NO159549B - HYDRODYNAMIC STOCK FOR FLUID FILM. - Google Patents
HYDRODYNAMIC STOCK FOR FLUID FILM. Download PDFInfo
- Publication number
- NO159549B NO159549B NO853655A NO853655A NO159549B NO 159549 B NO159549 B NO 159549B NO 853655 A NO853655 A NO 853655A NO 853655 A NO853655 A NO 853655A NO 159549 B NO159549 B NO 159549B
- Authority
- NO
- Norway
- Prior art keywords
- weight
- percent
- metals
- carbon
- group
- Prior art date
Links
- 239000012530 fluid Substances 0.000 title 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 81
- 229910052751 metal Inorganic materials 0.000 claims description 73
- 239000002184 metal Substances 0.000 claims description 70
- 229910052799 carbon Inorganic materials 0.000 claims description 49
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 41
- 239000000203 mixture Substances 0.000 claims description 40
- 238000005266 casting Methods 0.000 claims description 37
- 239000000463 material Substances 0.000 claims description 27
- 239000013078 crystal Substances 0.000 claims description 26
- 150000002739 metals Chemical class 0.000 claims description 25
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 24
- 229910052760 oxygen Inorganic materials 0.000 claims description 23
- 239000001301 oxygen Substances 0.000 claims description 22
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 21
- 229910052742 iron Inorganic materials 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 16
- 239000010936 titanium Substances 0.000 claims description 16
- 239000000126 substance Substances 0.000 claims description 15
- 229910052757 nitrogen Inorganic materials 0.000 claims description 12
- 238000004458 analytical method Methods 0.000 claims description 10
- 229910052719 titanium Inorganic materials 0.000 claims description 10
- 150000001875 compounds Chemical class 0.000 claims description 9
- 239000012535 impurity Substances 0.000 claims description 9
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 8
- 239000011651 chromium Substances 0.000 claims description 8
- 230000001788 irregular Effects 0.000 claims description 8
- 150000001247 metal acetylides Chemical class 0.000 claims description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 7
- 239000010955 niobium Substances 0.000 claims description 7
- 239000002994 raw material Substances 0.000 claims description 6
- 229910052726 zirconium Inorganic materials 0.000 claims description 6
- 229910052804 chromium Inorganic materials 0.000 claims description 5
- 229910052735 hafnium Inorganic materials 0.000 claims description 5
- 229910052750 molybdenum Inorganic materials 0.000 claims description 5
- 229910052758 niobium Inorganic materials 0.000 claims description 5
- 239000003870 refractory metal Substances 0.000 claims description 5
- 229910052715 tantalum Inorganic materials 0.000 claims description 5
- 229910052721 tungsten Inorganic materials 0.000 claims description 5
- 229910052720 vanadium Inorganic materials 0.000 claims description 5
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 4
- 229910045601 alloy Inorganic materials 0.000 claims description 4
- 239000000956 alloy Substances 0.000 claims description 4
- 239000003085 diluting agent Substances 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 3
- 229910017052 cobalt Inorganic materials 0.000 claims description 3
- 239000010941 cobalt Substances 0.000 claims description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 3
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 3
- 239000011733 molybdenum Substances 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 3
- 239000010937 tungsten Substances 0.000 claims description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 3
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 claims description 3
- 239000011572 manganese Substances 0.000 claims description 2
- 230000001105 regulatory effect Effects 0.000 claims description 2
- -1 zlrkonium Chemical compound 0.000 claims description 2
- 239000003344 environmental pollutant Substances 0.000 claims 1
- 229910052748 manganese Inorganic materials 0.000 claims 1
- 231100000719 pollutant Toxicity 0.000 claims 1
- 229910002804 graphite Inorganic materials 0.000 description 39
- 239000010439 graphite Substances 0.000 description 39
- 239000002893 slag Substances 0.000 description 23
- 238000002844 melting Methods 0.000 description 15
- 230000008018 melting Effects 0.000 description 15
- 230000035939 shock Effects 0.000 description 15
- 238000012360 testing method Methods 0.000 description 14
- 238000004519 manufacturing process Methods 0.000 description 13
- 239000007858 starting material Substances 0.000 description 12
- 238000005260 corrosion Methods 0.000 description 10
- 230000007797 corrosion Effects 0.000 description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 8
- 239000011819 refractory material Substances 0.000 description 8
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 7
- QDOXWKRWXJOMAK-UHFFFAOYSA-N chromium(III) oxide Inorganic materials O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 229910052681 coesite Inorganic materials 0.000 description 5
- 229910052906 cristobalite Inorganic materials 0.000 description 5
- YDZQQRWRVYGNER-UHFFFAOYSA-N iron;titanium;trihydrate Chemical compound O.O.O.[Ti].[Fe] YDZQQRWRVYGNER-UHFFFAOYSA-N 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 229910052682 stishovite Inorganic materials 0.000 description 5
- 239000004575 stone Substances 0.000 description 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 5
- 229910052905 tridymite Inorganic materials 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 4
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 239000011449 brick Substances 0.000 description 4
- 239000000292 calcium oxide Substances 0.000 description 4
- 235000012255 calcium oxide Nutrition 0.000 description 4
- 239000000395 magnesium oxide Substances 0.000 description 4
- 235000012245 magnesium oxide Nutrition 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 235000012239 silicon dioxide Nutrition 0.000 description 4
- 238000007711 solidification Methods 0.000 description 4
- 230000008023 solidification Effects 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 235000019738 Limestone Nutrition 0.000 description 3
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 3
- 239000006028 limestone Substances 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 229910052845 zircon Inorganic materials 0.000 description 3
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- IYUGAJFZIDSYSV-UHFFFAOYSA-N [Fe].[C].[Ti] Chemical compound [Fe].[C].[Ti] IYUGAJFZIDSYSV-UHFFFAOYSA-N 0.000 description 2
- 239000004411 aluminium Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000009844 basic oxygen steelmaking Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910001567 cementite Inorganic materials 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000010891 electric arc Methods 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 238000007531 graphite casting Methods 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 238000010309 melting process Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 239000012768 molten material Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical class [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 238000009628 steelmaking Methods 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 241000722270 Regulus Species 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 229910026551 ZrC Inorganic materials 0.000 description 1
- OTCHGXYCWNXDOA-UHFFFAOYSA-N [C].[Zr] Chemical compound [C].[Zr] OTCHGXYCWNXDOA-UHFFFAOYSA-N 0.000 description 1
- RMHNJOXDDBLQOC-UHFFFAOYSA-N [C].[Zr].[Ti] Chemical compound [C].[Zr].[Ti] RMHNJOXDDBLQOC-UHFFFAOYSA-N 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 229940037003 alum Drugs 0.000 description 1
- 239000011822 basic refractory Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- UHZZMRAGKVHANO-UHFFFAOYSA-M chlormequat chloride Chemical compound [Cl-].C[N+](C)(C)CCCl UHZZMRAGKVHANO-UHFFFAOYSA-M 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 239000010459 dolomite Substances 0.000 description 1
- 229910000514 dolomite Inorganic materials 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000010436 fluorite Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000010952 in-situ formation Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 235000014380 magnesium carbonate Nutrition 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000007712 rapid solidification Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 239000011214 refractory ceramic Substances 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
Description
Ildfast metallkarbidblokk av smeltet og støpt materiale og fremgangsmåte til dens fremstilling. Refractory metal carbide block of molten and cast material and method for its production.
Foreliggende oppfinnelse vedrører en ildfast The present invention relates to a refractory
metallkarbidblokk av smeltet og støpt materiale metal carbide block of molten and cast material
og en fremgangsmåte til dens fremstilling hvor and a method for its manufacture wherein
ildfast keramisk råmateriale smeltes og helles refractory ceramic raw material is melted and poured
over i preformede støpeformer hvor smeltemassen stivner til enhetlige støpeblokker. Det ildfaste materialet ifølge oppfinnelsen har høy into preformed molds where the molten mass solidifies into uniform casting blocks. The refractory material according to the invention has high
motstand mot varmesjokk i kraft av en spesiell resistance to thermal shock by virtue of a special
mikrostruktur, spesielt med hensyn til fordelin-gen, formen og plaseringen av fritt karbon eller microstructure, especially with regard to the distribution, shape and location of free carbon or
grafitt, som generelt er homogent i alle støpe-blokkene. Disse støpeblokker er også kjennetegnet ved god oksydasjonsmotstand, sammenlig-net med grafitt, høy styrke ved forhøyede rom-temperaturer, og gode elektriske og termiske led-ningsevner. Videre har de ildfaste blokkene iføl-ge oppfinnelsen meget stor motstandsevne mot graphite, which is generally homogeneous in all casting blocks. These casting blocks are also characterized by good oxidation resistance, compared to graphite, high strength at elevated room temperatures, and good electrical and thermal conductivity. Furthermore, according to the invention, the refractory blocks have a very high resistance to
korrosjon og erosjon av jernholdig kalkstein-slagg, og kan brukes til fremstilling av stål, i en corrosion and erosion of ferrous limestone slag, and can be used for the production of steel, in a
reduserende atmosfære, hvilket tyder på at reducing atmosphere, suggesting that
nevnte materiale er egnet for foringselementer i smelteovner for basisk oksygen-stålfremstilling, som benyttes i slike prosesser som LD-prosessen og Kaldo-prosessen. Disse støpeblokker kan naturligvis brukes for mange andre formål, f. eks. slik som foringselementer i masovner og ovner for fremstilling av aluminium, elektroder i metallurgiske ovner, elektriske motstands-var-meelementer og elektriske mottagere i induk-sjonsovner. said material is suitable for lining elements in melting furnaces for basic oxygen steelmaking, which are used in such processes as the LD process and the Kaldo process. These casting blocks can of course be used for many other purposes, e.g. such as lining elements in blast furnaces and furnaces for the production of aluminium, electrodes in metallurgical furnaces, electric resistance heating elements and electric receivers in induction furnaces.
