JPH04317458A - Magnesia-chromia refractory - Google Patents

Magnesia-chromia refractory

Info

Publication number
JPH04317458A
JPH04317458A JP3085463A JP8546391A JPH04317458A JP H04317458 A JPH04317458 A JP H04317458A JP 3085463 A JP3085463 A JP 3085463A JP 8546391 A JP8546391 A JP 8546391A JP H04317458 A JPH04317458 A JP H04317458A
Authority
JP
Japan
Prior art keywords
flux
sio2
cao
refractories
magnesia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3085463A
Other languages
Japanese (ja)
Other versions
JP3009067B2 (en
Inventor
Akio Ikesue
明生 池末
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Kurosaki Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurosaki Refractories Co Ltd filed Critical Kurosaki Refractories Co Ltd
Priority to JP3085463A priority Critical patent/JP3009067B2/en
Publication of JPH04317458A publication Critical patent/JPH04317458A/en
Application granted granted Critical
Publication of JP3009067B2 publication Critical patent/JP3009067B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve corrosion resistance and high-temp. strength by incorporating an Mg0-SiO2-CaO flux having a specified m.p. CONSTITUTION:The chemical components of starting material used and the chemical components of a flux present in refractories after firing are measured and the amts. of impurities contributing to as the flux are estimated from the differences between those SiO2 or CaO is added to the starting material so as to attain 1.40-6.00 molar ratio of MgO to SiO2 and 1.45-6.10 molar ratio of Ca0 to SiO2 and magnesia-chromia refractories contg. 5-0.5% flux having >=1,700 deg.C m.p. based on Mg0, SiO2 and CaO are obtd.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、金属精錬用の容器等に
使用される耐火物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to refractories used in metal refining containers and the like.

【0002】0002

【従来の技術】マグネシア・クロミア耐火物(以下、マ
グクロ耐火物という)は、金属精錬用耐火物として優れ
た特性を有する耐火物であり、特にDH,VODなどの
溶鋼の二次精錬関係には欠かすことの出来ない材質であ
る。近年に至っては、高純度鋼、高品質ステンレス鋼や
その他の特殊鋼種溶製に伴って、従来の耐火物では耐用
が限界に達しており、材料技術に対する要求が高まって
いる。
[Prior Art] Magnesia-chromia refractories (hereinafter referred to as magnesia refractories) are refractories with excellent properties as refractories for metal refining, and are particularly suitable for secondary refining of molten steel such as DH and VOD. It is an indispensable material. In recent years, with the production of high-purity steel, high-quality stainless steel, and other special steel types, conventional refractories have reached their service life limits, and demands for material technology are increasing.

【0003】マグクロ耐火物に関しては、長い歴史と種
々の材料改革、特に全体の組成や配合技術、添加物効果
例えば金属,合金や炭化物の添加などが行われてきた。 ところが、このような方法では炉材コストが高くなるば
かりでなく、材料開発に限界を生じ、特に近年の170
0℃以上の厳しい精錬条件下では限界に達してくる。そ
の結果炉体寿命も1/2程度まで低下しているケースが
多く見られる。
[0003] Maguro refractories have a long history and various material innovations, particularly in terms of overall composition, compounding technology, and additive effects such as the addition of metals, alloys, and carbides. However, this method not only increases the cost of furnace materials, but also limits material development, especially in recent years.
It reaches its limit under severe refining conditions at temperatures above 0°C. As a result, there are many cases where the life of the furnace body is reduced to about 1/2.

