JPH04317511A - Overload controller for transmission line - Google Patents

Overload controller for transmission line

Info

Publication number
JPH04317511A
JPH04317511A JP3083724A JP8372491A JPH04317511A JP H04317511 A JPH04317511 A JP H04317511A JP 3083724 A JP3083724 A JP 3083724A JP 8372491 A JP8372491 A JP 8372491A JP H04317511 A JPH04317511 A JP H04317511A
Authority
JP
Japan
Prior art keywords
transmission line
temperature
power transmission
current
overload
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3083724A
Other languages
Japanese (ja)
Other versions
JP2990834B2 (en
Inventor
Masatoshi Kiyama
木山 正俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3083724A priority Critical patent/JP2990834B2/en
Publication of JPH04317511A publication Critical patent/JPH04317511A/en
Application granted granted Critical
Publication of JP2990834B2 publication Critical patent/JP2990834B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

PURPOSE:To prevent overinfluence onto consumers by operating the conductor temperature based on the current of transmission line and the ambient temperature, deciding an overload state of the transmission line based on thus operated temperature and outputting a requisite load interruption command thereby performing a highly accurate and rational control for releasing overload. CONSTITUTION:An operation controller 16 receives detection values from a current detector 11 and an ambient temperature detector 12 for a transmission line and set values from a continuous allowable temperature setter 13, a short time allowable temperature setter 14 and an allowable current constant setter 15. The operation controller 16 operates the conductor temperature and when thus operated temperature exceeds an allowable temperature limit, a requisite load interruption is set and a signal is fed to a load interruption commander 17. Consequently, a highly accurate and rational overload control satisfying practical operating conditions is realized resulting in suppression of the influence of load interruption onto consumers.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、電力系統の送電線の
過負荷を解消するための制御方式に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control method for eliminating overload on power transmission lines of an electric power system.

【0002】0002

【従来の技術】先ず、従来の送電線過負荷制御装置とし
て例えば電気書院昭和50年5月発行「電力系統の保護
制御システム」 P.171〜184に記載された方式
について説明する。図3は制御対象である電力系統図で
、図において、31はA発電所の発電機、32および3
3はA発電所とそれぞれB変電所およびC変電所とを接
続する送電線、34はB変電所とC変電所とを接続する
送電線である。35および36はそれぞれB変電所およ
びC変電所の負荷群である。
[Prior Art] First, a conventional power transmission line overload control device is described, for example, in "Power System Protection Control System" published by Denkishoin May 1975, P. The methods described in Nos. 171 to 184 will be explained. Figure 3 is a power system diagram that is the object of control. In the diagram, 31 is the generator of power plant A, 32 and 3
Reference numeral 3 indicates a power transmission line that connects power station A to substation B and substation C, respectively, and reference numeral 34 indicates a power transmission line that connects substation B and substation C. 35 and 36 are load groups of substation B and substation C, respectively.

【0003】そして、今、各送電線32、33および3
4にそれぞれ電流IA、IBおよび、ICが流れている
状態で、送電線33が何らかの要因で遮断された場合を
想定する。上記遮断が行われた直後は、送電線32の電
流はIA+IB、また、送電線34の電流はIC+IB
になる。ここで、送電線32の電流IA+IBがある規
定値を越えて過負荷となると、例えば負荷群35の一部
を遮断して送電線32の電流を規定値以下に抑えてやる
必要がある。同様に、送電線34の電流IC+IBがあ
る規定値を越えて過負荷になると、負荷群36の一部を
遮断して送電線34の電流を規定値以下に抑える必要が
ある。
[0003] Now, each power transmission line 32, 33 and 3
Assume that the power transmission line 33 is cut off for some reason while currents IA, IB, and IC are flowing through the power lines 4 and 4, respectively. Immediately after the above-mentioned interruption is performed, the current in the power transmission line 32 is IA + IB, and the current in the power transmission line 34 is IC + IB.
become. Here, if the current IA+IB of the power transmission line 32 exceeds a certain specified value and becomes overloaded, it is necessary to cut off part of the load group 35 to suppress the current of the power transmission line 32 below the specified value, for example. Similarly, when the current IC+IB of the power transmission line 34 exceeds a certain specified value and becomes overloaded, it is necessary to cut off part of the load group 36 to suppress the current of the power transmission line 34 below the specified value.

