JPH0431786B2 - - Google Patents

Info

Publication number
JPH0431786B2
JPH0431786B2 JP58156001A JP15600183A JPH0431786B2 JP H0431786 B2 JPH0431786 B2 JP H0431786B2 JP 58156001 A JP58156001 A JP 58156001A JP 15600183 A JP15600183 A JP 15600183A JP H0431786 B2 JPH0431786 B2 JP H0431786B2
Authority
JP
Japan
Prior art keywords
welding
shielding gas
molten pool
electrode wire
gas nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58156001A
Other languages
Japanese (ja)
Other versions
JPS6046879A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP15600183A priority Critical patent/JPS6046879A/en
Publication of JPS6046879A publication Critical patent/JPS6046879A/en
Publication of JPH0431786B2 publication Critical patent/JPH0431786B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/164Arc welding or cutting making use of shielding gas making use of a moving fluid

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ミグ溶接による耐熱鋼鋳造材の突合
せ溶接方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for butt welding heat-resistant steel castings by MIG welding.

〔従来の技術〕[Conventional technology]

ミグ溶接(MIG溶接)と略称される溶極イナ
ートガスアーク溶接は、第3図に示すように、消
耗電極ワイヤ2を送通する電極チツプ3のまわり
にシールドガスノズル4を有する溶接トーチ1を
溶接母材10,10の開先部にのぞませ、シール
ドガス11を送給しながら行なわれる。電極ワイ
ヤ2直下では、ワイヤと前層溶接ビード13の間
に発生するアーク5の高熱と、溶接プール14の
保有熱で開先母材が溶融される。
In inert gas arc welding, abbreviated as MIG welding, as shown in FIG. This is performed while looking into the grooves of the materials 10, 10 and supplying the shielding gas 11. Immediately below the electrode wire 2, the groove base material is melted by the high heat of the arc 5 generated between the wire and the front layer weld bead 13 and the heat retained by the weld pool 14.

電極チツプまわりのシールドガスノズル4から
シールドガス11を吹送するのは、アーク5を集
中安定化するとともに、溶融プール14を大気の
酸化雰囲気から遮断することにより、ブローホー
ルやスラグ割れなどの発生を防止し健全な溶接金
属を形成するためである。炭素鋼や低合金鋼、あ
るいは通常のステンレス鋼の溶接では、前記シー
ルド構造により、ブローホールやスラグ割れなど
のない健全な溶接品質を得ることができる。
Blowing the shield gas 11 from the shield gas nozzle 4 around the electrode chip concentrates and stabilizes the arc 5, and also prevents the occurrence of blowholes, slag cracks, etc. by shielding the molten pool 14 from the oxidizing atmosphere of the atmosphere. This is to form a sound weld metal. When welding carbon steel, low alloy steel, or ordinary stainless steel, the shield structure allows a sound welding quality without blowholes or slag cracks to be obtained.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、耐熱鋼材、殊にその鋳造材、例えば鋳
造管材等の突合せ溶接においては、しばしばその
溶接継手部における溶接金属と母材との境界であ
るボンドの近傍の母材内に微細な割れの発生がみ
られる。この微細割れは、粒界液化割れの1種で
あることが観察され、粒界開口の形態を呈し、比
較的表層に近く位置してボンドから母材側に最大
約2mm程度の領域内に進展している。
However, when butt welding heat-resistant steel materials, especially their cast materials, such as cast pipe materials, microscopic cracks often occur in the base metal near the bond, which is the boundary between the weld metal and the base metal at the weld joint. can be seen. These microcracks were observed to be a type of intergranular liquefaction cracking, taking the form of intergranular openings, located relatively close to the surface layer, and propagating within a maximum area of about 2 mm from the bond to the base metal side. are doing.

このような微細割れが発生すると、それを修復
するためのグラインダ研削およびTIG溶接等によ
る手直し作業を必要とし、工程の著しい煩瑣化と
製造コストの増大を免れず、その割れが多数発生
すると不良品として廃棄処分を余儀なくされるこ
とも少なくない。
When such micro-cracks occur, rework such as grinding with a grinder and TIG welding is required to repair them, making the process significantly more complicated and increasing manufacturing costs. In many cases, they are forced to be disposed of.