【0004】0004

【発明が解決しようとする課題】マグクロ耐火物は、元
来マグネシアにクロム鉱石を添加、またはこれらを電気
溶融した原料が使用される。この原料を通常の方法で製
造した場合、焼成後の組織を観察すると、耐火物を構成
する粒子の間にフラックスと呼ばれる不純物成分が析出
している。このフラックスは耐火原料中に存在する成分
であるが、一般的には原料の主要成分と異なり、また、
融点もかなり低いものと考えられてきた。したがって、
マグクロ耐火物の耐食性や熱間の諸物性を向上させるに
は、高純度化する目的でこれらの成分をできるだけ少な
くするためにクロム鉱石の産地を限定したり、マグネシ
アのグレードを向上させるなどの手段を余儀無くされて
いた。
[Problems to be Solved by the Invention] Maguro refractories are originally made from magnesia with chromium ore added thereto, or by electrically melting these. When this raw material is manufactured by a normal method, when observing the structure after firing, an impurity component called flux is precipitated between the particles that make up the refractory. This flux is a component that exists in refractory raw materials, but it is generally different from the main components of the raw materials, and
It has also been thought that the melting point is quite low. therefore,
In order to improve the corrosion resistance and hot physical properties of magnesia refractories, it is necessary to limit the production area of chromium ore and improve the grade of magnesia in order to reduce these components as much as possible for the purpose of high purity. was forced to do so.

【0005】本発明は、マグクロ耐火物の組織中に存在
するフラックスの成分調整を行うことによってより高品
質な耐火物を製造することを目的とする。
The object of the present invention is to produce higher quality refractories by adjusting the composition of flux present in the structure of maguro refractories.

【0006】[0006]

【課題を解決するための手段】本発明者は、マグクロ耐
火物の諸特性が、フラックスの成分調整とその量を厳密
に制御する事によって著しく向上することを突き止めて
本発明を完成させた。すなわち、本発明のマグネシア・
クロミア耐火物は、MgO−SiO2 −CaO系を主
成分とするフラックスを含有し、かつそのフラックスの
融点が1700℃以上であることを特徴とする。
[Means for Solving the Problems] The present inventors have completed the present invention by discovering that various properties of maguro refractories can be significantly improved by adjusting the composition of flux and strictly controlling its amount. That is, the magnesia of the present invention
Chromia refractories are characterized in that they contain a flux whose main component is MgO-SiO2-CaO, and the melting point of the flux is 1700°C or higher.

【0007】[0007]

【作用】マグクロ耐火物の耐食性や熱間での諸物性を向
上させるには、耐火物の焼成中に粒子間に析出してくる
フラックス成分を制御することが重要である。この制御
されたフラックス成分は、マグクロ耐火物の主に耐食性
と熱間強度の向上に有効な役割を果たす。
[Operation] In order to improve the corrosion resistance and various hot physical properties of maguro refractories, it is important to control the flux components that precipitate between particles during firing of the refractories. This controlled flux component plays an effective role in mainly improving the corrosion resistance and hot strength of the maguro refractory.

【0008】通常耐火物を製造する場合は、原料から導
入される不純物を制御することなくそのまま粉砕、成形
し焼成するが、この場合、耐火性の低いフラックスが生
成し、耐火物の元来の特性を著しく低下させてしまう。 これを防止するために高純度の原料を使用することも考
えられるが、経済性の点から得策とは言えない。
[0008] Normally, when producing refractories, impurities introduced from the raw materials are crushed, molded, and fired without controlling them. The characteristics will be significantly deteriorated. Although it is conceivable to use highly purified raw materials to prevent this, it is not considered a good idea from an economic point of view.

【0009】本発明においては、通常のマグクロ耐火物
の製造の場合と同様に、マグネシアやクロム鉱石などを
原料とするか、これらを電気溶融したものを原料とする
。しかし、焼成中に生成するフラックスが焼成後の耐火
物の特性を支配することから、原料調整または混合段階
で予め生成するフラックスの成分調整を行う。
[0009] In the present invention, as in the case of manufacturing ordinary maguro refractories, magnesia, chromium ore, etc. are used as raw materials, or the raw materials obtained by electrically melting these are used as raw materials. However, since the flux produced during firing controls the properties of the refractory after firing, the components of the flux produced are adjusted in advance during the raw material adjustment or mixing stage.

