in the slurry to 90 to 100 g/l, it is possible to maintain a high nickel leaching rate and a low copper leaching rate. Furthermore, by maintaining the temperature of the slurry at 95° C. or higher, the nickel leaching rate can be maintained at a high level. Therefore, by combining these conditions, a nickel leaching rate of 65% or more can be obtained. The leachate (nickel sulfate) obtained by the method of the invention is repeated in the nickel purification step. Copper in the leachate increases the load on the decopper removal process in the nickel refining process, so it is necessary to keep the copper content in the leachate as low as possible. can do.

【0010】0010

【実施例】以下、実施例を用いて本発明を説明する。[Examples] The present invention will be explained below using examples.

【0011】まず、ニッケル浸出率に影響を及ぼす因子
に付いて説明する。
First, factors that influence the nickel leaching rate will be explained.

【0012】スラリー中の遊離硫酸濃度:ニッケル精製
工程で発生した後12時間経過したNi品位:9.99
%、銅品位:73.3%、水分:17.0%の脱銅澱物
300gを、還流器付きの21のセパラブルフラスコに
入れ、スラリー濃度が300g/lとなるように水を添
加し、攪はんしつつ、400g/lの硫酸溶液を、遊離
硫酸濃度が所定の値になるように添加し、100℃に加
熱し、還流させつつ3時間保持し、次いで55℃まで放
冷し、固液分離して回収澱物と浸出液とを得た。この回
収澱物と浸出液を分析し、求めた遊離硫酸濃度とニッケ
ル及び銅の浸出率との関係を図1に示した。
[0012] Free sulfuric acid concentration in slurry: Ni grade 12 hours after it was generated in the nickel refining process: 9.99
%, copper grade: 73.3%, water content: 17.0%, 300 g of decoppered precipitate was placed in a 21 separable flask equipped with a reflux device, and water was added so that the slurry concentration was 300 g/l. While stirring, 400 g/l of sulfuric acid solution was added so that the free sulfuric acid concentration reached the specified value, heated to 100°C, held under reflux for 3 hours, and then allowed to cool to 55°C. , solid-liquid separation was performed to obtain a recovered precipitate and a leachate. The recovered precipitate and leachate were analyzed, and the relationship between the free sulfuric acid concentration and the leaching rate of nickel and copper is shown in FIG.

【0013】この実施例の量関係では、銅の浸出率が0
.4%となると浸出液中の銅濃度が1g/lとなる。 図1より、浸出液中の銅濃度を1g/l以下、すなわち
銅の浸出率を0.4%以下とするためには、遊離硫酸濃
度は100g/l以下としなければならないことがわか
る。
[0013] In the quantity relationship of this example, the copper leaching rate is 0.
.. When it becomes 4%, the copper concentration in the leachate becomes 1 g/l. From FIG. 1, it can be seen that in order to keep the copper concentration in the leachate below 1 g/l, that is, to keep the copper leaching rate below 0.4%, the free sulfuric acid concentration must be below 100 g/l.

【0014】一方、ニッケル浸出率は可能な限り高くす
ることが求められる。このためには、遊離硫酸濃度を高
くすることが必要であり、遊離硫酸濃度が90g/lよ
り小さくなると、ニッケル浸出率が65%を割り、低下
率が大きくなる。従って、本発明の目的を達成するため
の遊離硫酸濃度は90〜100g/lとなる。
On the other hand, the nickel leaching rate is required to be as high as possible. For this purpose, it is necessary to increase the free sulfuric acid concentration, and when the free sulfuric acid concentration becomes less than 90 g/l, the nickel leaching rate becomes less than 65%, and the rate of decrease becomes large. Therefore, the free sulfuric acid concentration to achieve the purpose of the present invention is 90 to 100 g/l.

【0015】反応温度:遊離硫酸濃度を100g/lと
し、維持する温度を変化させた以外は上記例と同様にし
て求めた反応温度とニッケル及び銅の浸出率との関係を
図2に示した。図2より本発明の目的を達成するために
は、すなわち、浸出液中の銅浸出率を0.4%以下、ニ
ッケル浸出率を65%以上にするためには、95℃以上
の温度に維持することが必要となる。
[0015] Reaction temperature: Figure 2 shows the relationship between the reaction temperature and the leaching rate of nickel and copper, which was obtained in the same manner as in the above example except that the free sulfuric acid concentration was 100 g/l and the maintaining temperature was changed. . From Figure 2, in order to achieve the purpose of the present invention, that is, to make the copper leaching rate in the leachate 0.4% or less and the nickel leaching rate 65% or more, the temperature must be maintained at 95°C or higher. This is necessary.