【0004】図4は以上の過負荷制御を行う従来の装置
を示す構成図である。同図の装置は各送電線毎に設置さ
れるもので、図において、41、43および45は送電
線の電流を入力し、その過負荷率がそれぞれx%、y%
およびz%以上であることを検出する過電流継電器、4
2、44および46はそれぞれ過電流継電器41、43
および45からの出力信号によって動作するタイマー、
47は各タイマー42、44、46からの出力信号に基
づき、過負荷を解消するためにどの負荷群を遮断するの
かを設定する設定器、48は設定器47からの出力信号
により系統の各遮断器に遮断指令を送出する負荷遮断指
令器である。
FIG. 4 is a block diagram showing a conventional device that performs the above-mentioned overload control. The device in the figure is installed for each power transmission line, and in the figure, 41, 43, and 45 input the current of the transmission line, and the overload rate is x% and y%, respectively.
and an overcurrent relay that detects z% or more, 4
2, 44 and 46 are overcurrent relays 41 and 43, respectively.
and a timer operated by the output signal from 45;
47 is a setting device for setting which load group is to be cut off to eliminate overload based on the output signals from each timer 42, 44, and 46; 48 is a setting device for setting each load group to be cut off in order to eliminate overload based on the output signal from each timer 42, 44, 46; This is a load shedding command device that sends a shedding command to the equipment.

【0005】図5は上記装置が動作して送電線の過負荷
が解消されていく状況を説明するためのタイムチャート
である。以下、図4とあわせて説明する。先ず、時刻t
0で送電線の電流が急増し、過負荷率がx%を越えると
過電流継電器41がこれを検出してタイマー42がカウ
ントを開始する。この状態がT1秒継続するとタイマー
42がタイムアップしてその出力信号を設定器47に送
出する。 これにより、設定器47は遮断すべき負荷群を設定し、
その設定出力を負荷遮断指令器48に送出し、負荷遮断
指令器48は特定された遮断器に遮断指令信号を送出し
て負荷群の一部開放が実施される。以上の動作で当該送
電線の過負荷率は低下するが、依然として過負荷率はy
%を越えているので、更にT2秒が経過するとタイマー
44がタイムアップし、これに基づき設定器47が新た
な負荷遮断を設定する。以下、同様の操作により過負荷
率z%以下となるまで負荷の調整が行われ送電線の過負
荷状態が解消される訳である。
FIG. 5 is a time chart for explaining the situation in which the above-mentioned device operates and the overload on the power transmission line is eliminated. This will be explained below in conjunction with FIG. 4. First, time t
When the current in the power transmission line increases rapidly at 0, and the overload rate exceeds x%, the overcurrent relay 41 detects this and the timer 42 starts counting. When this state continues for T1 seconds, the timer 42 times up and sends its output signal to the setting device 47. Thereby, the setting device 47 sets the load group to be cut off,
The setting output is sent to the load shedding command device 48, and the load shedding command device 48 sends a break command signal to the specified circuit breaker to partially open the load group. Although the above operations reduce the overload rate of the transmission line, the overload rate still remains
%, the timer 44 will time out when T2 seconds have elapsed, and based on this, the setting device 47 will set a new load shedding. Thereafter, similar operations are performed to adjust the load until the overload rate becomes z% or less, and the overloaded state of the power transmission line is resolved.

【0006】[0006]

【発明が解決しようとする課題】従来の送電線過負荷制
御装置は以上のように構成されているので、予め設定さ
れた一定時限のステップで負荷遮断を順次行っていくの
で、必要以上に負荷が急速に遮断されていく傾向となり
易く、電力需用家への影響がその分大きくなるという問
題点があった。この発明は以上のような問題点を解消す
るためになされたもので、個々の条件を加味して合理的
で精度の高い過負荷解消の制御を行い電力需用家への過
度な影響を防止することができる送電線過負荷制御装置
を得ることを目的とする。
[Problem to be Solved by the Invention] Since the conventional power transmission line overload control device is configured as described above, it sequentially performs load shedding in steps of a fixed time period set in advance, so that the overload control device for transmission lines is configured as described above. There is a problem in that the electricity tends to be cut off rapidly, and the impact on electricity consumers becomes correspondingly large. This invention was made in order to solve the above-mentioned problems, and by taking into consideration individual conditions, rational and highly accurate overload cancellation control is performed to prevent excessive impact on electricity consumers. The purpose is to obtain a power transmission line overload control device that can