【0010】フラックスはその化学成分が主にMgO,
SiO2 ,CaOから構成されている。二次スピネル
成分が溶け込んでいる場合は、Cr2 O3 ,Al2
 O3 ,Fe2 O3 が少量入っている。耐火原料
中の不純物に関して、SiO2がCaOに比べ比較的多
い場合はMgO−SiO2 を主成分とするフラックス
が生成し、逆の場合はCaO−SiO2 を主成分とす
るフラックスが生成しやすい。ここで、原料中の不純物
は全量がフラックスになるわけではなく、CaOやSi
O2 の一部はマグネシアに取り込まれ、その残部が前
述した組成を主成分としてマグネシアの粒子間に析出す
る。このマグネシアの粒子間に析出したものをフラック
スという。
[0010] The chemical components of flux are mainly MgO,
It is composed of SiO2 and CaO. If secondary spinel components are dissolved, Cr2 O3, Al2
Contains small amounts of O3 and Fe2 O3. Regarding impurities in the refractory raw material, if SiO2 is relatively large compared to CaO, a flux containing MgO--SiO2 as the main component is likely to be produced, and in the opposite case, a flux containing CaO--SiO2 as the main component is likely to be produced. Here, not all of the impurities in the raw material become flux, but CaO and Si
A portion of O2 is taken into magnesia, and the remainder precipitates between magnesia particles, with the above-mentioned composition as the main component. The substance that precipitates between the magnesia particles is called flux.

【0011】フラックスの組成と量の制御は、使用する
原料の化学成分を分析しておき、焼成後の耐火物中に存
在するフラックスの化学分析をX線やEDX(エネルギ
ー分散型X線マイクロアナライザー)などの装置を使用
して再度行う。両者の差異からフラックスしとて寄与す
る不純物量を推定し、フラックスがMgO−SiO2 
−CaO系を主成分とし、その融点が1700℃以上と
なる組成および量的条件を満たすように、SiO2 ま
たはCaOを原料に添加することによってフラックスの
成分調整を行う。
[0011] The composition and amount of flux can be controlled by analyzing the chemical components of the raw materials used, and by using X-rays or EDX (energy dispersive ) or similar device and try again. The amount of impurities contributing to the flux is estimated from the difference between the two, and the flux is MgO-SiO2.
The composition of the flux is adjusted by adding SiO2 or CaO to the raw material so that it has a -CaO system as its main component and satisfies the compositional and quantitative conditions such that its melting point is 1700° C. or higher.

【0012】本発明において、フラックスの融点は、フ
ラックスを構成する主成分であるCaO,MgO,Si
O2 の三元系状態図から推定される融点を指す。この
融点を1700℃以上とした理由は、近年の溶鋼の二次
精錬炉は1700℃以上の操業が多く、耐用性のある耐
火物とするにはフラックスの融点もその温度近傍以上と
する必要性があるからである。組成面に関しても、Mg
O−SiO2 またはCaO−SiO2 を主成分とす
るフラックスに関して、前者はCaOを、後者はMgO
を30重量%以下含むフラックスを比較的容易に生成す
る。さらにMgO−SiO2 及びCaO−SiO2 
を主成分とする系においては、フラックスの融点を17
00℃以上とするために、MgO/SiO2 のモル比
を1.40〜6.00の範囲に、CaO/SiO2 の
モル比を1.45〜6.10の範囲に設定するのが望ま
しい。このフラックスの量については、多すぎた場合は
耐食性の低下を招き、少なすぎる場合には焼成段階で生
成する二次スピネルの生成を著しく低下させる恐れがあ
るため、フラックスの合量が5〜0.5%の範囲が望ま
しい。
In the present invention, the melting point of the flux is determined by the melting point of CaO, MgO, and Si, which are the main components of the flux.
Refers to the melting point estimated from the ternary phase diagram of O2. The reason why this melting point was set at 1,700°C or higher is that in recent years, many secondary molten steel refining furnaces are operated at temperatures of 1,700°C or higher, and in order to make a durable refractory, the melting point of the flux must also be around that temperature or higher. This is because there is. Regarding the composition, Mg
Regarding fluxes whose main components are O-SiO2 or CaO-SiO2, the former contains CaO, and the latter contains MgO.
It is relatively easy to produce a flux containing 30% by weight or less of Furthermore, MgO-SiO2 and CaO-SiO2
In a system whose main component is
In order to maintain the temperature at 00 DEG C. or higher, it is desirable to set the MgO/SiO2 molar ratio in the range of 1.40 to 6.00 and the CaO/SiO2 molar ratio in the range of 1.45 to 6.10. Regarding the amount of this flux, if it is too large, it will lead to a decrease in corrosion resistance, and if it is too small, there is a possibility that the formation of secondary spinel generated in the firing step will be significantly reduced. A range of .5% is desirable.