【0016】脱銅澱物の含水率:ニッケル精製工程で発
生した後12時間経過した水分率の異なる脱銅澱物を用
い、脱銅澱物300gを、還流器付きの21のセパラブ
ルフラスコに入れ、スラリー濃度が300g/lとなる
ように水を添加し、攪はんしつつ、400g/lの硫酸
溶液を、遊離硫酸濃度が95g/lとなるように添加し
、97℃に加熱し、還流させつつ2.5時間維持し、次
いで55℃まで放冷し、固液分離後得られた回収澱物と
浸出液とを得た。この回収澱物と浸出液を分析し、求め
た脱銅澱物の水分率とニッケル及び銅の浸出率との関係
を表1に示した。
Moisture content of decoppered precipitate: Using decoppered precipitates with different moisture contents that have been generated for 12 hours in the nickel refining process, 300 g of decoppered precipitates were placed in 21 separable flasks equipped with a reflux device. Add water so that the slurry concentration is 300g/l, add 400g/l sulfuric acid solution while stirring so that the free sulfuric acid concentration is 95g/l, and heat to 97°C. The mixture was maintained under reflux for 2.5 hours, and then allowed to cool to 55° C. to obtain a recovered precipitate and a leachate obtained after solid-liquid separation. The recovered precipitate and leachate were analyzed, and Table 1 shows the relationship between the moisture content of the copper-free precipitate and the leaching rate of nickel and copper.

【0017】表1より、水分率が低ければ低いほど、ニ
ッケルの浸出率は高く、銅の浸出率が低くなることがわ
かる。この結果、本発明の目的を達成するためには、す
なわち、浸出液中の銅浸出率を0.4%以下、ニッケル
浸出率を65%以上にするためには、用いる脱銅澱物の
水分率は17%以下としなければならないこととなる。
From Table 1, it can be seen that the lower the moisture content, the higher the nickel leaching rate and the lower the copper leaching rate. As a result, in order to achieve the purpose of the present invention, that is, to make the copper leaching rate in the leachate 0.4% or less and the nickel leaching rate 65% or more, it is necessary to must be 17% or less.

【0018】[0018]

【表1】[Table 1]

【0019】ニッケル精製工程における脱銅澱物発生か
らの経過時間:水分率が12〜16%の範囲内にあり、
ニッケル精製工程での発生から処理開始までの時間(経
過時間と称する。)の異なる脱銅澱物を用いて表1を求
めた方法と同様にして得た経過時間と銅の浸出率との関
係を表2に示した。
[0019] Elapsed time from the occurrence of decoppered precipitate in the nickel refining process: the moisture content is within the range of 12 to 16%,
Relationship between elapsed time and copper leaching rate obtained in the same manner as in Table 1 using decoppered precipitates with different times (referred to as elapsed time) from generation in the nickel refining process to the start of treatment are shown in Table 2.

【0020】表2より、経過時間が24時間以上となる
と大幅に銅の浸出率が増加することがわかる。
From Table 2, it can be seen that when the elapsed time exceeds 24 hours, the leaching rate of copper increases significantly.

【0021】この結果と、脱銅澱物中の銅が金属銅であ
ることとを考え合わせると、経過時間が長ければ長いほ
ど、銅が酸化され、酸化銅となっていることが推定でき
る。
Considering this result and the fact that the copper in the decoppered precipitate is metallic copper, it can be inferred that the longer the elapsed time, the more the copper is oxidized and becomes copper oxide.

【0022】どの様な条件で金属銅が酸化銅に変化する
のかは明確ではない。よって、脱銅澱物の製法等の履歴
による差が酸化速度に影響を与えることも推定でき、経
過時間を固定することは必ずしも適切ではない。
[0022] It is not clear under what conditions metallic copper changes to copper oxide. Therefore, it can be assumed that differences due to the history of the production method of the copper-removed precipitate affect the oxidation rate, and it is not necessarily appropriate to fix the elapsed time.

【0023】しかし、本例の脱銅澱物を用いる限り、本
発明の目的を達成するためには、脱銅澱物中の金属銅が
できるだけ酸化しないうちに処理することが必要であり
、少なくとも24時間未満に処理することが望まれる。
However, as long as the copper-removed precipitate of this example is used, in order to achieve the object of the present invention, it is necessary to treat the copper-removed precipitate while preventing the metallic copper from oxidizing as much as possible, and at least It is desirable to process in less than 24 hours.