【0007】[0007]

【課題を解決するための手段】この発明に係る送電線過
負荷制御装置は、送電線に流れる電流を検出する電流検
出器、上記送電線の周囲温度を検出する温度検出器、お
よび上記電流と周囲温度とから上記送電線の導体温度を
演算しこの温度が所定の設定値を越えたとき遮断の指令
を出力する演算制御装置を備えたものである。
[Means for Solving the Problems] A power transmission line overload control device according to the present invention includes a current detector that detects the current flowing in the power transmission line, a temperature detector that detects the ambient temperature of the power transmission line, and a current detector that detects the current flowing in the power transmission line. The system is equipped with an arithmetic and control device that calculates the conductor temperature of the power transmission line from the ambient temperature and outputs a shutdown command when the temperature exceeds a predetermined set value.

【0008】[0008]

【作用】この発明では、送電線の電流と周囲温度とから
導体温度を演算し、この温度から送電線の過負荷状態を
判断し、必要な負荷遮断を指令する。
[Operation] In the present invention, the conductor temperature is calculated from the current in the power transmission line and the ambient temperature, the overload condition of the power transmission line is determined from this temperature, and necessary load shedding is commanded.

【0009】[0009]

【実施例】図1はこの発明の一実施例による送電線過負
荷制御装置を示す構成図である。但し、この実施例では
、送電線の電流と周囲温度とから直接導体温度を演算す
るのではなく、先ず、周囲温度から送電線の連続許容電
流を求め、この連続許容電流と現在の送電線電流とから
導体温度を演算する。そして、この導体温度と、連続許
容温度および短時間許容温度から定まる許容温度限界と
の大小を比較して遮断指令を出力する方式を採用してい
る。以下、図1の内容から順次説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a block diagram showing a power transmission line overload control device according to an embodiment of the present invention. However, in this example, instead of calculating the conductor temperature directly from the current of the power transmission line and the ambient temperature, first, the continuous allowable current of the power line is determined from the ambient temperature, and this continuous allowable current and the current current of the power line are calculated. Calculate the conductor temperature from . Then, a method is adopted in which the conductor temperature is compared with an allowable temperature limit determined from the continuous allowable temperature and the short-time allowable temperature, and a cutoff command is output. The contents of FIG. 1 will be sequentially explained below.

【0010】図1において、11は制御対象送電線に流
れる電流を検出する電流検出器、12は当該送電線の周
囲温度(送電線の亘長が長い場合等では適当な複数個所
で検出し、その平均値または最大値等を採用する)を検
出する温度検出器、13および14はそれぞれ連続許容
温度設定器および短時間許容温度設定器で、送電線に使
用されている導体の仕様により適当な値が選定される。 例えば、耐熱アルミ合金線では連続許容温度として 1
50℃、短時間許容温度として 180℃程度に設定さ
れる。15は許容電流定数設定器で、後述する算式によ
り連続許容電流を算出する場合の定数を設定する。16
は11および12からの検出値と13、14および15
からの設定値とを入力して導体温度を演算し、これが別
途演算した許容温度限界を越えたとき必要な負荷遮断を
設定して負荷遮断指令器17にその信号を送出する演算
制御装置である。
In FIG. 1, 11 is a current detector that detects the current flowing through the power transmission line to be controlled; 12 is the ambient temperature of the power transmission line (detected at multiple appropriate locations when the transmission line is long, etc.); Temperature detectors 13 and 14 are respectively a continuous permissible temperature setter and a short time permissible temperature setter, which detect the average value or maximum value, etc.). A value is selected. For example, for heat-resistant aluminum alloy wire, the continuous allowable temperature is 1
The temperature is set at 50℃, and the short-term allowable temperature is set at about 180℃. Reference numeral 15 denotes an allowable current constant setter for setting a constant when calculating a continuous allowable current using a formula to be described later. 16
is the detected value from 11 and 12 and 13, 14 and 15
This is an arithmetic control device that calculates the conductor temperature by inputting the set value from the conductor, and when the conductor temperature exceeds a separately calculated allowable temperature limit, sets the necessary load shedding and sends the signal to the load shedding command device 17. .