【0013】[0013]

【実施例】以下、実施例により本発明を詳細に説明する
。ここでは表1に示す組成の電融マグクロクリンカーを
ベースとし、適量のCaO及びSiO2 を添加するこ
とによって焼成後に生成するフラックスの組成を変えて
いる。また、試料の作成は通常の耐火物の製造方法に従
っており、焼成温度は1850℃とした。
[Examples] The present invention will be explained in detail below with reference to Examples. Here, an electrofused maguro clinker having the composition shown in Table 1 is used as a base, and the composition of the flux produced after firing is changed by adding appropriate amounts of CaO and SiO2. In addition, the samples were prepared in accordance with a normal refractory manufacturing method, and the firing temperature was 1850°C.

【0014】表2に実施例としてフラックス組成を制御
した8種類の試料の組成と特性を示す。ここで生成した
フラックスは、焼成後の試料をEDXで分析した。表中
にはMgO/SiO2 またはCaO/SiO2 比(
モル比)を示す。また、その下欄にはCaO−MgO−
SiO2 三元状態図から推定されるフラックスの融点
を示した。特性に関しては1500℃における熱間の曲
げ強度及びスラグ浸漬法を用いた浸食実験の結果を示し
た。ここで示す溶損指数は、実施例6の溶損量を100
としたときの各試料の値を指数で表している。実施例1
〜8の試料は、いずれもフラックスの融点が1700℃
以上であり、熱間強度は100kg/cm2 以上、溶
損指数も100以下の耐食性に優れた値を示している。
Table 2 shows the compositions and characteristics of eight types of samples in which the flux composition was controlled as an example. The flux produced here was analyzed by EDX on a sample after firing. In the table, MgO/SiO2 or CaO/SiO2 ratio (
molar ratio). In addition, in the column below, CaO-MgO-
The melting point of the flux estimated from the SiO2 ternary phase diagram is shown. Regarding the properties, the hot bending strength at 1500°C and the results of an erosion experiment using the slag immersion method are shown. The erosion index shown here is the erosion amount of Example 6 by 100.
The value of each sample is expressed as an index. Example 1
The melting point of the flux for all samples ~8 is 1700℃
Thus, the hot strength is 100 kg/cm2 or more, and the erosion index is 100 or less, indicating excellent corrosion resistance.

【0015】表3に比較例として5種類の試料を示す。 比較例1〜4ははMgO/SiO2 またはCaO/S
iO2 比が小さく、したがって生成するフラックスの
融点も低く、熱間強度及び耐食性で著しい低下を生じて
いるのが判る。また、比較例5は高純度原料を添加し、
フラックスの含有量を低くしたものであり、フラックス
の融点は高いがその量が非常に少ないため、焼成時に二
次スピネルの生成が阻害され、実施例1に比べて著しく
特性が低下しているのが判る。
Table 3 shows five types of samples as comparative examples. Comparative Examples 1 to 4 are MgO/SiO2 or CaO/S
It can be seen that the iO2 ratio is low and therefore the melting point of the produced flux is low, resulting in a significant decrease in hot strength and corrosion resistance. In addition, in Comparative Example 5, high purity raw materials were added,
This is because the flux content is low, and although the melting point of the flux is high, the amount is very small, so the formation of secondary spinel is inhibited during firing, and the properties are significantly deteriorated compared to Example 1. I understand.

【0016】[0016]

【表1】[Table 1]

【0017】[0017]

【表2】[Table 2]

【0018】[0018]

【表3】[Table 3]

【0019】[0019]

【発明の効果】本発明により極めて耐食性が高く、また
熱間強度も高いマグクロ耐火物の製造が簡便な方法で達
成できる。本発明はマグクロ耐火物の特性を飛躍的に高
めることが可能で、原料として安価なCaOやSiO2
 を添加しフラックスの成分調整を行うだけなので経済
的にも非常に魅力のあるものである。
According to the present invention, a maguro refractory having extremely high corrosion resistance and high hot strength can be produced by a simple method. The present invention can dramatically improve the properties of maguro refractories, and uses inexpensive CaO and SiO2 as raw materials.
It is economically very attractive as it only requires adding and adjusting the flux composition.