本発明は、耐熱鋼鋳造材の突合せ溶接継手部に
発生する上記微細割れを防止することを目的とし
ている。
An object of the present invention is to prevent the above-mentioned microcracks occurring in a butt welded joint of a heat-resistant steel cast material.

本発明者は、上記微細割れが、溶接施工中にお
ける溶接プール近傍の母材表面に対するシールド
効果の不足に起因していることを知見した。すな
わち、溶接中(アーク発生中)の溶接プール14
を大気から遮断するために溶接トーチのシールド
ガスノズル4から吹送されるシールドガス11
は、アーク熱やアーク周辺雰囲気の温度上昇によ
り気流の乱れを呈し、また前記シールド構造上、
シールド効果に限界があり、電極ワイヤ直下の溶
融プールの左右の縁線(母材溶融線)の近傍の母
材表面に対する大気遮断効果を確実に維持するこ
とは困難である。一方、溶接母材である耐熱鋼材
は、結晶粒界に一次炭化物(通常、Cr炭化物)
が析出しており、炭化物粒子近傍ではCr欠乏層
が存在する。しかも、粒界近傍は、ミクロ的に最
終凝固部であるため、不純物(Siの酸化物や低融
点化合物、P,Sなど)の偏析を伴う。とくに鋳
造材ではこれらの傾向が著しい。このような組織
的性状を有する母材が、溶接中、アークおよび溶
融プールからの熱影響により高温(通常、融点直
下の温度になつている)状態で、微量酸素を含む
雰囲気にさらされると、粒界酸化による粒界脆化
と融点の低下を生じ、かつ粒界不純物の存在によ
つて、粒界液化が助長され、その結果として溶接
継手のボンド近傍の母材に微細割れの発生をみる
のである。
The present inventor found that the above-mentioned microcracks are caused by insufficient shielding effect on the base metal surface near the weld pool during welding. That is, the welding pool 14 during welding (during arc generation)
Shielding gas 11 blown from the shielding gas nozzle 4 of the welding torch to isolate the welding torch from the atmosphere
In this case, the air flow is disturbed due to the arc heat and the temperature increase in the atmosphere around the arc, and due to the above-mentioned shield structure,
There is a limit to the shielding effect, and it is difficult to reliably maintain the air shielding effect on the surface of the base material near the left and right edge lines (base material fusion line) of the molten pool directly below the electrode wire. On the other hand, heat-resistant steel, which is the base material for welding, has primary carbides (usually Cr carbides) at grain boundaries.
is precipitated, and a Cr-depleted layer exists near the carbide particles. Moreover, since the vicinity of the grain boundary is the final solidification part from a microscopic point of view, impurities (Si oxide, low melting point compounds, P, S, etc.) are segregated. These tendencies are particularly noticeable in cast materials. When a base metal with such structural properties is exposed to an atmosphere containing trace amounts of oxygen at high temperatures (usually just below the melting point) due to the heat effects from the arc and molten pool during welding, Grain boundary oxidation causes grain boundary embrittlement and a decrease in the melting point, and the presence of grain boundary impurities promotes grain boundary liquefaction, resulting in the occurrence of microcracks in the base material near the bond of welded joints. It is.

本発明は、このような微細割れ発生機構にかん
がみ、溶接中の溶融プールに接する電極直下の左
右の母材表面に対するシールド効果を補強するこ
とにより微細割れを防止することを可能にしたも
のである。
In consideration of such a micro-cracking generation mechanism, the present invention makes it possible to prevent micro-cracks by reinforcing the shielding effect on the left and right base material surfaces directly under the electrode that are in contact with the molten pool during welding. .