【0011】次に、特に演算制御装置16の動作を図2
のフローチャートに従って説明する。なお、図2のフロ
ーの処理は、一定周期(例えば10sec)により常時
繰り返し実行される。先ず、ステップ21において、次
式により連続許容電流Inを算出する。 In=A・(Tn−Ta)+B           
 (1)但し、Tnは連続許容温度で連続許容温度設定
器13から入力される。また、Taは周囲温度で温度検
出器12により検出された値が採用される。更に、A、
Bは定数で、許容電流定数設定器15によって入力され
る。なお、(1)式は一定の範囲で適用される近似式で
あり、複雑になるがより詳細な計算式を使用するように
すれば精度は向上する。
Next, in particular, the operation of the arithmetic and control unit 16 is shown in FIG.
This will be explained according to the flowchart. Note that the process of the flow shown in FIG. 2 is constantly repeatedly executed at a fixed period (for example, 10 seconds). First, in step 21, the continuous allowable current In is calculated using the following equation. In=A・(Tn−Ta)+B
(1) However, Tn is a continuous allowable temperature and is input from the continuous allowable temperature setting device 13. Moreover, the value detected by the temperature detector 12 at the ambient temperature is adopted as Ta. Furthermore, A,
B is a constant and is input by the allowable current constant setter 15. Note that equation (1) is an approximation equation that is applied within a certain range, and although it is complicated, the accuracy can be improved by using a more detailed calculation equation.

【0012】次にステップ22に移り、次式により許容
温度限界Mを算出する。 M=(Ts−Ta)/(Tn−Ta)      (2
)但し、Tsは短時間許容温度で短時間許容温度設定器
14から入力される。次に、ステップ23で導体温度上
昇θ(t)を算出する。次式はその計算式であるが、連
続許容温度上昇θnとの比で表現されている。
Next, in step 22, the allowable temperature limit M is calculated using the following equation. M=(Ts-Ta)/(Tn-Ta) (2
) However, Ts is a short-time permissible temperature and is input from the short-time permissible temperature setting device 14. Next, in step 23, the conductor temperature increase θ(t) is calculated. The following formula is the calculation formula, and is expressed as a ratio to the continuous allowable temperature rise θn.

【数1】 ここで、 θ(t):現時点(現計算ステップ)での導体温度上昇
θ(t−1):1周期前の計算ステップでの導体温度上
昇θn    :連続許容導体温度上昇(Tn−Ta)
Ia    :現時点の送電線電流で電流検出器11か
ら入力される。 △t    :計算1周期分の時間幅 τ      :導体の熱時定数
[Equation 1] Here, θ(t): Conductor temperature rise at the current moment (current calculation step) θ(t-1): Conductor temperature rise at the calculation step one cycle before θn: Continuous allowable conductor temperature rise (Tn -Ta)
Ia: The current power transmission line current is input from the current detector 11. △t: Time width for one calculation cycle τ: Thermal time constant of the conductor

【0013】次に、ステップ24に進み、上記導体温度
上昇θ(t)/θnと許容温度限界Mとの比較演算を行
う。ここで前者が後者未満であれば、NOのフローとな
り、過負荷でないと判断して特に負荷遮断の指令を出力
することなくその周期における演算を終了する。ステッ
プ24でYESのフローとなると、ステップ25に進み
、現時点の送電線電流Iaと連続許容電流Inとの差に
基づき必要な負荷遮断容量を算出し、指令信号を負荷遮
断指令器17へ出力する(ステップ26)。
Next, the process proceeds to step 24, where a comparison calculation is made between the conductor temperature increase θ(t)/θn and the allowable temperature limit M. Here, if the former is less than the latter, the flow is NO, and it is determined that there is no overload, and the calculation in that cycle is ended without outputting a command for load shedding. If the flow is YES in step 24, the process proceeds to step 25, where the necessary load shedding capacity is calculated based on the difference between the current transmission line current Ia and the continuous allowable current In, and a command signal is output to the load shedding command unit 17. (Step 26).

