JPH04317469A - Production of silicon nitride sintered body - Google Patents
Production of silicon nitride sintered bodyInfo
- Publication number
- JPH04317469A JPH04317469A JP3108718A JP10871891A JPH04317469A JP H04317469 A JPH04317469 A JP H04317469A JP 3108718 A JP3108718 A JP 3108718A JP 10871891 A JP10871891 A JP 10871891A JP H04317469 A JPH04317469 A JP H04317469A
- Authority
- JP
- Japan
- Prior art keywords
- sintered body
- silicon nitride
- molded
- surface layer
- molded body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052581 Si3N4 Inorganic materials 0.000 title claims abstract description 41
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 title claims abstract description 40
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 239000002344 surface layer Substances 0.000 claims abstract description 30
- 239000012298 atmosphere Substances 0.000 claims abstract description 10
- 230000001590 oxidative effect Effects 0.000 claims abstract description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 21
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 18
- 239000002994 raw material Substances 0.000 claims description 13
- 238000010438 heat treatment Methods 0.000 claims description 9
- 238000010304 firing Methods 0.000 claims description 8
- 230000003647 oxidation Effects 0.000 abstract description 28
- 238000007254 oxidation reaction Methods 0.000 abstract description 28
- 229910052710 silicon Inorganic materials 0.000 abstract description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract 1
- 239000010703 silicon Substances 0.000 abstract 1
- 239000007858 starting material Substances 0.000 abstract 1
- 238000005245 sintering Methods 0.000 description 23
- 238000011282 treatment Methods 0.000 description 12
- 239000008188 pellet Substances 0.000 description 11
- 239000000203 mixture Substances 0.000 description 8
- 239000000843 powder Substances 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 229910007277 Si3 N4 Inorganic materials 0.000 description 7
- 238000001513 hot isostatic pressing Methods 0.000 description 7
- 238000000465 moulding Methods 0.000 description 7
- 239000012071 phase Substances 0.000 description 7
- 229910018404 Al2 O3 Inorganic materials 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- 239000007789 gas Substances 0.000 description 4
- 239000011812 mixed powder Substances 0.000 description 4
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 4
- 229910005091 Si3N Inorganic materials 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000012299 nitrogen atmosphere Substances 0.000 description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 3
- 229910010271 silicon carbide Inorganic materials 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910003564 SiAlON Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 229910052593 corundum Inorganic materials 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 150000003949 imides Chemical class 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000013001 point bending Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000004584 weight gain Effects 0.000 description 2
- 235000019786 weight gain Nutrition 0.000 description 2
- 229910001845 yogo sapphire Inorganic materials 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910000953 kanthal Inorganic materials 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000007569 slipcasting Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Landscapes
- Ceramic Products (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、窒化珪素質焼結体を製
造する方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a silicon nitride sintered body.
【0002】0002
【従来の技術】窒化珪素(Si3 N 4)質焼結体は
、高温強度、耐熱衝撃性、耐食性が優れているために、
ガスタービンエンジン用部材、熱交換器用材料、高温用
ベアリング、あるいは製鋼用高温ロール材等として用い
られている。しかし、この焼結体は、耐酸化性が小さく
、高温で使用すると酸化されてしまう。[Prior Art] Silicon nitride (Si3N4) sintered bodies have excellent high-temperature strength, thermal shock resistance, and corrosion resistance.
It is used as gas turbine engine parts, heat exchanger materials, high-temperature bearings, and high-temperature roll materials for steel manufacturing. However, this sintered body has low oxidation resistance and is oxidized when used at high temperatures.
【0003】そのため、耐酸化性を向上させる方法が種
々考えられているが、その方法として、表面に酸化物を
被覆する方法が挙げられる。この酸化物を被覆して表面
層を形成するには、(1)焼結助剤となる酸化イットリ
ウム(Y2 O3 )、酸化アルミニウム(Al2 O
3 )、あるいは酸化ケイ素(SiO2 )のスラリー
を焼結体原料の成形体に含浸させ、その後該成形体を予
備焼成して表面に酸化物の層を形成する方法、あるいは
(2)上記Y2 O3 等の焼結助剤を含むガスを、焼
結体原料の成形体の外部に配置した詰め粉から発生させ
ることにより、成形体の表面に吸着させて酸化物に富む
表面層を形成する方法、(3)焼結体表面に酸化物を化
学気相法等によってコーティングする方法、等が知られ
ている。[0003] For this reason, various methods have been considered to improve the oxidation resistance, one of which is to coat the surface with an oxide. To coat this oxide to form a surface layer, (1) yttrium oxide (Y2O3) and aluminum oxide (Al2O3), which serve as sintering aids, are used.