〔課題を解決するための手段および作用〕[Means and actions for solving the problem]

本発明の耐熱鋼鋳造材の突合せミグ溶接法は、 ミグ溶接トーチの電極チツプまわりのシールド
ガスノズルから、アークおよび電極ワイヤ直下に
形成された開先内の溶融プールを被包する1次シ
ールドガスを吹送すると共に、 上記溶接トーチに追従して移行する2次シール
ドガスノズルから、電極ワイヤ直下の溶融プール
の左右の縁線の近傍の母材表面に指向する2次シ
ールドガスを吹送してその表面を大気から遮断し
つつ溶接することを特徴としている。
In the butt MIG welding method for heat-resistant steel castings of the present invention, primary shielding gas is supplied from the shielding gas nozzle around the electrode tip of the MIG welding torch to cover the arc and the molten pool in the groove formed directly below the electrode wire. At the same time, the secondary shielding gas is blown toward the surface of the base material near the left and right edge lines of the molten pool directly below the electrode wire from the secondary shielding gas nozzle that follows the welding torch to cover the surface. It is characterized by welding while being isolated from the atmosphere.

以下、本発明について実施例を示す第1図およ
び第2図を参照して説明する。6は溶接トーチに
付帯させた2次シールドガスノズルである。該シ
ールドガスノズルは、その先端に2つのノズル口
6,1,6,2を有し、各ノズル口は電極ワイヤ
直下の溶融プール14の左右両側に位置して、溶
融プール14の左右の縁線(母材溶融線)の近傍
の母材表面に指向している。溶接トーチ1は通常
のそれと異なるものである必要はなく、溶接中
は、電極チツプ3まわりのシールドガスノズル4
から送給されるArガス、あるいはAr+20%CO2
混合ガスなどのシールドガスによりアークおよび
その直下の溶融プール14を被包する。
EMBODIMENT OF THE INVENTION Hereinafter, the present invention will be explained with reference to FIG. 1 and FIG. 2 showing an embodiment. 6 is a secondary shield gas nozzle attached to the welding torch. The shield gas nozzle has two nozzle ports 6, 1, 6, and 2 at its tip, and each nozzle port is located on the left and right sides of the molten pool 14 directly below the electrode wire, and the nozzle ports are located on the left and right sides of the molten pool 14, and It is directed toward the base material surface near the (base material melting line). The welding torch 1 does not need to be different from the usual one, and during welding, the shielding gas nozzle 4 around the electrode tip 3
Ar gas supplied from or Ar + 20% CO 2
The arc and the molten pool 14 directly below it are covered with a shielding gas such as a mixed gas.

本発明によれば、溶接トーチのシールドガスノ
ズル4から吹送されるシールドガス11を1次シ
ールドガスとし、これに付帯するシールドガスノ
ズル6から吹送されるシールドガス12を2次シ
ールドガスとして電極ワイヤ直下の溶融プール近
傍母材表面(第2図、溶融プールの左右の縁線1
5の外側の斜線部領域)に集中的に付加する。こ
の2次シールドガスにより溶融線近傍母材の高温
酸化が遮断され、その領域の粒界液化とそれによ
る微細割れの発生が未然に防止される。また、2
次シールドガスは1次シールド効果を補強すると
共に1次シールドと相まつて溶融プールの攪拌効
果に寄与し溶融プールの浄化に奏効する。
According to the present invention, the shielding gas 11 blown from the shielding gas nozzle 4 of the welding torch is used as the primary shielding gas, and the shielding gas 12 blown from the attached shielding gas nozzle 6 is used as the secondary shielding gas directly below the electrode wire. Base material surface near the molten pool (Fig. 2, edge lines 1 on the left and right sides of the molten pool)
Concentrate addition to the outside shaded area of 5). This secondary shielding gas blocks high-temperature oxidation of the base material in the vicinity of the melting line, thereby preventing grain boundary liquefaction in that region and the occurrence of microscopic cracks. Also, 2
The secondary shielding gas not only reinforces the primary shielding effect, but also contributes to the stirring effect of the molten pool together with the primary shield, and is effective in purifying the molten pool.

本発明の溶接方法において、1次シールドガス
は、通常のミグ溶接におけるそれと同様に流量約
15〜25/分、流速約30〜80m/分程度でよく、
また2次シールドガスは、微細割れの発生するご
く狭い幅域をシールドすればよいので流量約0.5
〜5/分程度の少量で十分好結果を得ることが
できる。また、2次シールドガスは、アルゴンガ
ス(Ar)が好ましい。
In the welding method of the present invention, the primary shielding gas has a flow rate of approximately
15-25/min, flow rate of about 30-80m/min is sufficient.
In addition, the flow rate of the secondary shielding gas is approximately 0.5, since it is sufficient to shield a very narrow width area where microcracks occur.
Sufficient results can be obtained with a small amount of about 5/min. Further, the secondary shielding gas is preferably argon gas (Ar).