【0014】なお、上記実施例では、負荷遮断制御によ
り過負荷解消を行っているが、発電機の遮断制御により
行ってもよく、また、両者を併用するようにしてもよい
。また、導体温度の算出方法は上記実施例で説明したも
のに限られる訳ではなく、更に、上記した温度面からの
制御系に付加して、電流値自体から過負荷を判別して動
作する制御系を設けるようにしてもよい。
[0014] In the above embodiment, the overload is eliminated by load cutoff control, but it may be done by generator cutoff control, or both may be used in combination. In addition, the method of calculating the conductor temperature is not limited to the one explained in the above embodiment, and in addition to the control system from the temperature aspect described above, there is also a control system that operates by determining overload from the current value itself. A system may also be provided.

【0015】[0015]

【発明の効果】この発明は以上のように、所定の電流検
出器、温度検出器および演算制御装置を備えたので、現
実の具体的な使用条件に即した合理的で高精度な過負荷
制御が実現し、負荷遮断等に伴う電力需要家への影響を
低減することができる。
[Effects of the Invention] As described above, since this invention is equipped with a predetermined current detector, temperature detector, and arithmetic control device, it can perform rational and highly accurate overload control in accordance with actual and specific usage conditions. This makes it possible to reduce the impact on electricity consumers due to load shedding, etc.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】この発明の一実施例による送電線過負荷制御装
置を示す構成図である。
FIG. 1 is a configuration diagram showing a power transmission line overload control device according to an embodiment of the present invention.

【図2】図1の送電線過負荷制御装置の動作を説明する
フローチャートである。
FIG. 2 is a flowchart illustrating the operation of the power transmission line overload control device in FIG. 1;

【図3】制御対象の電力系統を示す図である。FIG. 3 is a diagram showing a power system to be controlled.

【図4】従来の送電線過負荷制御装置を示す構成図であ
る。
FIG. 4 is a configuration diagram showing a conventional power transmission line overload control device.

【図5】図4の送電線過負荷制御装置による動作制御特
性を示すタイムチャートである。
FIG. 5 is a time chart showing operation control characteristics by the power transmission line overload control device of FIG. 4;

【符号の説明】[Explanation of symbols]

11  電流検出器 12  温度検出器 16  演算制御装置 17  負荷遮断指令器 11 Current detector 12 Temperature detector 16 Arithmetic control unit 17 Load shedding command device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  送電線の負荷状態に応じて発電機や負
荷の系統からの遮断を行い上記送電線の過負荷を解消す
る送電線過負荷制御装置において、上記送電線に流れる
電流を検出する電流検出器、上記送電線の周囲温度を検
出する温度検出器、および上記電流と周囲温度とから上
記送電線の導体温度を演算しこの温度が所定の設定値を
越えたとき上記遮断の指令を出力する演算制御装置を備
えたことを特徴とする送電線過負荷制御装置。
[Claim 1] A power transmission line overload control device that disconnects a generator or a load from a system according to a load state of a power transmission line to eliminate an overload on the power transmission line, wherein a current flowing through the power transmission line is detected. A current detector, a temperature detector that detects the ambient temperature of the power transmission line, and calculates the conductor temperature of the power transmission line from the current and the ambient temperature, and issues the shutdown command when this temperature exceeds a predetermined set value. A power transmission line overload control device comprising an arithmetic and control device that outputs an output.
JP3083724A 1991-04-16 1991-04-16 Transmission line overload control device Expired - Fee Related JP2990834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3083724A JP2990834B2 (en) 1991-04-16 1991-04-16 Transmission line overload control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3083724A JP2990834B2 (en) 1991-04-16 1991-04-16 Transmission line overload control device

Publications (2)

Publication Number Publication Date
JPH04317511A true JPH04317511A (en) 1992-11-09
JP2990834B2 JP2990834B2 (en) 1999-12-13

Family

ID=13810469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3083724A Expired - Fee Related JP2990834B2 (en) 1991-04-16 1991-04-16 Transmission line overload control device

Country Status (1)

Country Link
JP (1) JP2990834B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2759504A1 (en) * 1997-02-10 1998-08-14 Schneider Electric Sa RELAY AND PROTECTION METHOD
JP2009232610A (en) * 2008-03-24 2009-10-08 Yazaki Corp Device for protecting load circuit
JP2009247047A (en) * 2008-03-28 2009-10-22 Yazaki Corp Device for protecting load circuits
JP2010107651A (en) * 2008-10-29 2010-05-13 Yamaha Corp Solenoid control device and automatic performance device
JP2010239835A (en) * 2009-03-31 2010-10-21 Autonetworks Technologies Ltd Power supply control device and control method thereof
RU2470435C1 (en) * 2011-09-02 2012-12-20 Открытое акционерное общество "Энера Инжиниринг" Device for automatic limitation of overhead power transmission line overload
JP2013158217A (en) * 2012-01-31 2013-08-15 Sumitomo Wiring Syst Ltd Electric wire protection device
JP2016013038A (en) * 2014-06-30 2016-01-21 住友電気工業株式会社 Power transmission system, and operation method for power transmission system
DE102021106513A1 (en) 2021-03-17 2022-09-22 Leoni Kabel Gmbh Control method and control unit for a charging process