【0020】また、鉄鋼精錬分野においては今後高級鋼
種の要求が高まることが予想されることから、操業の高
温化を伴う二次精錬用炉の寿命を低下させること無く安
定した耐用を示すことが期待できる。
[0020] In addition, in the steel refining field, it is expected that the demand for high-grade steel will increase in the future, so it is necessary to demonstrate stable durability without reducing the life of secondary refining furnaces, which involve high-temperature operation. You can expect it.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  MgO−SiO2 −CaO系を主成
分とするフラックスを含有し、かつそのフラックスの融
点が1700℃以上であることを特徴とするマグネシア
・クロミア耐火物。
1. A magnesia-chromia refractory characterized by containing a flux mainly composed of MgO-SiO2-CaO system and having a melting point of 1700°C or higher.
JP3085463A 1991-04-17 1991-04-17 Magnesia-Chromia refractories Expired - Lifetime JP3009067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3085463A JP3009067B2 (en) 1991-04-17 1991-04-17 Magnesia-Chromia refractories

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3085463A JP3009067B2 (en) 1991-04-17 1991-04-17 Magnesia-Chromia refractories

Publications (2)

Publication Number Publication Date
JPH04317458A true JPH04317458A (en) 1992-11-09
JP3009067B2 JP3009067B2 (en) 2000-02-14

Family

ID=13859584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3085463A Expired - Lifetime JP3009067B2 (en) 1991-04-17 1991-04-17 Magnesia-Chromia refractories

Country Status (1)

Country Link
JP (1) JP3009067B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100417712B1 (en) * 1998-12-29 2004-03-26 주식회사 포스코 Steel Filling Material
JP2011179793A (en) * 2010-03-03 2011-09-15 Mitsubishi Materials Corp Magnesia-chrome refractory, copper smelting furnace, and continuous copper metallurgy furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100417712B1 (en) * 1998-12-29 2004-03-26 주식회사 포스코 Steel Filling Material
JP2011179793A (en) * 2010-03-03 2011-09-15 Mitsubishi Materials Corp Magnesia-chrome refractory, copper smelting furnace, and continuous copper metallurgy furnace

Also Published As

Publication number Publication date
JP3009067B2 (en) 2000-02-14

Similar Documents

Publication Publication Date Title
US4053321A (en) Heat fused refractory product containing zirconia having high corrosion resistance
US9233867B2 (en) Refractory block and glass furnace
CN110499475B (en) Austenitic heat-resistant steel and preparation method and application thereof
CA2017622C (en) Ceramic welding process and powder mixture for use in same
US5242639A (en) Ceramic welding process
JPH04317458A (en) Magnesia-chromia refractory
US3759728A (en) Refractory articles for use with molten ferrous metals high chrome fused cast refractories
US3340076A (en) Fused refractory castings
JP6457313B2 (en) Manufacturing method of magnesia chrome brick
US6482760B1 (en) Refractory ceramic mass and use thereof
US4330630A (en) Fused cast refractory compositions and glass melting furnaces incorporating them
US4348485A (en) Spinel type fused refractory product
NO117628B (en)
WO1993006057A1 (en) Refractory material comprising low-silica electrofused magnesia clinker and product obtained therefrom
JP2006513125A (en) Composition for production of heat-resistant ceramic molded body, molded body formed therefrom and use thereof
JP5448144B2 (en) Mug brick
US3930874A (en) Bonded fused grain basic refractory and batch therefor
Naruse et al. Progress on Carbon‐Bearing Refractories for the BOF
JP3124799B2 (en) Refractory brick containing low silica fused magnesia clinker
JPS5813511B2 (en) Tuna Direct Bond Rengano Seizou Hohou
JP3124809B2 (en) Refractory brick containing low siliceous magnesia clinker
JPH1029852A (en) Low calcium oxide magnesia-titania refractory material
JPH0543306A (en) Burnt refractory of magnesia-chromia
NO159549B (en) HYDRODYNAMIC STOCK FOR FLUID FILM.
SU1248996A1 (en) Method of manufacturing refractory articles

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 12