2次シールドガスノズル6は、溶接アークおよ
び溶融プールからの高温にさらされるので、耐熱
性のよい材料からなるもの、例えばセラミツクで
コーテイングされたもの、あるいはセラミツク焼
結品などが好ましい。そのノズル口形状は円形、
だ円形など任意であるが、吐出口断面は、例えば
10〜20mm2程度が適当である。また、2次シールド
ガスノズル6は、溶接トーチ1の移行に追従して
溶接線にそつて移行するように、適当な連結部材
7にて溶接トーチに連結すればよい。2次シール
ドガスノズルは、電極ワイヤ直下の溶融プールの
左右の縁線15近傍の母材表面に対し、垂直、あ
るいは溶接進行方向の前方側から斜下方に指向さ
せることもできるが、溶接トーチの前進走行の邪
魔にならないように図示のように溶接トーチの後
方から前方に向つて斜下方に指向させるのがよ
い。
Since the secondary shield gas nozzle 6 is exposed to high temperatures from the welding arc and the molten pool, it is preferably made of a material with good heat resistance, such as one coated with ceramic or a ceramic sintered product. Its nozzle mouth shape is circular,
The cross section of the discharge port can be arbitrary, such as an oval shape, but the cross section of the discharge port can be, for example,
Approximately 10 to 20 mm2 is appropriate. Further, the secondary shield gas nozzle 6 may be connected to the welding torch by a suitable connecting member 7 so as to follow the movement of the welding torch 1 and move along the welding line. The secondary shielding gas nozzle can be directed perpendicularly to the base metal surface near the left and right edge lines 15 of the molten pool directly below the electrode wire, or diagonally downward from the front side in the direction of welding progress. It is preferable to direct the welding torch diagonally downward from the rear to the front as shown in the figure, so as not to interfere with traveling.

本発明方法の対象とする溶接母材は、JIS
SCH12,SCH13,SCH22,ASTM,ACIのHF,
HH,HK40など一般に耐熱鋼と称される各種合
金鋼の鋳造材を包含する。
The welding base material targeted for the method of the present invention is JIS
SCH12, SCH13, SCH22, ASTM, ACI HF,
This includes cast materials of various alloy steels that are generally called heat-resistant steels, such as HH and HK40.

〔実施例〕〔Example〕

遠心力鋳造耐熱鋳鋼管の突合せ溶接を、第1
図、第2図に示すように1次シールドガスノズル
および2次シールドガスノズルからシールドガス
を吹送しながら行い、溶接後、継手部表面に機械
加工(加工代1mm)を加え、ダイチエツク(液体
浸透深傷)およびX線試験によりクラツチ発生の
有無を検査した。
First butt welding of centrifugally cast heat-resistant cast steel pipes
As shown in Fig. 2, shielding gas is blown from the primary shielding gas nozzle and the secondary shielding gas nozzle. ) and an X-ray test to determine whether clutch occurred.

(1) 母材(鋳造管)の材種およびサイズ 材種:C0.40〜0.45%,Si:0.95〜1.05%,
Mn0.5〜0.8%,P0.03%以下、S0.02%以下、
Cr24.5〜25.5%,Ni20.0〜21.5%,Fe Bal。
(HK40ないしJIS SCH22相当材) サイズ(機械加工後):外径138、肉厚20、長さ
380(mm) (2) 開先加工 形状:U字形(開先角20°)、ルート半径5mm、
ルート面1.6mm、ルートギヤツプ0。
(1) Grade and size of base material (cast pipe) Grade: C0.40~0.45%, Si: 0.95~1.05%,
Mn0.5~0.8%, P0.03% or less, S0.02% or less,
Cr24.5~25.5%, Ni20.0~21.5%, Fe Bal.
(HK40 or JIS SCH22 equivalent material) Size (after machining): Outer diameter 138, wall thickness 20, length
380 (mm) (2) Beveling Shape: U-shape (bevel angle 20°), root radius 5mm,
Root surface 1.6mm, root gap 0.