Man har tidligere kjent til hvordan det er mulig å fremstille sprø metallkarbidmasser ved å reagere egnet råmateriale ved forhøyede temperaturer, som enten kan forårsake smelting av materialet eller ikke. Disse sprø masser er blitt dannet in situ i de elektriske smelteovner hvor de er blitt fremstilt og blir senere opp-smuldret til granulære masser, som så brukes som slipemidler eller som igjen blir bundet sammen ved hjelp av kjente teknikker (denne teknikk involverer ikke fullstendig smelting og størkning til enhetlige støpelegemer), for så-ledes å danne ildfaste legemer for en lang rekke anvendelser hvilke er velkjente innen faget. Selv om det i visse tilfeller også tidligere er blitt fremstilt sprø masser av urene metallkarbider med fritt karbon, så har man i de fleste tilfeller an-strengt seg for å eliminere slikt fritt karbon i de granulære materialer, fordi det forårsaket vanskeligheter ved fremstilling av godt slipe-mlddelmateriale, eller det frie karbon i det granulære materialet ble videre reagert med et karbiddannende element under fremstillingen av et karbidbundet legeme. Såvidt man vet med hensyn til tidligere urene metallkarbidmasser inneholdende fritt karbon, laget enten som en masse reagert i fast tilstand og deretter sintret eller som en sammensmeltet regulus, synes dess-uten deres mikrostrukturer å være meget variable med betydelige uhomogenitet og seigring med hensyn til fordeling, form og plasering av det frie karbon, hvilket derved ga dårlige og meget variable egenskaper slik som termisk sjokkbestandighet, styrke, korrosjonsmotstands-evne, og elektrisk og termisk ledingsevne. Slike meget variable mikrostrukturer skyldes tydelig-vis prosessene for in situ dannelse av disse masser og slik foranderlighet er naturligvis ikke av interesse ved fremstilling av knust granulært materialet fra hvilket det frie karbon skal fjer-nes eller på annen måte elimineres. It has previously been known how it is possible to produce brittle metal carbide masses by reacting suitable raw material at elevated temperatures, which may or may not cause melting of the material. These friable masses have been formed in situ in the electric melting furnaces where they have been produced and are later crumbled into granular masses, which are then used as abrasives or which are again bound together using known techniques (this technique does not involve complete melting and solidification into uniform castings), so as to form refractory bodies for a wide range of applications which are well known in the art. Although in certain cases friable masses of impure metal carbides with free carbon have also previously been produced, in most cases efforts have been made to eliminate such free carbon in the granular materials, because it caused difficulties in the production of good grinding media material, or the free carbon in the granular material was further reacted with a carbide-forming element during the production of a carbide-bonded body. As far as is known with regard to previously impure metal carbide masses containing free carbon, made either as a mass reacted in the solid state and then sintered or as a fused regulus, their microstructures, moreover, appear to be highly variable with significant inhomogeneity and toughness with respect to distribution , shape and location of the free carbon, which thereby gave poor and highly variable properties such as thermal shock resistance, strength, corrosion resistance, and electrical and thermal conductivity. Such highly variable microstructures are clearly due to the processes for in situ formation of these masses and such variability is naturally not of interest in the production of crushed granular material from which the free carbon is to be removed or otherwise eliminated.
Såvidt man vet har man ikke forut for foreliggende oppfinnelse dannet de nedenfor defi-nerte støpte, ildfaste sammensmeltede materia-lene, og man har heller ikke innsett de store teknologiske fordeler som oppnåes ved bruk av disse, nemlig spesielt meget ildfaste elementer som har en høy motstandsevne mot varmesjokk og i mange tilfeller en høy motstandsevne mot korrosjon-erosjon fra slagg fra stålfremstilling i en karbon-mono-oksydatmosfære. As far as is known, the cast, refractory fused materials defined below have not been formed prior to the present invention, nor have they realized the great technological advantages that are achieved by using these, namely very refractory elements that have a high resistance to thermal shock and in many cases a high resistance to corrosion-erosion from slag from steelmaking in a carbon monoxide atmosphere.
Moderne teknikk skaper stadig større etter-spørsel etter materialer som kan motstå høye plutselige temperaturer. Man har nå funnet frem til ildfaste, støpelegemer av sammensmeltet materiale med en ny sammensetning og struktur som kan imøtekomme denne økende etterspør-sel. Det er derfor en prinsipiell hensikt ved oppfinnelsen å tilveiebringe ildfaste støpelegemer av sammensmeltet karbon og metallkarbider med en termisk sjokkmotstand som er bedre enn hva som tidligere var kjent hos ildfaste støpelegemer av sammensmeltet materiale. Modern technology creates ever greater demand for materials that can withstand high sudden temperatures. Refractory castings made of fused material with a new composition and structure have now been found which can meet this growing demand. It is therefore a principle purpose of the invention to provide refractory castings of fused carbon and metal carbides with a thermal shock resistance that is better than what was previously known for refractory castings of fused material.
Skjønt interessen for den basiske oksygen - stålfremstilling synes å øke i industrien, så har problemet med det relativt raske forbruk av den ildfaste foringen i de ovner eller kar som brukes i forbindelse med denne prosess, stadig vært et alvorlig hinder for å få bedret driftsøkonomi og større utbytte. Man har nå oppdaget at dette problem materielt sett kan reduseres betydelig ved å fremstille foringen i karene, som brukes ved denne prosess, med oppfinnelsens ildfaste støpelegemer av sammensmeltet karbon og metallkarbider, som har betydelig bedre motstand mot korrosjon og erosjon av de slaggtyper som fremstilles i nevnte prosess, enn hva som har vært tilfelle med de ildfaste produkter som tidligere har vært anvendt i disse foringer. Det er følgelig en annen prinsipiell hensikt ved oppfinnelsen å tilveiebringe forannevnte ildfaste støpelegemer av sammensmeltet materiale med nevnte bedrede slaggmotstand under reduserende atmosfære-betingelser samt gi en anvendelse for nevnte støpelegemer i foring av de ovner og kar som brukes i forbindelse med den basiske oksygen-stålfremstilling. Oppfinnelsens støpelegemer er spesielt egnet i den indre ar-beidsforingen i de pæreformede kar som brukes ved stålfremstilling under anvendelse av en oksygenblest. Disse kar består vanligvis av en pæreformet metalltank eller hus som på innersiden er foret med et isolerende ildfast materiale som så igjen på innersiden er dekket med en isolerende ildfast arbeidsforing, samt anord-ninger for tilføring av en oksygenstråle direkte inn i den isolerte tank. Although interest in basic oxygen steelmaking seems to be increasing in the industry, the problem of the relatively rapid consumption of the refractory lining in the furnaces or vessels used in connection with this process has always been a serious obstacle to improving operating economics and greater dividend. It has now been discovered that this problem can be materially reduced significantly by producing the lining in the vessels, which are used in this process, with the refractory castings of the invention of fused carbon and metal carbides, which have significantly better resistance to corrosion and erosion of the types of slag produced in mentioned process, than has been the case with the refractory products that have previously been used in these linings. It is consequently another principle purpose of the invention to provide the above-mentioned refractory castings of fused material with said improved slag resistance under reducing atmosphere conditions as well as to provide an application for said castings in the lining of the furnaces and vessels used in connection with basic oxygen steel production . The castings of the invention are particularly suitable in the inner working lining in the pear-shaped vessels used in steel production using an oxygen blast. These vessels usually consist of a bulb-shaped metal tank or housing which is lined on the inside with an insulating refractory material which is then again covered on the inside with an insulating refractory working lining, as well as devices for supplying an oxygen beam directly into the insulated tank.
Foreliggende oppfinnelse er en fremstilt ar-tikkel som generelt kan defineres som et ildfast støpelegeme av sammensmeltet materiale bestående essentielt av minst 5 vektprosent fritt karbon i form av et uregelmessig sammenflettet mønster eller nettverk som iblandet, og som sammenføyer hovedsakelig fritt orienterte metallkarbidkrystaller, og hvor støpelegemet analytisk vesentlig består av karbon og minst 20 vektprosent metallkarbiddannende stoffer slik dette er angitt nedenfor. Mens dette bare er de hovedbestanddelene i støpelegemet, så kan andre analytiske bestanddeler innbefattes så langt dette er ønskelig ifølge de utgangsstoffer og de fremstillingsbetingelser man bruker, og de pre-sise egenskaper man ønsker i det endelige produkt. The present invention is a manufactured article which can generally be defined as a refractory casting body of fused material consisting essentially of at least 5% by weight of free carbon in the form of an irregularly interwoven pattern or network that is intermixed and which joins mainly freely oriented metal carbide crystals, and where the casting body analytically essentially consists of carbon and at least 20% by weight of metal carbide-forming substances as specified below. While these are only the main components in the casting, other analytical components can be included as far as this is desirable according to the starting materials and the manufacturing conditions used, and the precise properties desired in the final product.
Ifølge foregående avsnitt er den minimale mengde fritt karbon som skal til for å gi de bedrede tekniske og industrielle resultater 5 vektprosent. Noen sammensmeltede støpepro-dukter som kun inneholder denne minimale mengde fritt karbon har ofte ingen særlig høy grad av termal sjokkmotstand, og kan inneholde fritt karbon mest som et laminært mønster av små plater mellom metallkarbidkrystaller. Når det derfor kreves meget god termisk sjokkmotstand, inneholder de støpte ildfaste produkter av sammensmeltet materiale ifølge oppfinnelsen minst 11 vektprosent fritt karbon i form av en uregelmessig og diskontinuerlig tekstur iblandet og sammenbundet med de i det vesentlig vilkårlig orienterte metallkarbidkrystallene. According to the preceding paragraph, the minimum amount of free carbon required to provide the improved technical and industrial results is 5 percent by weight. Some fused castings containing only this minimal amount of free carbon often do not have a very high degree of thermal shock resistance, and may contain free carbon mostly as a laminar pattern of small plates between metal carbide crystals. When very good thermal shock resistance is therefore required, the cast refractory products of fused material according to the invention contain at least 11% by weight of free carbon in the form of an irregular and discontinuous texture mixed and connected with the essentially randomly oriented metal carbide crystals.
Ifølge foreliggende oppfinnelse er det så-ledes tilveiebragt en ildfast metallkarbidblokk av smeltet og støpt materiale, kjennetegnet ved at den består av minst 5 vektprosent fritt karbon i form av et uregelmessig sammenflettet nettverk, som er iblandet vilkårlig orienterte metallkarbidkrystaller, og som sammenføyer karbid-krystallene og hvor blokken ved kjemisk analyse viser et innhold av (1) karbon, (2) minst 20 vektprosent titan, zirkonium, hafnium, vanadium, niob, tantal, krom, molybden, wolfram eller blandinger av metaller i denne første gruppe alene, eller blandinger av metaller fra den før-ste gruppe og minst ett annet metall valgt fra gruppen som består av silisium, mangan, jern, kobolt og nikkel, forutsatt at innholdet av metallene fra den første gruppen ikke er mindre enn 10 vektprosent og ikke mindre enn vektinnholdet av den andre gruppe metaller, (3) fra 0 til 15 vektprosent oksygen og/eller nitrogen som fortynningsmiddel, men ikke mer enn 10 vektprosent oksygen og ikke mer enn 10 vektprosent nitrogen, og (4) resten, hvis så forekommer, fra 0 til 5 vektprosent forurensninger. Ifølge en foretrukken utførelse inneholder den ildfaste blokk minst 35 pst. fritt karbon, og viser ved kjemisk analyse et minsteinnhold av 30 vektprosent metall. According to the present invention, a refractory metal carbide block of molten and cast material is thus provided, characterized by the fact that it consists of at least 5% by weight of free carbon in the form of an irregularly intertwined network, which is mixed with randomly oriented metal carbide crystals, and which joins the carbide crystals and where the block shows by chemical analysis a content of (1) carbon, (2) at least 20 percent by weight titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten or mixtures of metals in this first group alone, or mixtures of metals from the first group and at least one other metal selected from the group consisting of silicon, manganese, iron, cobalt and nickel, provided that the content of the metals from the first group is not less than 10 percent by weight and not less than the weight content of the second group of metals, (3) from 0 to 15% by weight of oxygen and/or nitrogen as a diluent, but not more than 10% by weight of oxygen and no more than 10 weight percent nitrogen, and (4) the remainder, if any, from 0 to 5 weight percent impurities. According to a preferred embodiment, the refractory block contains at least 35 percent free carbon, and shows a minimum metal content of 30 percent by weight on chemical analysis.
Ifølge oppfinnelsen er det videre tilveiebragt en fremgangsmåte til fremstilling av en ildfast blokk av smeltet og støpt materiale, og denne fremhgangsmåte er kjennetegnet ved at råmate-rialer som består av karbon og metallkarbiddannende forbindelser og/eller karbider av disse, hvor nevnte forbindelser er elementært metall, legering eller oksyd av Ti, Zr, Hf, Nb, V, Ta, Cr, Mo, W eller blandinger av denne første gruppe metaller, eller blandinger av de i den nevnte første gruppe og de i en annen gruppe metaller som består av Si, Mn, Fe, Co og/eller Ni, oppvarmes i en ovn slik at en vesentlig del av råmate-rialene smelter og vil forårsake en reaksjon mellom en eventuelt tilstdeværende metallkarbiddannende forbindelse og karbonet, og hvor sammensetningen av utgangsmaterialene, regulerin-gen av atmosfære i kontakt med disse samt opp-varmningstiden reguleres slik at den smeltede masse inneholder karbon og ett eller flere av de forannevnte metaller i slike mengder at stø-peproduktet av sammensmeltet materiale inneholder minst 5 vektprosent fritt karbon og metallkarbider som ved kjemisk analyse viser et innhold av minst 20 vektprosent av de forannevnte metaller hvor totalmengden av metallene i første gruppe utgjør minst 10 vektprosent av støpeblokkene, og også slik at støpeproduk-tet av sammensmeltet materiale ytterligere inneholder bare fra 0 til 15 vektprosent oksygen og/eller nitrogen, men ikke mer enn 10 vektprosent oksygen og ikke mer enn 10 vektprosent nitrogen, og en rest begrenset til fra 0 til 5 pst. av andre ekstraelementer eller forurensninger, hvorpå den smeltede masse helles over i en støpeform for å fremstille en støpeblokk i hvilken minst 5 vektprosent fritt karbon er tilstede som et uregelmessig nettverk som binder metallkarbidkrystallene sammen. According to the invention, a method for producing a refractory block of molten and cast material is also provided, and this method is characterized by the fact that raw materials consisting of carbon and metal carbide-forming compounds and/or carbides thereof, where said compounds are elemental metals , alloy or oxide of Ti, Zr, Hf, Nb, V, Ta, Cr, Mo, W or mixtures of this first group of metals, or mixtures of those of the aforementioned first group and those of another group of metals consisting of Si , Mn, Fe, Co and/or Ni, are heated in a furnace so that a significant part of the raw materials melts and will cause a reaction between any metal carbide-forming compound present and the carbon, and where the composition of the starting materials, the regulation of atmosphere in contact with these and the heating time is regulated so that the molten mass contains carbon and one or more of the aforementioned metals in such quantities that the cast product of the same fused material contains at least 5% by weight of free carbon and metal carbides which, by chemical analysis, show a content of at least 20% by weight of the aforementioned metals, where the total amount of the metals in the first group constitutes at least 10% by weight of the ingots, and also so that the cast product of fused material further containing only from 0 to 15 percent by weight of oxygen and/or nitrogen, but not more than 10 percent by weight of oxygen and not more than 10 percent by weight of nitrogen, and a residue limited to from 0 to 5 percent of other extra elements or impurities, onto which the molten mass is poured into a mold to produce an ingot in which at least 5% by weight of free carbon is present as an irregular network binding the metal carbide crystals together.
Man antar at det er den relativt raske av-kjøling og størkning som finner sted ved denne støpemetode ( i motsetning til den langsommere avkjøling og størkning som finner sted ved dan-nelsen av en stor industriell enhetlig masse eller produkt slik dette skjer i samme ovn hvor smeltningen fant sted) som i det minste delvis er årsaken til den enestående struktur av vesentlig fritt orienterte metallkarbidkrystaller som dannes sammen med en uregelmessig og diskontinuerlig tekstur av fritt karbon, som er iblandet og føyer sammen nevnte krystaller. Disse resultater står i kontrast til de man kjen-ner fra en størkning in situ av sprø borkarbid-karbonsammensetninger som inneholder et over-veiende laminært mønster av små karbonplater som ligger intergranulert mellom sterkt orienterte (forlengede og parallelle) karbidkrystaller. It is assumed that it is the relatively rapid cooling and solidification that takes place in this casting method (as opposed to the slower cooling and solidification that takes place in the formation of a large industrial uniform mass or product as this happens in the same furnace where the melting took place) which is, at least in part, the reason for the unique structure of substantially freely oriented metal carbide crystals that form together with an irregular and discontinuous texture of free carbon, which is interspersed and joins said crystals. These results contrast with those known from an in situ solidification of brittle boron carbide-carbon compositions which contain a predominantly laminar pattern of small carbon plates intergranular between strongly oriented (elongated and parallel) carbide crystals.
De metallkarbiddannende stoffer kan bestå av et eller flere metallelementer slik dette nå vil bli beskrevet. I det tilfellet hvor man bare benytter et enkelt metallelement for dan-nelsen av karbidkrystallene, så velges dette element fra gruppen som består av titan, zirkonium, hafnium, vanadium, niob, tantal, krom, molybden og wolfram. Enhver blanding av to eller flere av disse metaller kan også brukes for å danne en eller flere karbidfaser avhengig av den gjensidige løsligheten av slike karbider i hverandre i fast løsning. Videre kan de analytisk metallkarbiddannende forbindelser bestå av blandinger som inneholder ett eller flere av de forannevnte metaller samt minst ett metallisk element som velges fra gruppen som består av silisium, mangan, jern, kobolt og nikkel forutsatt at innholdet av metallene i første gruppe ikke er mindre enn 10 vektpst. av det totale støpe-legeme og heller ikke mindre enn vektinnholdet av den andre gruppe metalliske elementer. I de tilfeller hvor man bruker de sist angitte blandinger, vil man også få dannelse av en eller flere karbidfaser alt avhengig av den gjensidige løslighet i fast løsning av et karbid i det annet eller de andre karbider. The metal carbide-forming substances can consist of one or more metal elements as will now be described. In the case where only a single metal element is used for the formation of the carbide crystals, this element is selected from the group consisting of titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum and tungsten. Any mixture of two or more of these metals can also be used to form one or more carbide phases depending on the mutual solubility of such carbides in each other in solid solution. Furthermore, the analytical metal carbide-forming compounds can consist of mixtures containing one or more of the aforementioned metals as well as at least one metallic element selected from the group consisting of silicon, manganese, iron, cobalt and nickel, provided that the content of the metals in the first group is not less than 10 wt. of the total casting body and also not less than the weight content of the other group of metallic elements. In the cases where the latter mixtures are used, one or more carbide phases will also be formed, all depending on the mutual solubility in solid solution of one carbide in the other carbide(s).
De andre analytiske bestanddeler som kan tillates i oppfinnelsens støpelegemer, kan rubri-seres som fortynningsmidler og/eller urenheter. Oksygen og nitrogen er her betegnet fortynningsmidler, skjønt de i visse tilfeller kan bedømmes som urenheter, mens de i andre tilfeller igjen kan være ønskelige additiver. Oksygen og nitrogen bør hver for seg ikke overstige 10 vektpst. av støpelegemet, og den totale sum av nitrogen og oksygen bør ikke analytisk overstige 15 vektpst. av støpelegemet. Dette kan også analytisk inneholde andre elementer i mengder opptil 5 vektpst. som urenheter. Slike urenheter vil vanligvis komme av at det er brukt urent utgangsmateriale og kan innbefatte elementer som aluminium, alkalimetaller, alkali jordmetaller, sjeldne jordmetaller, svovel og fosfor. The other analytical constituents which can be allowed in the moldings of the invention can be classified as diluents and/or impurities. Oxygen and nitrogen are here referred to as diluents, although in certain cases they can be judged as impurities, while in other cases they can again be desirable additives. Oxygen and nitrogen should not each exceed 10% by weight. of the casting, and the total sum of nitrogen and oxygen should not analytically exceed 15% by weight. of the casting. This can also analytically contain other elements in quantities of up to 5% by weight. as impurities. Such impurities will usually result from impure starting material being used and may include elements such as aluminium, alkali metals, alkaline earth metals, rare earth metals, sulfur and phosphorus.
I forbindelse med den videre detaljerte be-skrivelse av oppfinnelsen vil det bli gjort henvisning til den eneste figuren på tegningen som er et mikrofoto av en typisk mikrostruktur ifølge oppfinnelsen. In connection with the further detailed description of the invention, reference will be made to the only figure in the drawing which is a photomicrograph of a typical microstructure according to the invention.
I motsetning til silisiumkarbidforbindelser, så kan oppfinnelsens ildfaste materiale lett smeltes uten at man får den heftige sublimasjon, som opptrer når det gjøres forsøk på å smelte silisiumkarbid. Dette kommer av at oppfinnelsen benytter karbidforbindelser med betydelig lavere damptrykk-karakteristika. Utgangsmaterialet er foretrukket enten en blanding av det egnede metallkarbid og karbon eller grafitt, eller en blanding av det egnede metall og/eller metall-oksyd og et overskudd av karbon slik at det dannes et tilsvarende karbid samt fritt karbon (grafitt). Disse blandinger kan enten smeltes i en vanlig elektrisk lysbue-smelteovn som benytter grafitt-elektroder eller i en elektrisk induksjons-smelteovn som benytter grafittforing eller kar. For å unngå for sterk oksydasjon av smeltemassen av den omgivende luft, så bør man ta passende forholdsregler for å dekke smeltekaret under hele smelteprosessen, for dermed å opp-rettholde nøytral eller reduserende atmosfære i kontakt med smeltemassens eksponerte topp-flate. Dette kan gjøres ved et løst lokk eller kroner over ovnsåpningen. Det foretrekkes å for-blande utgangsmaterialet før dette tilsettes ovnen, og når det benyttes blandinger, som inneholder metaller og/eller metalloksyder, har man funnet det nødvendig å agglomerere utgangs-blandingen til pellets før denne tilsettes ovnen. Hvis dette ikke gjøres, får man ufullstendig reaksjon og segregering, som etterlater et overskudd av oksyder og fritt metall i smeltemassen. Disse pellets bør oppvarmes til en så høy temperatur at det blir en karbiddannende reaksjon, uten at materialet smelter. Dette gjøres for å spare elektrisk energi samt for å nedsette for-dampning av smeltemassen. Når gassutviklin-gen og oppflammingen i det vesentlige er forbi, smeltes materialet på vanlig måte, slik at det dannes en smeltet masse omgitt av ureagerte utgangsstoffer som en beskyttende foring, for å hindre forurensning. Noe av karboninnholdet i det smeltede produkt kommer fra grafittelektrodene eller grafittforingen, og derfor bør karboninnholdet i utgangsmaterialet holdes noe lavere enn hva som er nødvendig for å gi den ønskelige karbonmengde i det endelige produkt. Det kan ikke angis noen fast regel med hensyn til avpassing av karboninnhold uansett kilde, fordi dette vil være avhengig av faktorer som tid, temperatur etc. I alle tilfeller vil passende tilsetning lett kunne bestemmes av fagfolk ved minimale forsøk. In contrast to silicon carbide compounds, the refractory material of the invention can be easily melted without the violent sublimation that occurs when attempts are made to melt silicon carbide. This is because the invention uses carbide compounds with significantly lower vapor pressure characteristics. The starting material is preferably either a mixture of the suitable metal carbide and carbon or graphite, or a mixture of the suitable metal and/or metal oxide and an excess of carbon so that a corresponding carbide and free carbon (graphite) are formed. These mixtures can either be melted in a conventional electric arc melting furnace that uses graphite electrodes or in an electric induction melting furnace that uses graphite liners or vessels. In order to avoid too strong oxidation of the molten mass by the surrounding air, appropriate precautions should be taken to cover the melting vessel during the entire melting process, so as to maintain a neutral or reducing atmosphere in contact with the exposed top surface of the molten mass. This can be done with a loose lid or crown over the oven opening. It is preferred to pre-mix the starting material before it is added to the furnace, and when mixtures containing metals and/or metal oxides are used, it has been found necessary to agglomerate the starting mixture into pellets before it is added to the furnace. If this is not done, incomplete reaction and segregation is obtained, which leaves an excess of oxides and free metal in the melt. These pellets should be heated to such a high temperature that a carbide-forming reaction takes place, without the material melting. This is done to save electrical energy and to reduce evaporation of the molten mass. When gas evolution and flaming are essentially over, the material is melted in the usual way, so that a molten mass is formed surrounded by unreacted starting materials as a protective lining, to prevent contamination. Some of the carbon content in the molten product comes from the graphite electrodes or the graphite liner, and therefore the carbon content in the starting material should be kept somewhat lower than what is necessary to give the desired amount of carbon in the final product. No fixed rule can be stated regarding the adjustment of carbon content regardless of the source, because this will depend on factors such as time, temperature etc. In all cases, the appropriate addition will be easily determined by professionals with minimal experimentation.
Etter at det er dannet en passende mengde smeltet materiale, helles den smeltede masse over i grafittformer som på vanlig måte er omgitt av glødepulver som alumtøapulver, pulveri-sert koks etc. og størkner der slik at det dannes et enhetlig støpelegeme av sammensmeltet ildfast støpemateriale av samme form som støpe-gropen. Denne fremgangsmåte gir relativt rask størkning som forårsaker vesentlig uorienterte metallkarbidkrystaller av vesentlig uregelmessig form (dvs. minst 40 vektpst. av krystallene), og som er av relativt medium til finkorn størrelse. Det frie karbon (som i de fleste tilfeller er kry-stallinsk grafitt) danner et uregelmessig og diskontinuerlig sammenvevet mønster eller tekstur som er blandet inn mellom karbidkrystallene. I mange tilfelle er det frie karbon eler grafitten bundet på en sammenføyende måte som er typisk for sammensmeltede ildfaste støpelegemer. Stø-petøgemets mikrostruktur slik den fremkommer i denne oppfinnelse, vil kunne forstås bedre ved henvisning til vedlagte tegning. Den illustrerte mikrostruktur er fra eksempel 15 i tabell I nedenfor. De lyse områder 10 er uregelmessige for-mete og orienterte zirkonkarbidkrystaller. Det uregelmessige og diskontinuerlige innvevede mønster eller intertekstur av fritt karbon (grafitt) er de mørke områder 12. Krystallbindmgen er karbid-til-karbid 14, karbid-till-grafitt 16 og grafitt-til-grafitt 18.1 mange tilfeller vil karbid-til-grafitt bindingene danne uregelmessige bånd av en sammenføyende karakter slik det er vist ved 20. De store grafittområder 22 er primær grafitt som er dannet mellom karbid-krystallene, og de mindre grafittområdene 24 synes å være en eutektisk struktur av utfelt grafitt Inne i kar-bdikrystallene. Noen ganger kan disse mindre grafittområdene ha en tendens til å være den-drittisk L form. After a suitable amount of molten material has been formed, the molten mass is poured into graphite molds which are usually surrounded by glow powder such as alum powder, pulverized coke etc. and solidifies there so that a uniform casting body is formed of fused refractory casting material of same shape as the casting pit. This method provides relatively rapid solidification which causes substantially unoriented metal carbide crystals of substantially irregular shape (ie at least 40% by weight of the crystals), and which are of relatively medium to fine grain size. The free carbon (which in most cases is crystalline graphite) forms an irregular and discontinuous interwoven pattern or texture that is mixed in between the carbide crystals. In many cases the free carbon or graphite is bound in a jointing manner typical of fused refractory castings. The microstructure of the casting as it appears in this invention will be better understood by reference to the attached drawing. The illustrated microstructure is from Example 15 in Table I below. The bright areas 10 are irregularly shaped and oriented zirconium carbide crystals. The irregular and discontinuous interweaving pattern or intertexture of free carbon (graphite) is the dark areas 12. The crystal bonding is carbide-to-carbide 14, carbide-to-graphite 16 and graphite-to-graphite 18. In many cases carbide-to-graphite will the bonds form irregular bands of a joining character as shown at 20. The large graphite areas 22 are primary graphite formed between the carbide crystals, and the smaller graphite areas 24 appear to be a eutectic structure of precipitated graphite inside the carbide crystals. Sometimes these smaller graphite areas can tend to be den-drittic L shape.
Det følgende eksempel vil bedre kunne illu-strere oppfinnelsen i praksis og de resultater som kan oppnås med oppfinnelsen. En knust por-sjonsblanding ble fremstilt, og denne inneholdt 60 vektpst. ilmenittmalm og 40 vektpst. grafitt av elektroderenhet. Ilmenittmalmen hadde føl-gende typiske vektanalyse: 63,14 pst. TiOg, 31,7 pst. Fe203, 0,5 pst. Al^Og, 0,4 pst. MgO, 0,3 pst. Si02, 0,12 pst. Cr203. Denne blanding ble tilsatt en liten mengde vann og stivelse og ble så agglo-merert til små pellets. Disse ble tilført en elektrisk lysfoueovn slik at de dekket den nedre enden av grafittelektrodene, mellom hvilke det var plasert forkortningsstaver og grafitt.Overovnskam-meret ble det plasert et løst tilpasset grafittlokk, og strømmen ble satt på slik at ugangsmaterialet reagerte uten at det ble noen vesentlig smelt-ning. Reaksjonens begynnelse kan lett observeres ved at det skjer en gassutvikling og oppflam-ming omkring åpningene ved grafittlokket. Når denne gassutvikling og opflamming i det vesentlige er forbi ble strømstyrken øket slik at en vesentlig del av reaksjonsmassen smeltet, til-strekkelig til å fylle en grafittstøpegrop med form av en murstein 7,5 x 11 x ca. 33 cm pluss det vanlige topprom. Ovnen ble tappet, og det smeltede materiale ble raskt heilt over i formen som var omgitt av aluminaglødepulver. Øvre del av topprommet ble også dekket av aluminaglødepul-ver, og formen ble hensatt inntil den støpte murstein var avkjølt til romtemperatur. Dens kjemiske analyse var følgende: (vektprosent): 54,0 pst. Ti, 17,3 pst. Fe, mindre enn 1 pst. O og resten var karbon, Røntgenanalyse av murstein viste at den dommerende fase var TiC med mindre mengder jernkarbidkrystaller, samt en intertekstur av grafitt som lå mellom karbidkrystallene. Grafitten ble anslått til å ligge i overkant av 5 vektpst. The following example will better illustrate the invention in practice and the results that can be achieved with the invention. A crushed portion mixture was prepared, and this contained 60 wt. ilmenite ore and 40 wt. graphite of electrode unit. The ilmenite ore had the following typical weight analysis: 63.14 percent TiOg, 31.7 percent Fe2O3, 0.5 percent Al^Og, 0.4 percent MgO, 0.3 percent SiO2, 0.12 percent Cr203. To this mixture was added a small amount of water and starch and was then agglomerated into small pellets. These were fed to an electric light furnace so that they covered the lower end of the graphite electrodes, between which were placed shortening rods and graphite. A loosely fitted graphite lid was placed in the upper furnace chamber, and the current was switched on so that the starting material reacted without any substantial melting. The beginning of the reaction can be easily observed by gas evolution and flaming around the openings at the graphite lid. When this gas development and ignition has essentially passed, the current strength was increased so that a significant part of the reaction mass melted, sufficient to fill a graphite casting pit in the shape of a brick 7.5 x 11 x approx. 33 cm plus the usual top space. The furnace was drained, and the molten material was quickly poured into the mold, which was surrounded by alumina glow powder. The upper part of the top space was also covered with alumina glow powder, and the mold was set aside until the cast brick had cooled to room temperature. Its chemical analysis was as follows: (weight percent): 54.0% Ti, 17.3% Fe, less than 1% O and the rest was carbon, X-ray analysis of the brick showed that the dominant phase was TiC with minor amounts of iron carbide crystals, as well as an intertexture of graphite that lay between the carbide crystals. The graphite was estimated to be in excess of 5% by weight.
Den meget sterke termale sjokkmotsand i det foregående eksempel ble demonstrert ved å skjæ-re murstein opp i ca. 2,5 x 1,9 x 1,25 store prøve-stykker og oppvarme disse til 1800°C, og slippe de ned i vann av romtemperatur. I dette tilfelle ble prøveprosedyren gjentatt 5 ganger uten at det kunne iakttages brudd på grunn av termalt sjokk. En annen prøve av samme støpte stein og av samme størrelse som forrige prøvestykke, ble underkastet tre omganger uten at det oppsto brudd på grunn av det termale sjokk. Disse resultater som ble opnådd med oppfinnelsens støpe-legemer, kan sammenliknes med de resultater som ble oppnådd når vanlig kommersielt sammensmeltet ildfast materiale ble prøvet på samme måte. Den type man prøvet var en stein som hittil har hatt den høyest kjente termale sjokkmotstand. Denne sistnevnte ildfaste stein er en sammensmeltet og støpt blanding av (vektpst.) 98,81 pst. A1<,03, 0,52 pst. ulesket kalk og 0,67 pst. flusspat. Identiske prøvestykker av dette ildfaste materiale sprakk i tre deler i den andre prøve-omgang i ovennevnte prøveprosedyre. Et annet sammensmeltet, støpt ildfast materiale som er kjent for sin motstand overfor harde termale sjokk, er støpelegemer av sammensmeltet, rent magnesiumoksyd med en krystalltekstur på i minst 75 volumprosent av likesidete uorienterte periklase krystaller hvor hoveddelen av disse i krystaller ligger i størrelsesområde medium til finkornet, dvs. fra 5000 til 20 mikron. Identiske prøvestykker av dette materiale sprakk i to og tre deler i første eller andre prøveomgang i den '. ovennevnte termale sjokkprøve. The very strong thermal shock resistance in the previous example was demonstrated by cutting bricks up to approx. 2.5 x 1.9 x 1.25 large test pieces and heat these to 1800°C, and drop them into water at room temperature. In this case, the test procedure was repeated 5 times without any breakage due to thermal shock being observed. Another sample of the same cast stone and of the same size as the previous sample was subjected to three rounds without any breakage due to the thermal shock. These results which were obtained with the casting bodies of the invention can be compared with the results which were obtained when ordinary commercially fused refractory material was tested in the same way. The type that was tested was a stone that has so far had the highest known thermal shock resistance. This latter refractory stone is a fused and cast mixture of (wt.) 98.81 percent A1<.03, 0.52 percent quicklime and 0.67 percent fluorspar. Identical test pieces of this refractory material cracked into three pieces in the second test round of the above test procedure. Another fused cast refractories known for their resistance to severe thermal shocks are castings of fused, pure magnesium oxide with a crystal texture of at least 75% by volume of equilateral unoriented periclase crystals where the majority of these crystals are in the medium to fine-grained size range , ie from 5000 to 20 microns. Identical test pieces of this material cracked in two and three pieces in the first or second test round in the '. above thermal shock test.
Por å demonstrere den bedrede slaggmotstand hos oppfinnelsens støpelegemer under de betingelser som hersker i en reduserende atmosfære i den basiske oksygen smelteprosess, så ble følgende prøve utført både på prøvestykker av oppfinnelsen såvel på stykker av tidligere kjente materialer hvorav to er vanlig brukt som foringsmateriale i ovner hvor det anvendes den basiske oksygen . stålfremstillingsprosess. 3,75 x 2,5 x 1,25 store stykker ble plasert i en oksygen-gass ovn som var tilpasset den temperatur og den reduserende atmosfære man finner i basisk oksygen smelteovner. Ved 1700°C i 2,5 til 3 ti-mer ble stykkene ført gjennom en nedadrettet strøm av små dråper med smeltet høybasisk, jernholdig kalksteinsslagg med en relativ jevn hastighet på ca, 60 ganger i timen. Slagget var representativt for det slagg som utvikles i basiske oksygenovner ved stålsmeltning og hadde føl-gende sammensetning (vektpst.): 23,75 pst. Fe203, 25,94 pst. Si02, 40,86 pst. CaO, 6,25 pst. MgO og 3,2 pst. AJ^Og. Ved prøvens slutt ble styk-kenes tykkelse målt og sammenliknet med den 1,25 cm tykkelse de hadde før prøving. Resulta-tene uttrykkes som en prosentvis endring i tykkelse (det såkalte prosentvise slaggkutt). For tre prøver av det forannevnte titankarbid-jernkarbid-grafitt støpelegeme, var slaggkuttet mellom 17 og 35 pst. I motsetning til dette hadde en prøve av vanlig tjærebundet dolomittstein et slaggkutt på 100 pst. (dvs. prøven ble fullstendig delt i to). Prøver av en vanlig kommersielt sammensmeltet, støpt, basisk ildfast stein som besto av ca. 55 pst. magnesitt og 45 pst. krommalm, hadde slaggkutt på mellom 50 og 100 pst. Oppfinnelsens støpelegemer kan også fordelaktig sammenliknes med en nylig utviklet sammensmeltet, støpt, basisk, ildfast stein for foring i basiske oksygenovner på grunn av dens gode slaggmotstand i reduserende atmosfærebetingel-ser. Denne sistnevnte ildfaste stein er en sammensmeltet og støpt blanding bestående av 90 vektpst. maignesitt og 10 vektpst. rutil, og den har et slaggkutt på mellom 25 og 30 pst. i ovennevnte prøve. Det er også interessant å bemerke at ved å bruke grafitt (elektroderenhet) i ovennevnte prøve, så viste grafittprøver (10 stk.) slaggkutt fra 24 ta 45 pst. In order to demonstrate the improved slag resistance of the castings of the invention under the conditions that prevail in a reducing atmosphere in the basic oxygen smelting process, the following test was carried out both on test pieces of the invention as well as on pieces of previously known materials, two of which are commonly used as lining material in furnaces where the basic oxygen is used. steel making process. 3.75 x 2.5 x 1.25 large pieces were placed in an oxygen-gas furnace adapted to the temperature and reducing atmosphere found in basic oxygen melting furnaces. At 1700°C for 2.5 to 3 hours, the pieces were passed through a downward stream of small droplets of molten high basic, ferruginous limestone slag at a relatively steady rate of about 60 times per hour. The slag was representative of the slag that develops in basic oxygen furnaces during steel melting and had the following composition (wt): 23.75% Fe2O3, 25.94% SiO2, 40.86% CaO, 6.25% MgO and 3.2 percent AJ^Og. At the end of the test, the thickness of the pieces was measured and compared with the 1.25 cm thickness they had before testing. The results are expressed as a percentage change in thickness (the so-called percentage slag cut). For three samples of the aforementioned titanium carbide-iron carbide-graphite casting body, the slag cut was between 17 and 35 percent. In contrast, a sample of common tar-bound dolomite stone had a slag cut of 100 percent (ie, the sample completely split in half). Samples of a common commercially fused, cast, basic refractory which consisted of approx. 55 percent magnesite and 45 percent chrome ore, had slag cuts of between 50 and 100 percent. The ingots of the invention can also be advantageously compared to a recently developed fused, cast, basic, refractory rock for lining in basic oxygen furnaces because of its good slag resistance in reducing atmospheric conditions. This latter refractory stone is a fused and cast mixture consisting of 90% by weight. maignesite and 10 wt. rutile, and it has a slag cut of between 25 and 30 per cent in the above sample. It is also interesting to note that by using graphite (electrode purity) in the above sample, graphite samples (10 pcs.) showed a slag cut of 24 to 45 per cent.
Den ovennevnte støpeblokk av titan-karbid-jernkarbid-grafitt hadde også en rimelig god motstandsevne mot angrep fra smeltet jern. En prøve av samme form som ble brukt i slaggmot-standsprøver, ble nedsenket 1 flytende jern av 1750°C i en halv time. Det smeltede jernet kuttet 19 pst., og erfaring fra denne prøven angir at kutt av smeltet jern på mindre enn 20 pst., angrr relativt god motstandsevne overfor korrosjon fra smeltet jern. The above titanium-carbide-iron-carbide-graphite ingot also had a reasonably good resistance to attack by molten iron. A sample of the same shape used in slag resistance tests was immersed in 1 liquid iron of 1750°C for half an hour. The molten iron cut 19 per cent, and experience from this test indicates that cuts of molten iron of less than 20 per cent indicate relatively good resistance to corrosion from molten iron.
Støpeblokken av tistankarbid-jernkarbid og grafitt har også endel andre bemerkelsesverdige egenskaper. Bruddstyrken (ved bø<y>ning) var mellom 141 og 425 kg/cm<2> ved 1340°C. Prøver av støpeblokken viste heller ikke tegn til deforma-sjon (dvs. mindre enn 5 pst.) ved belastning på 1,78 kg/cm<2> ved temperaturer opptil 2200 °C. Materialet har også meget lav varmeutvidelses-koeffisient til1 å være ildfast materiale, nemlig mindre enn 85 x 10-<7>/°C ved 1000°C The ingot of titanium carbide-iron carbide and graphite also has a number of other remarkable properties. The breaking strength (when bending) was between 141 and 425 kg/cm<2> at 1340°C. Samples of the ingot also showed no signs of deformation (ie less than 5 per cent) at a load of 1.78 kg/cm<2> at temperatures up to 2200 °C. The material also has a very low coefficient of thermal expansion to1 be a refractory material, namely less than 85 x 10-<7>/°C at 1000°C
Den ødeleggende effekt av for mye urenheter ble demonstrert under fremstilling av flere støpeblokker bestående av 60 vektpst. ilmenitt og 40 vektpst. karbon, ved at en av blokkene ble forurenset av aluminaglødepulver under ihellin-gen i formen. Den kjemiske analyse av nevnte blokk var følgende: 47,8 pst. Ti, 16,2 pst. Fe, 8,8 pst. O, 9,8 pst. Al og resten C. Korrosjonsmotstand mot smeltet høybasisk kalksteinsslagg og smeltet jern var meget dårlig og i løpet av kort tid falt prøver av denne støpeblokken fra hverandre bare mens de sto i hyllen, The destructive effect of too many impurities was demonstrated during the production of several ingots consisting of 60 wt. ilmenite and 40 wt. carbon, in that one of the blocks was contaminated by alumina glow powder during the ihelling in the mold. The chemical analysis of said block was as follows: 47.8 percent Ti, 16.2 percent Fe, 8.8 percent O, 9.8 percent Al and the rest C. Corrosion resistance to molten high basic limestone slag and molten iron was very poorly and within a short time samples of this ingot fell apart just while on the shelf,
Andre eksempler på korrosjonssammenset-ninger som kan smeltes til støpeblokker ifølge denne oppfinnelse, er vist som en ytterligere illu-strasjon i tabellene I, III, V og VII. De fleste av sammensetningene er blitt smeltet med tilfredsstillende resultat i en elektrisk induksjonsovn Other examples of corrosion compositions which can be melted into ingots according to this invention are shown as a further illustration in Tables I, III, V and VII. Most of the compositions have been melted with satisfactory results in an electric induction furnace
(som angitt ovenfor). Eksemplene 10, 11, 17, 18, (as stated above). Examples 10, 11, 17, 18,
26, 31, 43, 73 og 89 illustrerer imidlertid porsjons-sammensetninger som med tilfredsstillende resultat er smeltet i en elektrisk lysbueovn (som angitt ovenfor). Data vedrørende egenskaper slik dette er vist i tabellene, er oppnådd i de for-an beskrevne prøver for termal sjokkevne, slagg-motstandsprøve og nedsenkning i flytende jern. Alle sammensetninger og analytiske data i disse tabeller samt tabellene II, IV, VI og VIII er angitt som vektprosent. Typiske og representative kjemiske analyser av utgangsstoffene er føl-gende: 26, 31, 43, 73 and 89, however, illustrate batch compositions which have been successfully melted in an electric arc furnace (as indicated above). Data regarding properties as shown in the tables have been obtained in the previously described tests for thermal shock ability, slag resistance test and immersion in liquid iron. All compositions and analytical data in these tables as well as tables II, IV, VI and VIII are stated as percentage by weight. Typical and representative chemical analyzes of the starting materials are as follows:
Ti ( titansvamp) Ti (titanium sponge)
99,3 pst. Ti, 0,40 pst. maks. Mg, 0,1 pst. maks. Fe, 0,15 pst. maks Cl. 99.3 percent Ti, 0.40 percent max. Mg, 0.1 percent max. Fe, 0.15% max Cl.
Ti<0>2 ( rutil) Ti<0>2 (rutile)
96—98 pst. Ti02, 1 pst. maks. Pe2Os, 0,3 pst. Zr02, 0,3 pst. Al2Os, 0,25 pst. Si02, 0,1 pst. Cr203, 0,29 pst. V2Os, 0,025—0,05 pst. P205, 0,1 pst. S." 96-98 percent TiO2, 1 percent max. Pe2Os, 0.3% ZrO2, 0.3% Al2Os, 0.25% SiO2, 0.1% Cr2O3, 0.29% V2Os, 0.025-0.05% P2O5, 0.1% . S."
TiN ( titannitrid) TiN (titanium nitride)
99 + pst. TiN. 99 + percent TiN.
Zr ( zirkoniumsvamp) Zr (zirconium sponge)
99,2 min. Zr + Hf (Hf ca. 2 pst.), 0,2 pst. maks. Cr + Fe. 99.2 min. Zr + Hf (Hf approx. 2 percent), 0.2 percent max. Cr + Fe.
Zr<0>2 ( zirkon) Zr<0>2 (zircon)
94,15 pst. Zr02, 2,00 pst. Hf02, 1,00 pst. maks. A1203, 0,8 maks. Si02, 0,75 pst. maks. CaO, 0,5 pst. maks. Fe203. 94.15% Zr02, 2.00% Hf02, 1.00% max. A1203, 0.8 max. SiO2, 0.75% max. CaO, 0.5% max. Fe203.
Hf02Hf02
97+pst. Hf2 (Zr ca. 2 pst.). 97+ percent Hf2 (Zr approx. 2 per cent).
V2°5V2°5
99+pst. V2<0>5. 99+ percent V2<0>5.
Nb205 ( optisk kvalitet) 99,9+pst. Nb206. Nb205 (optical quality) 99.9+pst. Nb206.
Ta2Os ( optisk kvalitet) 99,9+pst. TEUjOg. Ta2Os (optical quality) 99.9+pst. TEUjOg.
Ta ( høyrent metall) 99+pst. Ta. Take (high purity metal) 99+pst. Toe.
Cr203 ( grønt kromoksyd) 99,75+pst. Cr203. Cr203 (green chromium oxide) 99.75+% Cr203.
Mo ( høyrent metall) 99+pst. Mo. Mo (high purity metal) 99+pst. Mo.
W ( høyrent metall) W (high purity metal)
99+pst. W. 99+ percent W.
W03 ( scheelite konsentrat) 68—72 pst. WOg (resten antagelig CaO). W03 (scheelite concentrate) 68-72 percent WOg (the rest presumably CaO).
Fe ( rent metall) Fe (pure metal)
99+pst. Pe. 99+ percent Pe.
FeTi03 ( ilmenit) FeTi03 (ilmenite)
(som angitt ovenfor). (as stated above).
Cr ( rent metall) Cr (pure metal)
99+pst. Cr. 99+ percent Cr.
Si ( rent metall) Si (pure metal)
99+pst. Si. 99+ percent Say.
Mn ( rent metall) Mn (pure metal)
99+pst. Mn. 99+ percent Mr.
Hf ( rent metall) Hf (pure metal)
99+pst. Hf. 99+ percent Hf.
ZrSi04 ( zirkon- malm) 67,23 pst. Zr02 (Hf02 ca. 2 pst.), 32,40 pst. Si02, 0,18 pst. FeO, 0,18 pst. Ti02. ZrSi04 (zirconium ore) 67.23 percent Zr02 (Hf02 approx. 2 percent), 32.40 percent Si02, 0.18 percent FeO, 0.18 percent Ti02.
V ( rent metall) V (pure metal)
99+pst. V. 99+ percent V.
Nb. ( rent metall) Nb. (pure metal)
99+pst. Nb. 99+ percent Nb.
Data i tabell I illustrerer sammensetninger med et enkelt metallkarbid og grafitt, og det gar tydelig frem at den vesentlige mengde på minst 5 vektpst. fritt karbon (grafitt) 1 mikrostruk-turen gir en overlegen termal sjokkevne. Titankarbid-grafitt prøver viste seg å være spesielt resistente overfor slaggkutt og jern. Mens zir-konkarbid-grafitt prøver ikke var så korrosjons-resistente som titankarbid-grafitt prøvene, så viste de ikke desto mindre god motstand mot slaggkorrosjon. Som nevnt før, så vil ikke alt karbonet i støpegodset komme fra utgangsmaterialet, men noe vil komme fra grafittelektrodene eller grafittbeholderen. Den kjemiske analyse som er vist i tabell II viser dette helt tydelig. Videre gir de sistnevnte data sammen med de i tabell I en god indikasjon på den sammensetning man bør ha i utgangsmaterialet for å fremstille en viss ønskelig sammensetning i støpeblokken. De eksempler som er vist i tabell III og V, illustrerer sammensetninger hvor det benyttes to karbiddannende metalliske forbindelser som så vil gi en eller flere karbidfaser som vist i tabell IV og VI. Disse data bekrefter igjen at nærvær av minst 5 vektpst. grafitt følges av overlegen termal sjokkmotstand i alle tifelle, i motsetning til de resultater som ble oppnådd med prøver som inneholdt mindre enn 5 vektpst. fritt karbon. Skjønt ikke alle prøver viste overlegen motstand overfor smeltet slagg og jern, så fant man at titan-jern-karbon, titan-zirkonium-karbon- og zirkonium-krom-karbon-prøvene blant disse eksempler i alminnelighet hadde best korrosjons-resistens for smeltet slagg og jern i slike forsøk. Titan-jern-karbon eksemplene i tabell III viser klart et ønskelig støpt, sammensmeltet ildfast materiale som kan brukes ved isettlng av foring i basiske øksygen-ovner, og hvor støpeblokkene kan fremstilles fra relativt billige råstoffer som ilmenitt og grafitt. En innbefatning av jern i sammensetting vil videre redusere blandingens smeltepunkt slik at det blir lettere å fremstille støpeblokker uten at dette ødelegger de forøns-kede egenskaper. Mens smelepunktet for en sammensetning på ca. 80 pst. Ti og 20 pst. C ligger i overkant av 3000°C, så vil smeltepunktet for sammensetningen 65 pst. Ti, 15 pst. Fe og 20 pst. C ligge på ca. 2500 °C. Når det angår jerholdige sammensetninger så kan det bemerkes at det tapes en betydelig mengde jern under smelteprosessen slik dette kan sees i tabellene med kjemiske analyser (tabell IV). Disse data gir en god indikasjon på sammensetningen av utgangsmaterialet for å få en ønsket sammensetning på av støpeblokker Ifølge denne oppfinnelse. Eksemplene i tabell VII illustrerer noen få komplekse sammensetninger av.karbiddannende metaller som kan brukes ved fremstillingen av støpeblokker Ifølge oppfinnelsen, og som mange ganger vil gi komplekse karbidkrystaller i fast løsning i støpeblokker, slik det er vist i tabell VII. Data in Table I illustrate compositions with a single metal carbide and graphite, and it clearly shows that the significant amount of at least 5 wt. the free carbon (graphite) 1 microstructure provides a superior thermal shock capability. Titanium carbide-graphite samples proved to be particularly resistant to slag cuts and iron. While the zir-con carbide-graphite samples were not as corrosion-resistant as the titanium carbide-graphite samples, they nevertheless showed good resistance to slag corrosion. As mentioned before, not all the carbon in the casting will come from the starting material, but some will come from the graphite electrodes or the graphite container. The chemical analysis shown in Table II shows this quite clearly. Furthermore, the latter data together with those in Table I give a good indication of the composition one should have in the starting material in order to produce a certain desirable composition in the casting block. The examples shown in Tables III and V illustrate compositions where two carbide-forming metallic compounds are used which will then give one or more carbide phases as shown in Tables IV and VI. These data confirm again that the presence of at least 5 wt. graphite is followed by superior thermal shock resistance in all cases, in contrast to the results obtained with samples containing less than 5 wt. free carbon. Although not all samples showed superior resistance to molten slag and iron, it was found that the titanium-iron-carbon, titanium-zirconium-carbon and zirconium-chromium-carbon samples among these samples generally had the best corrosion resistance to molten slag and iron in such experiments. The titanium-iron-carbon examples in Table III clearly show a desirable cast, fused refractory material that can be used in liner installation in basic oxy-oxygen furnaces, and where the ingots can be produced from relatively cheap raw materials such as ilmenite and graphite. An inclusion of iron in the composition will further reduce the melting point of the mixture so that it becomes easier to produce ingots without this destroying the desired properties. While the melting point for a composition of approx. 80 per cent Ti and 20 per cent C are above 3000°C, then the melting point for the composition 65 per cent Ti, 15 per cent Fe and 20 per cent C will be approx. 2500 °C. When it concerns iron-containing compositions, it can be noted that a significant amount of iron is lost during the melting process, as can be seen in the tables of chemical analyzes (table IV). These data give a good indication of the composition of the starting material in order to obtain a desired composition of casting blocks according to this invention. The examples in Table VII illustrate a few complex compositions of carbide-forming metals which can be used in the manufacture of casting blocks According to the invention, and which many times will give complex carbide crystals in solid solution in casting blocks, as shown in table VII.
Mens oppfinnelens støpeblokker bare krever 20 vektpst. (analytisk) av metallkarbiddannende stoffer (som beskrevet ovenfor), så har man be-stemt visse foretrukne og optimale minimums-grenser for eindel metaller når de anvendes alene eller sammen med andre. Nevnte grenser er føl-gende (vektpst.): While the inventor's casting blocks only require 20 wt. (analytically) of metal carbide-forming substances (as described above), certain preferred and optimal minimum limits have been determined for noble metals when they are used alone or together with others. The mentioned limits are as follows (weight):
Det foretrekkes at totalinnholdet av oksygen It is preferred that the total content of oxygen
og nitrogen ikke overstiger 10 vektpst., men man and nitrogen does not exceed 10% by weight, but Mon
oppnår opitimum korrosjonsmotstand overfor achieves optimum corrosion resistance to
slagg fra basiske oksygenovner når innholdet er slag from basic oxygen furnaces when the contents are
så lavt som 5 pst. ,og det er ønskelig med innhold as low as 5 per cent, and content is desirable
under 1 vektpst. Ved å nedsette urenhetene til under 1 wt. By reducing the impurities to
under 1 vektpst. så vil dette også gi optimum under 1 wt. then this will also give an optimum
egenskaper generelt. characteristics in general.
Skjønt begrepet «legering» ofte anvendes Although the term "alloy" is often used
mer om stoffer som er sammensatt av to eller more about substances that are composed of two or
flere metaller som løses i hverandre i smeltet tilstand og så har størknet, så kan man- på grunn several metals that dissolve in each other in a molten state and then have solidified, then one can - on account of
av at oppfinnelsens støpeblokker har en liknende of the invention's casting blocks having a similar
og/eller analog natur også kalle disse en legering and/or analogous nature also call these an alloy
av karbon med de ovennevnte metalliske forbindelser. of carbon with the above-mentioned metallic compounds.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NO853655A NO159549C (en) | 1985-09-18 | 1985-09-18 | HYDRODYNAMIC STOCK FOR FLUID FILM. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NO853655A NO159549C (en) | 1985-09-18 | 1985-09-18 | HYDRODYNAMIC STOCK FOR FLUID FILM. |
Publications (3)
Publication Number | Publication Date |
---|---|
NO853655L NO853655L (en) | 1987-03-19 |
NO159549B true NO159549B (en) | 1988-10-03 |
NO159549C NO159549C (en) | 1989-01-11 |
Family
ID=19888484
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO853655A NO159549C (en) | 1985-09-18 | 1985-09-18 | HYDRODYNAMIC STOCK FOR FLUID FILM. |
Country Status (1)
Country | Link |
---|---|
NO (1) | NO159549C (en) |
-
1985
- 1985-09-18 NO NO853655A patent/NO159549C/en unknown
Also Published As
Publication number | Publication date |
---|---|
NO159549C (en) | 1989-01-11 |
NO853655L (en) | 1987-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2535526A (en) | Stabilized zirconia and method for producing same | |
CN104140278B (en) | A kind of external refining magnesia calcium zirconium brick prepared by reaction in-situ and production method | |
US3879210A (en) | Fused-cast refractory | |
CA2319660C (en) | Alumina-magnesia-graphite type refractory | |
JP5782118B2 (en) | Refractory block and glass furnace | |
Buhr et al. | The steel industry in Germany–trends in clean steel technology and refractory engineering | |
CA2017622C (en) | Ceramic welding process and powder mixture for use in same | |
CN113185306A (en) | Method for preparing high-resistance aluminum-chromium brick by doping zirconium boride | |
NO117628B (en) | ||
US3340076A (en) | Fused refractory castings | |
US5401698A (en) | Ceramic welding powder mixture | |
JP7481982B2 (en) | Manufacturing method of magnesia-chrome bricks | |
KR20030010604A (en) | Ferroalloy Production | |
NO159549B (en) | HYDRODYNAMIC STOCK FOR FLUID FILM. | |
Karakus | Cathodoluminescence (CL) microscopy application to refractories and slags | |
JP5448144B2 (en) | Mug brick | |
EP0633232A1 (en) | Fused zirconia refractory materials, method for producing the same and refractory products | |
EP1328490B1 (en) | Refractory article | |
JP2015096266A (en) | Immersion nozzle | |
TW201628994A (en) | Batch for the production of a refractory product, a process for the production of a refractory product, a refractory product as well as the use of a refractory product | |
JPH01162714A (en) | Converter | |
Biswas et al. | Refractory for Secondary Refining of Steel | |
JP2022056100A (en) | Method for producing magnesia-chrome brick | |
Feifang et al. | Insulating Permanent Lining of Calcium Hexaluminate Based Castable for 300t Ladle in Baosteel | |
RU2040512C1 (en) | Method of hot repair of lining or manufacture of refractory products and powder mix |