【0024】[0024]

【表2】[Table 2]

【0025】硫酸溶液中の塩素濃度:400g/lの硫
酸溶液と220g/lの塩酸溶液、もしくはNaClと
を用いて遊離硫酸濃度と遊離塩素イオン濃度とを変化さ
せた以外は図1を得る操作と同じようにして得た、液中
の塩素イオン濃度とニッケル及び銅の浸出率との関係を
表3に示した。但し、塩素イオン濃度が214g/lは
、塩酸を用い、遊離塩酸濃度を90g/lとした。
Chlorine concentration in sulfuric acid solution: Procedure to obtain Figure 1 except that free sulfuric acid concentration and free chlorine ion concentration were changed using 400 g/l sulfuric acid solution and 220 g/l hydrochloric acid solution or NaCl. Table 3 shows the relationship between the chlorine ion concentration in the solution and the leaching rate of nickel and copper, obtained in the same manner as above. However, when the chlorine ion concentration was 214 g/l, hydrochloric acid was used, and the free hydrochloric acid concentration was 90 g/l.

【0026】表3より、硫酸溶液中の塩素イオン濃度が
上昇するに連れ、銅の浸出率が上昇することがわかる。 よって、本発明の目的を達成するためには浸出始液中の
塩素イオン濃度を10g/l以下としなければならない
。このことは、塩素イオン濃度が10g/l以下の系内
水、例えば、脱銅澱物の洗浄廃液等の利用が可能という
ことを示している。
Table 3 shows that as the chloride ion concentration in the sulfuric acid solution increases, the copper leaching rate increases. Therefore, in order to achieve the object of the present invention, the chlorine ion concentration in the starting solution for leaching must be 10 g/l or less. This indicates that it is possible to use in-system water with a chlorine ion concentration of 10 g/l or less, such as waste liquid from washing decopper precipitates.

【0027】[0027]

【表3】[Table 3]

【0028】[実施例1]Ni:12.1%、Co:0
.21%、Cu:70.4%、Fe:0.24%、Cl
:1.05%、水分:14.0%の脱銅澱物(水分込み
)1,980(wet)Kgを5m3 のタンクに入れ
、スラリー濃度が300g/lとなるように水を入れた
。次いで、攪はんしつつ、遊離硫酸濃度が95g/lに
なるように70%硫酸溶液を添加し、97℃に昇温し、
97℃で2時間半保持した。その後、55℃まで放冷し
たスラリーをフィルタープレスを用いて固液分離し、回
収澱物1663(wet)kgと浸出液3.5m3 と
を得た。脱銅澱物の品位はNi:3.94%、Co:<
0.05%、Cu:83.8%、Fe:0.17%、C
l:0.41%、水分:14.2%であった。また、浸
出液の品位はNi:43g/l、Co:1.0g/l、
Cu:0.7g/l、Fe:0.4g/l、Cl:4g
/lであった。この結果、ニッケル+コバルトの浸出率
は73.0%、銅の浸出率は0.2%となった。
[Example 1] Ni: 12.1%, Co: 0
.. 21%, Cu: 70.4%, Fe: 0.24%, Cl
1,980 (wet) Kg of decoppered precipitate (including water) with a water content of 1.05% and a water content of 14.0% was placed in a 5 m3 tank, and water was added so that the slurry concentration was 300 g/l. Next, while stirring, a 70% sulfuric acid solution was added so that the free sulfuric acid concentration was 95 g/l, and the temperature was raised to 97°C.
It was held at 97°C for 2 and a half hours. Thereafter, the slurry, which was allowed to cool to 55° C., was separated into solid and liquid using a filter press to obtain 1663 (wet) kg of recovered precipitate and 3.5 m 3 of leachate. The quality of the copper-free precipitate is Ni: 3.94%, Co:<
0.05%, Cu: 83.8%, Fe: 0.17%, C
l: 0.41%, water content: 14.2%. In addition, the quality of the leachate is Ni: 43g/l, Co: 1.0g/l,
Cu: 0.7g/l, Fe: 0.4g/l, Cl: 4g
/l. As a result, the leaching rate of nickel + cobalt was 73.0%, and the leaching rate of copper was 0.2%.

【0029】なお、脱銅澱物中の水分率はろ過機やろ過
条件の選定により容易に調節することができた。
The moisture content in the decoppered precipitate could be easily adjusted by selecting the filter and filtering conditions.