3), or a method in which a slurry of silicon oxide (SiO2) is impregnated into a molded body of a sintered body raw material, and then the molded body is pre-fired to form an oxide layer on the surface, or (2) the above-mentioned Y2O3 A method of generating a gas containing a sintering aid such as from a packing powder placed outside a molded body of a sintered body raw material and adsorbing it to the surface of the molded body to form an oxide-rich surface layer; (3) A method is known in which the surface of a sintered body is coated with an oxide by a chemical vapor phase method or the like.
【0004】0004
【発明が解決しようとする課題】上記の方法のうち、(
2)のY2 O3 やAl2 O3 に富む表面層を形
成した場合、焼結時に耐酸化性の低いガラス相または結
晶相が焼結体表面に多量に形成されてしまう。[Problem to be solved by the invention] Among the above methods, (
If a surface layer rich in Y2 O3 or Al2 O3 is formed in 2), a large amount of glass phase or crystal phase with low oxidation resistance will be formed on the surface of the sintered body during sintering.
【0005】また、(3)の焼結体表面にコーティング
層を被覆した場合、下地であるSi3 N 4質焼結体
とは強固な化学結合ではなく、さらに熱膨張率の違いに
よる歪みのため、表面層が剥離することがある。そのた
め、表面酸化層のコーティングは必ずしも耐酸化性を向
上させるとは限らない。[0005] Furthermore, when a coating layer is applied to the surface of the sintered body in (3), there is no strong chemical bond with the Si3N4 sintered body that is the base, and furthermore, due to distortion due to the difference in coefficient of thermal expansion, , the surface layer may peel off. Therefore, coating with a surface oxidation layer does not necessarily improve oxidation resistance.
【0006】また、SiO2 成分を成形体表面に付与
し、これを焼成して得た焼結体は耐酸化性の優れた焼結
体となる。しかし、SiO2 成分を付与する手段がス
ラリーの塗布あるいは詰め粉の使用のような作業上煩雑
なものであり、しかも、複雑な形状物を製造する場合に
は表面層の厚みにムラを生じやすく、再現性に乏しいと
いう欠点を有する。[0006] Furthermore, a sintered body obtained by applying an SiO2 component to the surface of a molded body and firing the same becomes a sintered body having excellent oxidation resistance. However, the means for applying the SiO2 component is complicated to work with, such as applying a slurry or using packing powder, and when manufacturing products with complex shapes, the thickness of the surface layer tends to be uneven. It has the disadvantage of poor reproducibility.
【0007】本発明は、上記従来技術の問題点に鑑みな
されたものであり、耐酸化性に優れた窒化珪素質焼結体
を簡便に製造する方法を提供することを目的とする。The present invention has been made in view of the problems of the prior art described above, and it is an object of the present invention to provide a method for easily producing a silicon nitride sintered body having excellent oxidation resistance.
【0008】[0008]
【課題を解決するため手段】本発明は、窒化珪素質焼結
体の原料を成形した成形体を酸化雰囲気で加熱すること
により該成形体の表面に酸化珪素を主体とする表面層を
形成する第1工程と、該表面層を有する成形体を焼成す
ることにより窒化珪素質焼結体を形成する第2工程とか
らなることを特徴とする窒化珪素質焼結体の製造方法で
ある。[Means for Solving the Problems] The present invention involves forming a surface layer mainly composed of silicon oxide on the surface of a molded product obtained by molding a raw material for a silicon nitride sintered body by heating the molded product in an oxidizing atmosphere. A method for producing a silicon nitride sintered body is characterized by comprising a first step and a second step of forming a silicon nitride sintered body by firing a molded body having the surface layer.
【0009】[0009]
【作用】本発明の第1工程において、成形体の表面に存
在する窒化珪素の少なくとも一部が酸化雰囲気中での加
熱により酸化され、酸化珪素に変化し、第2工程により
該酸化珪素は、焼成されて、焼結体の表面に母体と一体
的な層として生成する。[Operation] In the first step of the present invention, at least a portion of the silicon nitride present on the surface of the molded body is oxidized by heating in an oxidizing atmosphere and changed to silicon oxide, and in the second step, the silicon oxide is When fired, it forms on the surface of the sintered body as a layer that is integral with the matrix.
【0010】0010
【発明の効果】本発明によれば、耐酸化性に優れた窒化
珪素質焼結体を簡便に製造することができる。得られる
焼結体は、表面層が母体と一体的に生成しているため、
表面層と焼結体母体との密着性は良好である。このこと
により、さらに表面層に剥離やクラックが生じることが
ない。According to the present invention, a silicon nitride sintered body having excellent oxidation resistance can be easily produced. The surface layer of the obtained sintered body is formed integrally with the matrix, so
Adhesion between the surface layer and the sintered body matrix is good. This further prevents the surface layer from peeling or cracking.
【0011】[0011]
(本発明の具体例)以下、本発明をより具体的にした具
体例を説明する。(Specific Examples of the Present Invention) Hereinafter, more specific examples of the present invention will be described.
【0012】本発明である窒化珪素質焼結体の製造方法
は、窒化珪素質焼結体の原料を成形した成形体を酸化雰
囲気で加熱することにより該成形体の表面に酸化珪素を
主体とする表面層を形成し(第1工程)、該成形体を焼
成する(第2工程)。[0012] The method for producing a silicon nitride sintered body according to the present invention involves heating a molded body obtained by molding a raw material for a silicon nitride sintered body in an oxidizing atmosphere so that silicon oxide is mainly formed on the surface of the molded body. A surface layer is formed (first step), and the molded body is fired (second step).
【0013】本発明において、製造する窒化珪素質焼結
体は、窒化珪素(Si3 N 4)よりなるもの、ある
いはサイアロンのような窒化珪素の一部に他の元素が固
溶した物質(窒化珪素関連物質)よりなるものである。[0013] In the present invention, the silicon nitride sintered body produced is one made of silicon nitride (Si3N4), or a substance such as sialon in which other elements are dissolved in a part of silicon nitride (silicon nitride). related substances).
【0014】第1工程において、窒化珪素質焼結体の原
料としては、上記窒化珪素または窒化珪素関連物質自体
でもよく、あるいは第2工程の焼結により上記窒化珪素
または窒化珪素関連物質を生成する組成物でもよい。In the first step, the raw material for the silicon nitride sintered body may be the silicon nitride or silicon nitride-related substance itself, or the silicon nitride or silicon nitride-related substance is produced by sintering in the second step. It may also be a composition.
【0015】例えば、窒化珪素関連物質であるサイアロ
ンには、α型(一般式Mx (Si、Al)12(O、
N)16(0<x≦2、MはLi、Mg、Ca、Y等の
うちの少なくとも1種)で示される;α′−Si3 N
4ともは呼ばれる)、あるいはβ型(一般式Si6−
Z AlZ OZ N8−Z (0<z≦4.2)で示
される;β′−Si3 N 4とも呼ばれる)等がある
。For example, Sialon, which is a silicon nitride-related substance, has the α type (general formula Mx (Si, Al)12(O,
N) 16 (0<x≦2, M is at least one of Li, Mg, Ca, Y, etc.); α′-Si3N
4) or β type (general formula Si6-
ZAlZOZN8-Z (denoted by 0<z≦4.2; also called β'-Si3N4), etc.
【0016】第2工程の焼結によりYを固溶したα−サ
イアロンを生成する組成物としては、Si3 N 4−
AlN−Y2 O3 、Si3 N 4−AlN−Al
2 O3 −Y2 O3 、Si3 N 4−Al2
O3 −Y2 O3 −YN等の混合物が挙げられる。
また、第2工程の焼結によりβ−サイアロンを生成する
組成物としては、Si3 N 4−Al2 O3 、S
i3 N 4−AlN−Al2 O3 、Si3 N
4−Al2 O3 −SiO2 等の混合物が挙げられ
る。なお、α−サイアロンを生成する組成物において、
組成物の配合割合を制御することによりα−サイアロン
を生成させると同時にβ−サイアロンも生成させること
ができる。例えば、Yを固溶したα−サイアロンとβ−
サイアロンとを同時に形成させようとする場合、Si3
N 4に対するY2 O3 −AlN、Y2 O3 −
AlN−Al2 O3 、あるいはYN−Al2 O3
の配合割合を制御することにより、α−サイアロンと
β−サイアロンとを同時に生成させることができる。こ
れは、Al、OがSi3 N 4に固溶してβ−サイア
ロンを形成するためである。この場合、同じ混合物であ
っても焼成温度、焼成時間によって、α−サイアロンと
β−サイアロンとの生成割合が異なるため、焼成条件を
制御することにより所望の生成割合の焼結体を得ること
ができる。[0016] As a composition for producing α-sialon in which Y is dissolved in solid solution by sintering in the second step, Si3N4-
AlN-Y2O3, Si3N4-AlN-Al
2 O3 -Y2 O3 , Si3 N 4-Al2
Examples include mixtures such as O3 -Y2 O3 -YN. In addition, the compositions that generate β-sialon by sintering in the second step include Si3N4-Al2O3, S
i3N4-AlN-Al2O3, Si3N
Examples include mixtures such as 4-Al2O3-SiO2. In addition, in the composition that produces α-sialon,
By controlling the blending ratio of the composition, α-sialon and β-sialon can be generated at the same time. For example, α-sialon and β-sialon containing Y as a solid solution
When trying to form SiAlON at the same time, Si3
Y2 O3 −AlN, Y2 O3 − for N 4
AlN-Al2 O3 or YN-Al2 O3
By controlling the blending ratio of , α-sialon and β-sialon can be generated simultaneously. This is because Al and O form a solid solution in Si3N4 to form β-sialon. In this case, even if the mixture is the same, the production ratio of α-sialon and β-sialon differs depending on the firing temperature and firing time, so it is possible to obtain a sintered body with the desired production ratio by controlling the firing conditions. can.
【0017】また、原料としての窒化珪素としては、粒
径等には制限はないが、酸化劣化を著しく促進する不純
物であるカルシウム(Ca)の含有量が少ないイミド法
で作製させた高純度原料を使用するのがよい。[0017] Although there are no restrictions on the particle size of silicon nitride as a raw material, it is a high-purity raw material produced by the imide method that has a low content of calcium (Ca), an impurity that significantly accelerates oxidative deterioration. It is better to use
【0018】窒化珪素質焼結体の原料中には、焼結助剤
を添加するのがよい。It is preferable to add a sintering aid to the raw material for the silicon nitride sintered body.
【0019】焼結助剤としては、市販の高純度酸化物合
成粉末のY2 O3 、Al2 O3 、AlN等を用
いるがよい。焼結助剤の添加量には制限はないが、緻密
な焼結体を得るために複数の酸化物を少なくとも0.1
重量%(wt%)以上添加するのがよい。また、焼結助
剤が多いと、形成したガラス相の性質が該焼結助剤によ
り支配的となって耐酸化性を劣化させるため、焼結助剤
の添加量は8wt%以下とするのがよく、更に望ましく
は5wt%以下であれば、耐酸化性の向上が顕著である
。As the sintering aid, commercially available high-purity oxide synthetic powders such as Y2 O3, Al2 O3, AlN, etc. may be used. There is no limit to the amount of the sintering aid added, but in order to obtain a dense sintered body, the amount of the sintering aid added is at least 0.1.
It is preferable to add more than % by weight (wt%). Furthermore, if too much sintering aid is added, the properties of the glass phase formed will be dominated by the sintering aid and the oxidation resistance will deteriorate, so the amount of sintering aid added should be 8 wt% or less. If the content is good, more preferably 5 wt% or less, the oxidation resistance will be significantly improved.
【0020】また、原料には、強度、靱性の向上を目的
として炭化物、窒化物等を添加してもよい。Further, carbides, nitrides, etc. may be added to the raw material for the purpose of improving strength and toughness.
【0021】原料粉末の平均粒径としては、約15μm
以下の範囲が望ましい。これ以上平均粒径が大きいと
、粒成長が著しく、強度低下を生じやすい。[0021] The average particle size of the raw material powder is approximately 15 μm.
The following range is desirable. If the average grain size is larger than this, grain growth will be significant and strength will likely decrease.
【0022】本第1工程において、窒化珪素質焼結体の
原料を成形するには、該原料粉末を十分に混合した後、
一軸金型成形法、ラバープレス法、スリップキャスト法
、射出成形法等の成形法により成形する。In the first step, in order to mold the raw material for the silicon nitride sintered body, after thoroughly mixing the raw material powder,
Molding is performed using a molding method such as a uniaxial molding method, a rubber press method, a slip casting method, or an injection molding method.
【0023】成形のために有機バインダーを添加した場
合には、次の酸化工程を行う前に十分に脱バインダーし
ておく。射出成形法等の場合に使用する有機バインダー
を多量に含む成形体を大気中で加熱すると、クラックが
発生したり破壊したりする場合がある。なお、成形体の
強度が弱く酸化処理に伴う熱応力によって破壊するよう
な場合、成形体を不活性雰囲気中で1100〜1300
℃の範囲で熱処理する、いわゆる仮焼を行って成形体強
度を高めるのがよい。When an organic binder is added for molding, the binder is sufficiently removed before the next oxidation step. When a molded article containing a large amount of organic binder used in injection molding or the like is heated in the air, it may crack or break. In addition, if the strength of the molded body is weak and it will break due to thermal stress associated with oxidation treatment, the molded body may be heated to a temperature of 1100 to 1300 in an inert atmosphere.
It is preferable to perform heat treatment in the temperature range of 0.degree. C., so-called calcination, to increase the strength of the compact.
【0024】酸化処理を行う雰囲気は、酸素を含む雰囲
気であれば特に制限はないが、大気中が装置の制約も少
なく、ランニングコストも小さいので望ましい。The atmosphere in which the oxidation treatment is carried out is not particularly limited as long as it contains oxygen, but it is preferable to use the atmosphere because there are fewer restrictions on the equipment and running costs are lower.
【0025】Si3 N 4粉末は600℃以上になる
と酸化が進行するため、酸化処理では、成形体の表面温
度が600℃以上となる条件で加熱するのがよい。しか
し、温度が高すぎると、成形体の表面だけでなく内部ま
で酸化されて、Si3 N 4質焼結体となったとき、
強度等、本来の特性が変化してしまう。このため、成形
体の表面温度が1500℃以下となる範囲で処理するの
がよい。
また、成形体の内部に温度勾配を持たせ、表面のみ選択
的に酸化させる方法として、ガスの対流による熱の伝達
ではなく、輻射による熱の伝達を利用する方法を採用し
てもよい。[0025] Since oxidation of Si3N4 powder progresses at a temperature of 600°C or higher, it is preferable to heat the molded body under conditions such that the surface temperature of the molded body becomes 600°C or higher in the oxidation treatment. However, if the temperature is too high, not only the surface but also the inside of the molded body will be oxidized, resulting in a Si3N4 sintered body.
Original properties such as strength change. For this reason, it is preferable to carry out the treatment within a range where the surface temperature of the molded body is 1500°C or less. Further, as a method of creating a temperature gradient inside the molded body and selectively oxidizing only the surface, a method that utilizes heat transfer by radiation instead of heat transfer by gas convection may be adopted.
【0026】加熱手段としては、カンタル炉やSiC発
熱体炉等の通常の抵抗加熱式のヒーターを使用するのが
一般的であるが、ゴールドイメージ炉のように集光を利
用したり、レーザーによって部分的に加熱する方法でも
よい。[0026] As a heating means, it is common to use an ordinary resistance heating type heater such as a Kanthal furnace or a SiC heating element furnace. A method of partially heating may also be used.
【0027】本第1工程により、成形体の表面近傍のS
i3 N 4の一部が酸化されて酸化珪素(SiO2
)を主体とする表面層が形成される。また、成形体中に
Si3 N 4以外の物質が含まれると、酸化されて酸
化物を生成するが、該酸化物が表面層中に含まれていて
もよい。該表面層の厚さとしては、2〜500μm の
範囲が望ましい。表面層が2μm より薄いと酸化防止
層としての働きが充分でなく、500μm より厚いと
表面層が剥離する場合がある。[0027] Through this first step, S near the surface of the molded body
A part of i3N4 is oxidized to form silicon oxide (SiO2
) is formed. Further, if a substance other than Si3N4 is contained in the molded article, it will be oxidized to produce an oxide, and the oxide may be contained in the surface layer. The thickness of the surface layer is preferably in the range of 2 to 500 μm. When the surface layer is thinner than 2 μm, its function as an antioxidant layer is insufficient, and when it is thicker than 500 μm, the surface layer may peel off.
【0028】本第2工程における焼成方法としては、常
圧焼結、ガス圧焼結、熱間静水圧ブレス(HIP)焼結
等がある。その中でも、開気孔がなくなる条件で予備焼
結し、その後該予備焼結体をHIPして緻密な焼結体を
得るポストHIP焼結を行うと材料強度を高める上で有
効である。焼成温度としては、1500〜1900℃の
範囲が望ましい。HIP等の加圧焼結を行う場合、その
加圧力としては、100〜2000atmの範囲、処理
時間としては、1〜4時間が望ましい。加圧力、温度が
これを越えると、特に焼結助剤が少ない場合に緻密な焼
結体を得ることができない。The firing method in the second step includes normal pressure sintering, gas pressure sintering, hot isostatic pressing (HIP) sintering, and the like. Among these, it is effective to perform pre-sintering under conditions that eliminate open pores, and then perform post-HIP sintering in which the pre-sintered body is HIPed to obtain a dense sintered body, in order to increase the material strength. The firing temperature is preferably in the range of 1500 to 1900°C. When performing pressure sintering such as HIP, the pressure is preferably in the range of 100 to 2000 atm, and the processing time is preferably in the range of 1 to 4 hours. If the pressure and temperature exceed this range, a dense sintered body cannot be obtained, especially if the sintering aid is small.
【0029】また、HIP焼結では、成形体および表面
層が緻密化するとともに成形体と表面層との密着性も向
上する。また、第1工程において成形体に表面層を形成
しているため、ガラスカプセル化を必要とせずにHIP
焼結することができる。Furthermore, in HIP sintering, the molded body and the surface layer become denser and the adhesion between the molded body and the surface layer is also improved. In addition, since a surface layer is formed on the molded body in the first step, HIP can be applied without the need for glass encapsulation.
Can be sintered.
【0030】なお、焼結後、表面層は、焼結条件によっ
てSiO2 が残る場合と、SiO2 がSi3 N
4等と反応してサイアロン等に変化してSiO2 が残
らない場合とがある。[0030] After sintering, depending on the sintering conditions, SiO2 may remain in the surface layer, or SiO2 may become Si3N.
There are cases where SiO2 reacts with SiO2 and the like and changes into SiAlON, etc., leaving no SiO2.
【0031】本発明によれば、耐酸化性の向上とともに
高密度、高強度を有する窒化珪素質焼結体を製造するこ
とができる。According to the present invention, a silicon nitride sintered body having improved oxidation resistance, high density, and high strength can be produced.
【0032】(実施例)以下、本発明の実施例を説明す
る。(Example) Examples of the present invention will be described below.
【0033】(実施例1)イミド法で製造された窒化珪
素粉末にY2 O3 を5wt%、Al2 O3 を1
wt%添加し、ポリポット中でエタノールを媒体として
湿式混合した。混合粉末を乾燥後、一軸金型成形により
直径20mm、厚さ10mmのペレットに成形した。こ
の成形体ペレットに以下の4種類の処理(a)〜(d)
を行った。
(a)成形体ペレットを1000℃に加熱した大気炉に
挿入し、30秒間加熱した後、炉外へ取り出し放冷した
。この操作を5回繰り返した。
(b)成形体ペレットを1200℃に加熱した大気炉中
で30秒間加熱し、その後速やかに取り出して室温で放
冷した。
(c)成形体ペレットに何ら処理を加えなかった。
(d)成形体ペレットを真空炉中で1200℃、10分
間加熱し、室温まで炉冷した後、炉外へ取り出した。(Example 1) 5 wt% of Y2O3 and 1% of Al2O3 were added to silicon nitride powder produced by the imide method.
wt% was added and wet-mixed in a polypot using ethanol as a medium. After drying the mixed powder, it was molded into pellets with a diameter of 20 mm and a thickness of 10 mm by uniaxial molding. The following four types of treatments (a) to (d) are applied to this molded pellet.
I did it. (a) The molded product pellets were inserted into an atmospheric furnace heated to 1000° C., heated for 30 seconds, and then taken out of the furnace and allowed to cool. This operation was repeated 5 times. (b) The molded product pellets were heated for 30 seconds in an air furnace heated to 1200°C, and then quickly taken out and allowed to cool at room temperature. (c) No treatment was applied to the molded pellets. (d) The formed pellets were heated in a vacuum furnace at 1200° C. for 10 minutes, cooled to room temperature, and then taken out of the furnace.
【0034】上記処理を行った試料を1750℃、2時
間の条件で焼結した。得られた焼結体の耐酸化性を試験
評価するため、焼結体を大気中1200℃で1000時
間放置し、冷却した後、酸化による重量増加を測定し、
さらに焼結体の表面状態を観察した。その結果を表1に
示す。The sample subjected to the above treatment was sintered at 1750° C. for 2 hours. In order to test and evaluate the oxidation resistance of the obtained sintered body, the sintered body was left in the atmosphere at 1200°C for 1000 hours, and after cooling, the weight increase due to oxidation was measured.
Furthermore, the surface condition of the sintered body was observed. The results are shown in Table 1.
【表1】[Table 1]
【0035】表1より明らかなように、比較例の焼結体
では、酸化増量が多く、また酸化ピットが発生している
のに対して、本実施例の焼結体では、酸化増量が少なく
、また酸化ピットが発生しておらず、酸化特性に優れて
いることが分かる。As is clear from Table 1, the sintered body of the comparative example had a large amount of weight gain due to oxidation and oxidation pits, whereas the sintered body of this example had little weight gain due to oxidation. Furthermore, no oxidation pits were generated, indicating that the oxidation properties were excellent.
【0036】(実施例2)実施例1と同様な窒化珪素粉
末にY2 O3 を4wt%、Al2 O3 を1wt
%添加し、実施例1と同様にして混合、成形して成形体
ペレットを作製した。この成形体ペレットに以下の3種
類の処理(e)〜(g)を行った。
(e)成形体ペレットを1200℃に加熱した大気炉中
で1分間加熱し、その後速やかに炉より取り出して大気
中で放冷した。その後1750℃、4時間窒素雰囲気中
で焼結した。
(f)成形体ペレットをそのまま1750℃、4時間窒
素雰囲気中で焼結した。その後、得られた焼結体の表面
にCVD法により炭化珪素を蒸着した。
(g)成形体ペレットをそのまま1750℃、4時間窒
素雰囲気中で焼結した。その後、得られた焼結体の表面
にCVD法によりSiO2 を蒸着した。(Example 2) 4 wt% of Y2 O3 and 1 wt of Al2 O3 were added to the same silicon nitride powder as in Example 1.
%, mixed and molded in the same manner as in Example 1 to produce molded pellets. The following three types of treatments (e) to (g) were performed on the molded pellets. (e) The molded product pellets were heated for 1 minute in an atmospheric furnace heated to 1200°C, and then promptly taken out from the furnace and allowed to cool in the atmosphere. Thereafter, it was sintered at 1750°C for 4 hours in a nitrogen atmosphere. (f) The molded pellets were sintered as they were at 1750° C. for 4 hours in a nitrogen atmosphere. Thereafter, silicon carbide was deposited on the surface of the obtained sintered body by CVD. (g) The shaped pellets were sintered as they were at 1750° C. for 4 hours in a nitrogen atmosphere. Thereafter, SiO2 was deposited on the surface of the obtained sintered body by CVD.
【0037】得られた焼結体の耐酸化性を試験評価する
ため、焼結体を1400℃に加熱した大気炉に挿入して
100時間保持後、炉冷した。室温になってから試料を
取り出して焼結体の表面を観察したところ、(e)の処
理を行った試料は、表面にSiO2 を主体とする酸化
層の形成が認められた。また、(f)の処理を行った試
料は、コーナー部に炭化珪素蒸着膜の剥離が見られ、局
部的に下地の窒化珪素焼結体が酸化されて酸化ピットを
発生していた。(g)の処理を行った試料は、焼結体表
面全体にクラックが発生し、一部に剥離が生じていた。[0037] In order to test and evaluate the oxidation resistance of the obtained sintered body, the sintered body was inserted into an atmospheric furnace heated to 1400°C, held for 100 hours, and then cooled in the furnace. When the sample was taken out after the temperature reached room temperature and the surface of the sintered body was observed, it was found that an oxide layer mainly composed of SiO2 was formed on the surface of the sample treated in (e). Further, in the sample subjected to the treatment (f), peeling of the silicon carbide vapor deposited film was observed at the corner portions, and the underlying silicon nitride sintered body was locally oxidized to generate oxidized pits. In the sample treated in (g), cracks occurred on the entire surface of the sintered body, and peeling occurred in some parts.
【0038】このことより、本実施例の焼結体((e)
の処理を行った試料)は、比較例((f)、(g)の処
理を行った試料)と比べて表面に剥離やクラックが生じ
ず、耐酸化性に優れていることが分かる。From this, the sintered body of this example ((e)
It can be seen that the sample subjected to the above treatment has excellent oxidation resistance, with no peeling or cracking occurring on the surface compared to the comparative examples (samples treated under (f) and (g)).
【0039】(実施例3)Si3 N4 94.5wt
%、Y2 O3 2.0wt%、AlN3.5wt%よ
りなる混合粉末を成形し、得られた成形体を酸素中、1
300℃で1時間加熱した。その結果、成形体の表面に
はSiO2 を主体とする厚さ約400μm の緻密な
表面層が形成された。この表面層は気孔率が約0.7%
と非常に緻密であり、一方、その内部は気孔率が約30
%であり、多孔質であった。この成形体をN2 中、1
800℃、2000気圧で2時間HIP処理した。その
結果、表面層、内部ともに気孔率が約0.1%である緻
密な焼結体が得られた。この焼結体の表面層における結
晶相は100%β’−Si3 N4 であり、内部の結
晶相はβ’−Si3 N4 約87%、α’−Si3
N4 約13%よりなっていた。(Example 3) Si3 N4 94.5wt
%, Y2 O3 2.0 wt%, and AlN 3.5 wt%, and the obtained molded body was heated in oxygen at 1%.
It was heated at 300°C for 1 hour. As a result, a dense surface layer with a thickness of about 400 μm mainly composed of SiO2 was formed on the surface of the molded body. This surface layer has a porosity of approximately 0.7%
It is very dense, and the porosity inside is about 30.
% and was porous. This molded body was immersed in N2 for 1
HIP treatment was performed at 800° C. and 2000 atm for 2 hours. As a result, a dense sintered body with a porosity of about 0.1% both in the surface layer and inside was obtained. The crystal phase in the surface layer of this sintered body is 100% β'-Si3 N4, and the internal crystal phase is approximately 87% β'-Si3 N4 and α'-Si3
N4 It was about 13%.
【0040】この焼結体の4点曲げ強度は、室温で13
0kg/mm2 、1400℃で70kg/mm2 で
あった。
また、1300℃で100時間酸化させた際の重量増加
は0.05mg/cm2以下で耐酸化性が向上していた
。The four-point bending strength of this sintered body is 13 at room temperature.
0 kg/mm2, and 70 kg/mm2 at 1400°C. Further, the weight increase when oxidized at 1300° C. for 100 hours was 0.05 mg/cm 2 or less, indicating that the oxidation resistance was improved.
【0041】また、比較のため、上記混合粉末の成形体
をN2 中、1300℃で6時間焼成した後、N2 中
、1800℃、2000気圧で4時間HIPを施した。
しかし、得られた焼結体は気孔率が9.0%であり、緻
密な焼結体を得ることはできなかった。For comparison, a compact of the above mixed powder was fired at 1300° C. for 6 hours in N 2 and then subjected to HIP at 1800° C. and 2000 atm for 4 hours in N 2 . However, the porosity of the obtained sintered body was 9.0%, and a dense sintered body could not be obtained.
【0042】(実施例4)実施例3と同様な混合粉末の
成形体を空気中、1450℃で1時間加熱した。その結
果、成形体の表面には、SiO2 を主体とする厚さ約
500μm の緻密な表面層が形成された。この表面層
は、気孔率が約0.8%と非常に緻密で、内部は気孔率
が約25%と多孔質であった。この成形体をN2 中、
1850℃、2000気圧で2時間HIP処理した。そ
の結果、表面層、内部ともに気孔率が0.2%である緻
密な焼結体が得られた。この焼結体の表面層における結
晶相は100%β’−Si3 N4 であり、内部の結
晶相はβ’−Si3 N4 約90%、α’−Si3
N4 約10%よりなっていた。(Example 4) A compact of the same mixed powder as in Example 3 was heated in air at 1450° C. for 1 hour. As a result, a dense surface layer with a thickness of about 500 μm mainly composed of SiO2 was formed on the surface of the molded body. This surface layer was very dense with a porosity of about 0.8%, and the inside was porous with a porosity of about 25%. This molded body was heated in N2.
HIP treatment was performed at 1850° C. and 2000 atm for 2 hours. As a result, a dense sintered body with a porosity of 0.2% in both the surface layer and the interior was obtained. The crystal phase in the surface layer of this sintered body is 100% β'-Si3 N4, and the internal crystal phase is approximately 90% β'-Si3 N4 and α'-Si3
N4 It consisted of about 10%.
【0043】この焼結体の4点曲げ強度は、室温で12
0kg/mm2 、1400℃で71kg/mm2 で
あった。
また、1300℃で100時間酸化させた際の重量増加
は0.05mg/cm2以下で耐酸化性が向上していた
。The four-point bending strength of this sintered body is 12 at room temperature.
0 kg/mm2, and 71 kg/mm2 at 1400°C. Further, the weight increase when oxidized at 1300° C. for 100 hours was 0.05 mg/cm 2 or less, indicating that the oxidation resistance was improved.
【0044】また、比較のため、上記混合粉末の成形体
をN2 中、1850℃、2000気圧で4時間HIP
を施した。しかし、得られた焼結体は気孔率が8.6%
であり、緻密な焼結体を得ることはできなかった。For comparison, a compact of the above mixed powder was HIPed in N2 at 1850°C and 2000 atm for 4 hours.
was applied. However, the porosity of the obtained sintered body was 8.6%.
Therefore, it was not possible to obtain a dense sintered body.
Claims (1)
形体を酸化雰囲気で加熱することにより該成形体の表面
に酸化珪素を主体とする表面層を形成する第1工程と、
該表面層を有する成形体を焼成することにより焼結体を
形成する第2工程とからなることを特徴とする窒化珪素
質焼結体の製造方法。1. A first step of forming a surface layer mainly composed of silicon oxide on the surface of the molded body by heating a molded body formed from a raw material of a silicon nitride sintered body in an oxidizing atmosphere;
A method for manufacturing a silicon nitride sintered body, comprising a second step of forming a sintered body by firing a molded body having the surface layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3108718A JPH04317469A (en) | 1991-04-12 | 1991-04-12 | Production of silicon nitride sintered body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3108718A JPH04317469A (en) | 1991-04-12 | 1991-04-12 | Production of silicon nitride sintered body |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04317469A true JPH04317469A (en) | 1992-11-09 |
Family
ID=14491812
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3108718A Pending JPH04317469A (en) | 1991-04-12 | 1991-04-12 | Production of silicon nitride sintered body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04317469A (en) |
-
1991
- 1991-04-12 JP JP3108718A patent/JPH04317469A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2004231493A (en) | Porous silicon carbide sintered compact and its manufacturing method | |
JP2663028B2 (en) | Silicon nitride sintered body | |
JP4758617B2 (en) | High-density silicon carbide ceramics and method for producing the same | |
JPH04317469A (en) | Production of silicon nitride sintered body | |
JP3035230B2 (en) | Manufacturing method of multilayer ceramics | |
JP3231950B2 (en) | Surface coated silicon nitride material | |
EP0648717A2 (en) | Reaction sintered ceramics and method of producing the same | |
JPH01224286A (en) | Dual layered ceramic material | |
KR101090275B1 (en) | Ceramic compositions for mullite-bonded silicon carbide body, sintered body and its preparing method | |
JPH025711B2 (en) | ||
JP3177650B2 (en) | High-strength alumina sintered body and method for producing the same | |
JP2000335989A (en) | Boron nitride sintered body and its production, jig for ceramic sintering, and production of boron nitride ceramic parts using the same | |
JPH01215761A (en) | Production of silicon nitride sintered form | |
JP3709691B2 (en) | Composite material | |
JP2694369B2 (en) | Silicon nitride sintered body | |
JP3667064B2 (en) | Silicon nitride-based sintered body and method for producing the same | |
JP2632046B2 (en) | Method for producing silicon nitride sintered body | |
JP3667145B2 (en) | Silicon nitride sintered body | |
SU1074402A3 (en) | Method of producing silicon nitride-base articles | |
JP2688980B2 (en) | Method for manufacturing silicon nitride composite structure | |
CN118084540A (en) | Ceramic slurry, coating for improving corrosion resistance of carbon-carbon composite material and preparation method of coating | |
JPH01242468A (en) | Production of sintered body of aluminum nitride | |
JP2500012B2 (en) | Method for manufacturing ceramics sintered body having composite coating layer | |
JPH04265275A (en) | Production of silicon nitride sintered body | |
JPH02175665A (en) | Production of sintered silicon nitride-based compact |