(3) 溶接姿勢:水平下向回転 (4) 電極ワイヤ組成:0.4C−1Si−0.5Mn−25Cr
−20Ni−Fe。
(3) Welding posture: horizontal downward rotation (4) Electrode wire composition: 0.4C−1Si−0.5Mn−25Cr
−20Ni−Fe.

(5) 溶接電流・電圧:160〜180A、24〜26V (6) 溶接トーチ移行速度(管体回転周速度):240
mm/分 (7) 1次シールドガス:Arガス、流量20/分
(ノズル口径20mm) (8) 2次シールドガス:Arガス、流量2/分
(ノズル口径:各々4mm) (9) 肉盛層数:5層 上記溶接により得られた溶接管体の継手部につ
いてダイチエツク(液体浸透深傷法)およびX線
試験によるクラツク発生の有無を検査した結果、
その溶接金属部はむろん、ボンド近傍母材にもク
ラツクは検出されなかつた(検査対象継手総数:
50)。
(5) Welding current/voltage: 160 to 180A, 24 to 26V (6) Welding torch transfer speed (tube rotation circumferential speed): 240
mm/min (7) Primary shielding gas: Ar gas, flow rate 20/min (nozzle diameter 20mm) (8) Secondary shielding gas: Ar gas, flow rate 2/min (nozzle diameter: 4mm each) (9) Overlay Number of layers: 5 layers The joints of the welded pipes obtained by the above welding were inspected for the presence or absence of cracks by Daiichi Check (liquid penetration deep scratch method) and X-ray tests.
No cracks were detected in the weld metal part or in the base metal near the bond (total number of joints inspected:
50).

2次シールドガスの吹送を行なわない点を除い
て上記と同一条件の溶接により形成される管継手
の場合、ボンド近傍母材のクラツク発生率(n/
N×100(%)、N:検査対象継手総数、n:管を
一周する継手の1個所にでもクラツクが検出され
た継手の数)は、約30%以上(N:200本)であ
り、2次シールドガスノズルにより少量のシール
ドガスを付加してミグ溶接を行う本発明のクラツ
ク発生防止効果は顕著である。
In the case of a pipe joint formed by welding under the same conditions as above except that secondary shielding gas is not blown, the crack occurrence rate (n/
N x 100 (%), N: total number of joints to be inspected, n: number of joints in which a crack was detected at even one location around the pipe) is approximately 30% or more (N: 200), The crack prevention effect of the present invention, which performs MIG welding by adding a small amount of shielding gas through a secondary shielding gas nozzle, is remarkable.

〔発明の効果〕〔Effect of the invention〕

本発明によれば耐熱鋼鋳造材の突合せミグ溶接
において、微細割れを生じることなく、健全な溶
接継手を形成することができる。その溶接は、2
次シールドガスとして少量のガスを付加するだけ
でよく、かつ装置構成も簡単であり、その実用価
値は大である。
According to the present invention, in butt MIG welding of heat-resistant steel castings, a sound welded joint can be formed without producing microcracks. The welding is 2
It is only necessary to add a small amount of gas as a secondary shielding gas, and the device configuration is simple, so its practical value is great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の溶接方法を示す正面説明図、
第2図はその平面説明図、第3図は従来法を示す
断面説明図である。 1……溶接トーチ、4……1次シールドガスノ
ズル、6……2次シールドガスノズル、10……
溶接母材、11,12……シールドガス、14…
…溶融プール。
FIG. 1 is a front explanatory view showing the welding method of the present invention;
FIG. 2 is an explanatory plan view thereof, and FIG. 3 is an explanatory cross-sectional view showing the conventional method. 1...Welding torch, 4...Primary shield gas nozzle, 6...Secondary shield gas nozzle, 10...
Welding base material, 11, 12...shielding gas, 14...
...molten pool.

Claims (1)

【特許請求の範囲】 1 ミグ溶接トーチの電極チツプまわりのシール
ドガスノズルから、アークおよび電極ワイヤ直下
に形成された開先内の溶融プールを被包する1次
シールドガスを吹送すると共に、 上記溶接トーチに追従して移行する2次シール
ドガスノズルから、電極ワイヤ直下の溶融プール
の左右の縁線の近傍の母材表面に指向する2次シ
ールドガスを吹送してその表面を大気から遮断し
つつ溶接することを特徴とする耐熱鋼鋳造材の突
合せミグ溶接方法。
[Scope of Claims] 1. A primary shielding gas is blown from a shielding gas nozzle around the electrode tip of the MIG welding torch to cover the arc and the molten pool in the groove formed directly below the electrode wire, and the welding torch From the secondary shielding gas nozzle, which moves following the electrode wire, the secondary shielding gas is blown toward the surface of the base metal near the left and right edge lines of the molten pool directly below the electrode wire, and welding is performed while shielding that surface from the atmosphere. A method for butt MIG welding of heat-resistant steel castings, characterized by:
JP15600183A 1983-08-26 1983-08-26 Mig welding method of heat resisting steel material Granted JPS6046879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15600183A JPS6046879A (en) 1983-08-26 1983-08-26 Mig welding method of heat resisting steel material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15600183A JPS6046879A (en) 1983-08-26 1983-08-26 Mig welding method of heat resisting steel material

Publications (2)

Publication Number Publication Date
JPS6046879A JPS6046879A (en) 1985-03-13
JPH0431786B2 true JPH0431786B2 (en) 1992-05-27

Family

ID=15618160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15600183A Granted JPS6046879A (en) 1983-08-26 1983-08-26 Mig welding method of heat resisting steel material

Country Status (1)

Country Link
JP (1) JPS6046879A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5161446A (en) * 1974-11-26 1976-05-28 Nippon Kokan Kk GASUSHIIRUDOAAKUYOSETSUHO
JPS554844B2 (en) * 1972-06-12 1980-02-01

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS554844U (en) * 1978-06-26 1980-01-12

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS554844B2 (en) * 1972-06-12 1980-02-01
JPS5161446A (en) * 1974-11-26 1976-05-28 Nippon Kokan Kk GASUSHIIRUDOAAKUYOSETSUHO

Also Published As

Publication number Publication date
JPS6046879A (en) 1985-03-13

Similar Documents

Publication Publication Date Title
US9604315B2 (en) Aluminum deoxidizing welding wire
KR20160086281A (en) Hot wire laser cladding process and consumables used for the same
CN106488825B (en) Vertical narrow groove gas-shielded arc welding method
TWI297629B (en) Welding flux for stainless steels
WO2017126657A1 (en) Consumable electrode gas-shielded arc welding method and arc weld
CN109641306B (en) Vertical narrow groove gas shielded arc welding method
TWI377106B (en) Antiseptic welding flux with silver content for stainless steels
JP5869066B2 (en) Bond flux for multi-electrode single-sided submerged arc welding
TW201039964A (en) Welding flux for stainless steels
JP2001259888A (en) Flux cored wire for welding galvanized steel sheet having excellent pit resistance and blowhole resistance
JP2000117485A (en) Powder material and weld metal for powder plasma cladding by welding
JPH10216934A (en) Gas shielded metal arc welding method for circumferential joint of steel tube, and wire for gas shielded metal arc welding
JP6661415B2 (en) Welding torch
JP6037781B2 (en) Bond flux for multi-electrode single-sided submerged arc welding
JP3182672B2 (en) Internal welding method of clad steel pipe
JPH0431786B2 (en)
JP2694034B2 (en) Flux-cored wire for high current density gas shielded arc welding
JP3180257B2 (en) Inner surface seam welding method for clad steel pipe
JPH08276273A (en) Butt welding method for clad steel
JP4667898B2 (en) Consumable electrode gas shield arc welding method
JP4319713B2 (en) Multi-electrode gas shield arc single-sided welding method
Bushey Welding of cast irons
US3473002A (en) Triply shielded arc welding method
JPH09206945A (en) Multi-electrode gas shielded one-side welding method
JP7485250B1 (en) One-sided submerged arc welding method and method for manufacturing welded joint