【0030】[0030]

【発明の効果】本発明の方法によれば、銅の浸出を極め
て低く抑え、ニッケルを65%以上浸出することが可能
であり、本発明の方法を採用することにより脱銅澱物よ
りより高い実収率を維持しつつ、短期間でニッケルを回
収することができる。
[Effects of the Invention] According to the method of the present invention, it is possible to suppress leaching of copper to an extremely low level and to leach nickel of 65% or more. Nickel can be recovered in a short period of time while maintaining the actual yield rate.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本実施例で得られた遊離硫酸濃度とニッケル及
び銅の浸出率との関係を示したグラフである。
FIG. 1 is a graph showing the relationship between the free sulfuric acid concentration and the leaching rate of nickel and copper obtained in this example.

【図2】本実施例で得られた反応温度とニッケル及び銅
の浸出率との関係を示したグラフである。
FIG. 2 is a graph showing the relationship between the reaction temperature and the leaching rate of nickel and copper obtained in this example.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  ニッケル精製工程より発生する脱銅澱
物よりニッケルを回収する方法において、発生後24時
間未満で含水率17%以下の脱銅澱物と、塩素濃度が1
0g/l以下の硫酸溶液と混合してスラリーを得、該ス
ラリー中の遊離硫酸濃度を90〜100g/lとし、9
5℃以上で反応させることを特徴とする脱銅澱物よりの
ニッケルの回収方法。
Claim 1: A method for recovering nickel from decoppered precipitate generated in a nickel refining process, in which decoppered precipitate that has been generated for less than 24 hours and has a moisture content of 17% or less and a chlorine concentration of 1.
A slurry is obtained by mixing with a sulfuric acid solution of 0 g/l or less, and the free sulfuric acid concentration in the slurry is 90 to 100 g/l.
A method for recovering nickel from decoppered precipitate, characterized by carrying out the reaction at 5°C or higher.
JP3110793A 1991-04-17 1991-04-17 Recovery for nickel from copper-removed precipitate Pending JPH04318129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3110793A JPH04318129A (en) 1991-04-17 1991-04-17 Recovery for nickel from copper-removed precipitate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3110793A JPH04318129A (en) 1991-04-17 1991-04-17 Recovery for nickel from copper-removed precipitate

Publications (1)

Publication Number Publication Date
JPH04318129A true JPH04318129A (en) 1992-11-09

Family

ID=14544780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3110793A Pending JPH04318129A (en) 1991-04-17 1991-04-17 Recovery for nickel from copper-removed precipitate

Country Status (1)

Country Link
JP (1) JPH04318129A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009114520A (en) * 2007-11-08 2009-05-28 Sumitomo Metal Mining Co Ltd Method and apparatus for removing nickel from copper-removed electrolyte

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009114520A (en) * 2007-11-08 2009-05-28 Sumitomo Metal Mining Co Ltd Method and apparatus for removing nickel from copper-removed electrolyte

Similar Documents

Publication Publication Date Title
US4008076A (en) Method for processing manganese nodules and recovering the values contained therein
US4162294A (en) Process for working up nonferrous metal hydroxide sludge waste
EP0028634A1 (en) Method for producing cobalt metal powder.
CN112609078B (en) Copper anode mud treatment process
JP2024515673A (en) Method for producing electronic grade nickel sulfate from nickel powder, crystallization apparatus, and method for controlling the crystallization apparatus
US4278463A (en) Process for recovering cobalt
JPS604892B2 (en) How to recover metal from copper refining anode slime
US4242127A (en) Process for treating hydroxide sludge residues containing nonferrous metals
JPH02197533A (en) Separation of valuable metal
US4042474A (en) Separating nickel, cobalt and chromium from iron in metallurgical products
CN113278795A (en) Wet smelting method for high nickel matte
JP6233478B2 (en) Purification method of bismuth
WO2018138917A1 (en) Bismuth purification method
JP2018193588A (en) Method for leaching sulfide
US4468302A (en) Processing copper-nickel matte
CN108220615B (en) Gold purification process
JPH04318129A (en) Recovery for nickel from copper-removed precipitate
JPH0781172B2 (en) Silver refining ore mud purification method
CA2278834A1 (en) Improved tellurium extraction from copper electrorefining slimes
JPS58113331A (en) Leaching method for copper and arsenic
US3810971A (en) Metal recovery from salt mixtures of copper and metals more electropositive than copper
JPS6119718B2 (en)
US3660026A (en) Method of removing iron and cobalt from a partially refined nickel matte
CA2161308C (en) Selective bismuth and antimony removal from copper electrolyte
JP2953095B2 (en) Treatment method of copper removal dross