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56150926A (en) * 1980-04-24 1981-11-21 Nippon Steel Corp Device for protecting motor
JPH01298917A (en) * 1988-05-27 1989-12-01 Fujita Corp Monitoring method for power supply facility and power supply facility monitor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56150926A (en) * 1980-04-24 1981-11-21 Nippon Steel Corp Device for protecting motor
JPH01298917A (en) * 1988-05-27 1989-12-01 Fujita Corp Monitoring method for power supply facility and power supply facility monitor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2759504A1 (en) * 1997-02-10 1998-08-14 Schneider Electric Sa RELAY AND PROTECTION METHOD
EP0859443A1 (en) * 1997-02-10 1998-08-19 Schneider Electric Sa Protective relay and method
US6031703A (en) * 1997-02-10 2000-02-29 Schneider Electric Sa Protection relay and process
JP2009232610A (en) * 2008-03-24 2009-10-08 Yazaki Corp Device for protecting load circuit
JP2009247047A (en) * 2008-03-28 2009-10-22 Yazaki Corp Device for protecting load circuits
JP2010107651A (en) * 2008-10-29 2010-05-13 Yamaha Corp Solenoid control device and automatic performance device
JP2010239835A (en) * 2009-03-31 2010-10-21 Autonetworks Technologies Ltd Power supply control device and control method thereof
RU2470435C1 (en) * 2011-09-02 2012-12-20 Открытое акционерное общество "Энера Инжиниринг" Device for automatic limitation of overhead power transmission line overload
JP2013158217A (en) * 2012-01-31 2013-08-15 Sumitomo Wiring Syst Ltd Electric wire protection device
JP2016013038A (en) * 2014-06-30 2016-01-21 住友電気工業株式会社 Power transmission system, and operation method for power transmission system
DE102021106513A1 (en) 2021-03-17 2022-09-22 Leoni Kabel Gmbh Control method and control unit for a charging process

Also Published As

Publication number Publication date
JP2990834B2 (en) 1999-12-13

Similar Documents

Publication Publication Date Title
JP2846076B2 (en) Static trip device in protective circuit breaker of AC power system
EP2754216B1 (en) Optimized protection coordination of electronic-trip circuit breaker by short circuit current availability monitoring
JP2510507B2 (en) Digital solid trip device for circuit breaker
CA2387811A1 (en) Improved restraint-type differential relay
US5838525A (en) High speed single-pole trip logic for use in protective relaying
US6504693B1 (en) Network protector relay providing a close function
JPH04317511A (en) Overload controller for transmission line
CN1052582C (en) Overcurrent trip unit with separately adjustable neutral protection
US8514531B1 (en) Trip unit providing short circuit zone location detection, electrical switching apparatus and system including the same
JP4146606B2 (en) Power distribution protection system
JP2002238147A (en) Temperature calculation type overload protective relay
JPS6356121A (en) Ratio differential relay
GB2059695A (en) Overcurrent protection relay
JP3829529B2 (en) Peak cut controller
JPH0731222B2 (en) Disconnection detection device for synchronous machine field winding
RU2072603C1 (en) Method for protection of electric load unit against power faults and device which implements said method
JP3409694B2 (en) Directional short-circuit relay
JPS61106027A (en) System stabilizer
US2053446A (en) Out-of-synchronism relay
JPH07264772A (en) Separation for broken line section in high-voltage distribution line
RU1777197C (en) Regulating transformer protection method
JP2001025154A (en) Transformer protective relay device
JP2004120918A (en) Frequency stabilizer
JPH02146931A (en) Demand monitor/controller
JP2003047154A (en) Load-cut off-quantity detection device and load-cut off device, and load-cut off-quantity detection method and load-cut off method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees