JPH04317419A - Production of aqueous manganese bromide solution - Google Patents

Production of aqueous manganese bromide solution

Info

Publication number
JPH04317419A
JPH04317419A JP10517891A JP10517891A JPH04317419A JP H04317419 A JPH04317419 A JP H04317419A JP 10517891 A JP10517891 A JP 10517891A JP 10517891 A JP10517891 A JP 10517891A JP H04317419 A JPH04317419 A JP H04317419A
Authority
JP
Japan
Prior art keywords
manganese
bromide
reaction
hydrogen bromide
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10517891A
Other languages
Japanese (ja)
Other versions
JP2985362B2 (en
Inventor
Hidetaka Egashira
英孝 江頭
Tsugio Murakami
次雄 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP3105178A priority Critical patent/JP2985362B2/en
Publication of JPH04317419A publication Critical patent/JPH04317419A/en
Application granted granted Critical
Publication of JP2985362B2 publication Critical patent/JP2985362B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To efficiently obtain aq. manganese bromide soln. having high purity and high quality without containing bromine or hydrogen bromide by reacting metal manganese, bivalent basic manganese compd., with hydrogen bromide in water with a specified Mn/Br. CONSTITUTION:Metal manganese and/or bivalent basic manganese compd. such as MnO, Mn(OH)2, MnCO3, etc., is made to react with hydrogen bromide in water with 0.52-1.00 Mn/Br atomic ratio. If the Mn/Br atomic ratio is <0.52, the reaction proceeds vigorously, the heat of reaction is hardly removed, and unreacted hydrogen bromide remains. On the other hand, if the ratio is larger than 1.00, the reaction proceeds slowly, which takes long time to complete. Moreover, in this case, the reaction is apt to produce fine manganease hydroxide or manganese oxide hydrate which are hardly separated by filtering. It is preferable that pH at the end of the reaction is 0-4.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、臭化マンガン水溶液の
製造方法に関するものである。臭化マンガン水溶液は、
有機化合物の酸化触媒等として広く用いられ、特に高純
度テレフタル酸を製造するときの触媒として有用な化合
物である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an aqueous solution of manganese bromide. Manganese bromide aqueous solution is
It is widely used as an oxidation catalyst for organic compounds, and is particularly useful as a catalyst for producing high-purity terephthalic acid.

【0002】0002

【従来の技術】従来、臭化マンガンの製造方法としては
、加熱したマンガンに臭素気流を通す方法,酸化マンガ
ン(II)に臭素を作用させる方法,マンガンと臭素水
との反応,炭酸マンガン(II)を臭化水素酸に溶解す
る方法(以上、化学大辞典4第610頁  共立出版株
式会社),ベンゼン中酢酸マンガンを過剰の臭化アセチ
ルと反応させる方法(GMELIN  HANDBUC
H  Mn  TEIL  C5第265頁  197
8)等が知られている。また、一般的な金属ハロゲン化
物の製造方法としては、金属とハロゲン化水素酸との反
応が知られている。
[Prior Art] Conventionally, methods for producing manganese bromide include passing a bromine stream through heated manganese, allowing bromine to act on manganese (II) oxide, reacting manganese with bromine water, manganese carbonate (II) ) in hydrobromic acid (Kyoritsu Shuppan Co., Ltd., page 610 of Kagaku Dictionary 4), and a method of reacting manganese acetate in benzene with excess acetyl bromide (GMELIN HANDBUC).
H Mn TEIL C5 page 265 197
8) etc. are known. Furthermore, a reaction between a metal and a hydrohalic acid is known as a general method for producing metal halides.

【0003】0003

【発明が解決しようとする課題】本発明者らは、これら
の方法を、マンガン源と臭素源とを化学量論比にして実
施したところ、臭素または臭化水素が製品臭化マンガン
中に残存することを見出だした。ところで、有機化合物
の自動酸化、特にp−キシレンの空気酸化による高純度
テレフタル酸の製造に用いられる触媒としての臭化マン
ガン水溶液は、高品質が要求される。不純物としては、
Fe,Ni,Pb等の金属イオンが厳密に制限されるが
、未反応物の臭素または臭化水素の含有量も重要であり
、低く抑える必要がある。これらは、触媒としての臭化
マンガンの作用を抑制し、また装置材料の腐食を促進す
る(腐食が起きると装置材料の減肉だけでなく、装置材
料構成物質が触媒液に溶解し、触媒毒となる場合がある
)。臭素または臭化水素の除去は、アルカリ性物質によ
る中和や脱気によって行なうことができる。しかし、水
酸化ナトリウム,水酸化カリウム,アンモニアなどよっ
て中和すると、中和生成物が不純物となる。酸化マンガ
ン,水酸化マンガン,炭酸マンガンなどの塩基性マンガ
ン化合物によって中和する場合は、中和生成物は不純物
とはならないが、その添加量の調節が難しく、また、工
程数が増え煩雑となる。
[Problems to be Solved by the Invention] When the present inventors carried out these methods using a stoichiometric ratio of manganese source and bromine source, it was found that bromine or hydrogen bromide remained in the manganese bromide product. I found something to do. By the way, a high quality manganese bromide aqueous solution is required as a catalyst used in the automatic oxidation of organic compounds, particularly in the production of high purity terephthalic acid by air oxidation of p-xylene. As impurities,
Although metal ions such as Fe, Ni, and Pb are strictly limited, the content of unreacted bromine or hydrogen bromide is also important and must be kept low. These suppress the action of manganese bromide as a catalyst and promote corrosion of equipment materials (when corrosion occurs, not only does the equipment material become thinner, but also the constituent substances of the equipment material dissolve in the catalyst liquid, causing catalyst poisoning). ). Bromine or hydrogen bromide can be removed by neutralization with an alkaline substance or deaeration. However, when neutralized with sodium hydroxide, potassium hydroxide, ammonia, etc., the neutralization product becomes an impurity. When neutralizing with basic manganese compounds such as manganese oxide, manganese hydroxide, and manganese carbonate, the neutralized product does not become an impurity, but it is difficult to control the amount added, and the number of steps increases and becomes complicated. .

【0004】本発明の目的は、このような臭素または臭
化水素を含まない高純度・高品質の臭化マンガン水溶液
を経済性良く効率的に製造する方法を提供することにあ
る。
An object of the present invention is to provide a method for economically and efficiently producing a high-purity, high-quality manganese bromide aqueous solution that does not contain bromine or hydrogen bromide.

【0005】[0005]

【課題を解決するための手段】本発明者らは、この目的
を達成するため、臭化マンガン水溶液の製造方法につい
て鋭意研究を行った結果、臭素とマンガンとの原子比を
調節することによって、高純度で高品質の臭化マンガン
水溶液を経済性良く効率的に、しかも簡単な操作で製造
することができることを見出だした。即ち、本発明は、
金属マンガンおよび/または2価の塩基性マンガン化合
物と臭化水素とを、Mn/Br原子比0.52〜1.0
0の割合で水中で反応させることによる、臭化マンガン
の製造方法である。
[Means for Solving the Problems] In order to achieve this object, the present inventors conducted extensive research on a method for producing an aqueous solution of manganese bromide, and found that by adjusting the atomic ratio of bromine and manganese, It has been discovered that a high-purity, high-quality manganese bromide aqueous solution can be produced economically, efficiently, and with simple operations. That is, the present invention
Metallic manganese and/or divalent basic manganese compound and hydrogen bromide are mixed at an Mn/Br atomic ratio of 0.52 to 1.0.
This is a method for producing manganese bromide by reacting it in water at a ratio of 0.

【0006】以下、本発明について更に詳細に説明する
。本発明で用いるマンガン源は、金属マンガンおよび/
または2価の塩基性マンガン化合物である。金属マンガ
ンとしては、別に制限はなく、通常市販されている電解
法金属マンガン,テルミット法金属マンガン,炭素還元
による金属マンガン等を用いることができる。製品品質
の面から電解法金属マンガンが高品質であり好ましい。
The present invention will be explained in more detail below. The manganese source used in the present invention includes metallic manganese and/or
Or it is a divalent basic manganese compound. There are no particular limitations on the metal manganese, and commonly available commercially available electrolytic manganese metal, thermite metal manganese, carbon reduction metal manganese, and the like can be used. In terms of product quality, electrolytic manganese metal is of high quality and is preferred.

【0007】2価の塩基性マンガン化合物としては、M
nO,Mn(OH)2,MnCO3などで表される2価
の酸化マンガン,水酸化マンガン,炭酸マンガンなどを
挙げることができ、これらはいずれも水難溶性ないしは
水不溶性である。マンガン化合物としては、2価のもの
以外に3価,4価、7価などのものが知られており、こ
れら原子価が2をこえるものを使用しても、臭化マンガ
ンが生成するが(「臭化マンガン」は2価のものに限ら
れる。すなわち、マンガン臭化物としては、2価のもの
しか知られておらず、これら原子価の高いマンガン化合
物を使用しても、えられる臭化物は2価のものである)
、同時に製品からの分離の困難な臭素が副生するので、
本発明の目的に副わない。これらマンガン化合物は、粉
末、造粒品のいずれをも使用しうる。また、市販の金属
マンガンにはフレーク状のものがあり、このフレーク状
のものが純度,操作性などの点で好ましい。
As the divalent basic manganese compound, M
Examples include divalent manganese oxide, manganese hydroxide, and manganese carbonate represented by nO, Mn(OH)2, MnCO3, etc., and all of these are sparingly soluble or insoluble in water. In addition to divalent manganese compounds, trivalent, tetravalent, and heptavalent compounds are known, and even if these compounds with a valence exceeding 2 are used, manganese bromide is produced ( "Manganese bromide" is limited to divalent ones.In other words, only divalent manganese bromides are known, and even if these high valence manganese compounds are used, the resulting bromide is only divalent. (of value)
At the same time, bromine, which is difficult to separate from the product, is produced as a by-product.
It does not interfere with the purpose of the present invention. These manganese compounds may be used in the form of powder or granules. Further, commercially available metallic manganese is available in flake form, and this flake form is preferable in terms of purity, operability, and the like.

【0008】マンガン源としては、とくに金属マンガン
が望ましい。金属マンガンは、臭化水素との反応の速度
が適度であり、比較的純度の高いものを入手することが
でき、さらに残存臭化水素の調節が容易であるからであ
る。金属マンガンの形状は、上記のようにフレーク状が
好ましい。当初フレーク状は単位重量当たりの表面積が
小さいため、反応に長時間要すると考えていたが、予想
に反して反応性は良く、効率良く臭化マンガンを製造す
ることができた。金属マンガンを臭化水素と反応させる
と水素ガスが発生するが、大量の窒素ガス,空気などで
希釈するか、または空気の混入を防ぐことにより爆発範
囲外で操作することができる。後者の方法を採れば、副
生する水素ガスを純度よく取得することになる。金属マ
ンガンフレークを使用すれば、前述のように純度が良く
、操作性も良い。
[0008] Metallic manganese is particularly desirable as a manganese source. This is because metal manganese has an appropriate rate of reaction with hydrogen bromide, can be obtained with relatively high purity, and furthermore, residual hydrogen bromide can be easily controlled. The shape of the metal manganese is preferably flaky as described above. Initially, it was thought that the reaction would take a long time because flakes have a small surface area per unit weight, but contrary to expectations, the reactivity was good and manganese bromide could be produced efficiently. When metal manganese is reacted with hydrogen bromide, hydrogen gas is generated, but it can be operated outside the explosive range by diluting it with a large amount of nitrogen gas, air, etc., or by preventing air from getting mixed in. If the latter method is adopted, the by-product hydrogen gas will be obtained with high purity. If metallic manganese flakes are used, the purity is good as mentioned above, and the operability is also good.

【0009】本発明では、臭素源として臭化水素を用い
る。臭素を使用しても臭化マンガンがえられるが、臭化
水素にくらべて反応性がきわめて低く未反応臭素の残留
を避けることができず、かつその未反応臭素は加熱や減
圧によって除去するのも困難である。
In the present invention, hydrogen bromide is used as a bromine source. Manganese bromide can be obtained by using bromine, but its reactivity is extremely low compared to hydrogen bromide, and unreacted bromine cannot be avoided, and unreacted bromine cannot be removed by heating or reduced pressure. is also difficult.

【0010】これらマンガン源および臭化水素のほか、
水をも反応系へ供給しなければならない。臭化水素およ
び水の供給態様としては、臭化水素ガスと水,臭化水素
酸水溶液,臭化水素ガスと臭化水素酸水溶液,水と臭化
水素酸水溶液,臭化水素ガスと水と臭化水素酸水溶液な
どのいずれをもとりうる。これらの割合や臭化水素酸水
溶液の濃度は、マンガン源の種類およびえられる臭化マ
ンガン水溶液の所望濃度との関連で決定される。臭化マ
ンガン水溶液の濃度が低すぎると、当然その輸送コスト
が高くなり、また触媒などとして使用される場合活性が
低くなるので、実用上その濃度は20wt%以上とする
のがよい。しかし、臭化マンガンの常温における溶解度
は60wt%であるので、臭化マンガン含有量がこれよ
り高い液を生成させると、未反応のマンガン源と析出し
た臭化マンガンとの分離の処理が必要になる。20〜6
0wt%の臭化マンガン水溶液を生成させるために、上
記いずれの態様をとるにしても、金属マンガンを使用す
る場合は、系に供給する臭化水素と水との重量比を17
/83〜54/46にするのがよい。通常、市販の臭化
水素酸水溶液は47wt%であり、これを好適に使用す
ることができる。これと金属マンガンを用いると、約5
4wt%の臭化マンガン水溶液が得られる。たとえば、
有機化合物の酸化触媒として販売されている臭化マンガ
ンは、50〜60wt%の水溶液であり、これをうるに
は、この47wt%臭化水素酸水溶液を使用するか、ま
たはこれに臭化水素ガスを併用すればよい。また、たと
えば、水とマンガン源とを反応槽に仕込んでおき、これ
に臭化水素ガスを吹き込む方法によれば、えられる臭化
マンガン水溶液の濃度を自由に調整することができる。
In addition to these manganese sources and hydrogen bromide,
Water must also be supplied to the reaction system. Hydrogen bromide and water supply modes include hydrogen bromide gas and water, hydrobromic acid aqueous solution, hydrogen bromide gas and hydrobromic acid aqueous solution, water and hydrobromic acid aqueous solution, and hydrogen bromide gas and water Any solution such as an aqueous solution of hydrobromic acid can be used. These proportions and the concentration of the aqueous hydrobromic acid solution are determined in relation to the type of manganese source and the desired concentration of the aqueous manganese bromide solution to be obtained. If the concentration of the manganese bromide aqueous solution is too low, the transportation cost will naturally increase, and the activity will decrease when used as a catalyst, so for practical purposes, the concentration is preferably 20 wt% or more. However, the solubility of manganese bromide at room temperature is 60 wt%, so if a liquid with a higher manganese bromide content is produced, it will be necessary to separate the unreacted manganese source from the precipitated manganese bromide. Become. 20-6
In order to produce a 0 wt % manganese bromide aqueous solution, no matter which of the above embodiments is used, if metallic manganese is used, the weight ratio of hydrogen bromide and water supplied to the system should be 17
/83 to 54/46 is preferable. Usually, a commercially available aqueous solution of hydrobromic acid has a concentration of 47 wt %, and can be preferably used. Using this and metal manganese, approximately 5
A 4 wt % manganese bromide aqueous solution is obtained. for example,
Manganese bromide, which is sold as an oxidation catalyst for organic compounds, is a 50 to 60 wt% aqueous solution. To obtain this, use this 47 wt% aqueous solution of hydrobromic acid, or add hydrogen bromide gas to this. You can use them together. Further, for example, by charging water and a manganese source in a reaction tank and blowing hydrogen bromide gas into the reaction tank, the concentration of the resulting manganese bromide aqueous solution can be freely adjusted.

【0011】本発明の骨子は、以上の原料をMn/Br
原子の比が0.52〜1.00の範囲になるように調節
して使用することである。この比が、0.52よりも小
さいと、反応が激しくなって反応熱の除去が困難になり
、また未反応の臭化水素が残ることになり、この処理が
必要となる。いっぽう、1.00よりも大きい場合は、
反応が遅くなり、その完結に長時間を要する。また、微
細な水酸化マンガンや酸化マンガン水和物が生成しがち
であり、この場合、微粒子であるため濾過による分離が
困難である。この比が0.52〜1.00のとき、反応
も順調であり、除熱も容易であって未反応水酸化マンガ
ン,酸化マンガン水和物などが生成することもなく、操
作は容易となる。Mn/Br原子の比のより好ましい範
囲は、0.55〜0.80であり、前述の効果はさらに
大きくなる。(Mn/Br原子比が高いと反応が激しく
なり、低いと緩慢となることは、マンガン源と臭化水素
との反応がごく速いことで説明することができる)。マ
ンガン源と臭化水素とから臭化マンガンがえられる反応
における、Mn/Brの化学量論原子比は0.5である
ので、本発明ではマンガン源が過剰に使用されることに
なる。したがって、反応終了時には、系に未反応のマン
ガン源が残るが、それが金属マンガン、2価の塩基性マ
ンガン化合物のいずれであっても、反応液から分離して
再度本発明のマンガン源としてそのまま全量使用するこ
とができる。
The gist of the present invention is to convert the above raw materials into Mn/Br
The atomic ratio is adjusted to be in the range of 0.52 to 1.00. If this ratio is less than 0.52, the reaction will be so intense that it will be difficult to remove the reaction heat, and unreacted hydrogen bromide will remain, making this treatment necessary. On the other hand, if it is larger than 1.00,
The reaction is slow and takes a long time to complete. In addition, fine manganese hydroxide and manganese oxide hydrate tend to be produced, and in this case, since they are fine particles, it is difficult to separate them by filtration. When this ratio is 0.52 to 1.00, the reaction is smooth, heat removal is easy, and unreacted manganese hydroxide, manganese oxide hydrate, etc. are not generated, and the operation is easy. . A more preferable range of the Mn/Br atomic ratio is 0.55 to 0.80, and the above-mentioned effect is further enhanced. (The fact that the reaction becomes vigorous when the Mn/Br atomic ratio is high and slow when it is low can be explained by the fact that the reaction between the manganese source and hydrogen bromide is very fast). Since the stoichiometric atomic ratio of Mn/Br in the reaction in which manganese bromide is obtained from a manganese source and hydrogen bromide is 0.5, the manganese source is used in excess in the present invention. Therefore, at the end of the reaction, an unreacted manganese source remains in the system, but whether it is metallic manganese or a divalent basic manganese compound, it is separated from the reaction solution and reused as the manganese source of the present invention. The entire amount can be used.

【0012】反応終点のpHは0〜4の範囲であること
が好ましく、本発明では上記のMn/Br原子比および
残存臭化水素酸水溶液の濃度を調節することによって容
易にその範囲内にすることができる。このpHが0より
も低いということは、臭化水素が過剰に残るということ
であり、これらが不純物となり、またこれに接触する装
置や容器を腐食させ、腐食による容器・装置材料からの
不純物混入も多くなる。いっぽう、pHが4よりも高く
なると、製品である臭化マンガンが加水分解しやすく、
それによる水酸化マンガンや酸化マンガン水和物の微粒
子が製造時,貯蔵時,使用時などに析出し多くの害をも
たらす。これら微粒子は容器器壁に付着したり、配管,
ポンプを詰まらせたりする。また、触媒として用いたと
き、生成物の品質や純度を低下させることになる。pH
0〜4では、未反応の臭化水素含有量が低く、腐食の問
題も抑えられ、加水分解による沈殿物の生成も防ぐこと
ができ、かつ触媒として使用する場合はその性能は一段
と向上する。pHはpH計で容易に測定し、調節するこ
とができる。更に、好ましいpH範囲は2〜3であり、
前述の効果は更に大きくなる。pHをこの範囲にすると
、47wt%臭化水素酸と金属マンガンを用いる場合、
残存HBr量は0.01wt%以下にすることができる
。上記のMn/Br原子比が0.52よりも小さいと、
pHを0以上にするのに長時間を要するないしは0以上
するのが不可能になり、いっぽう、1.00よりも大き
いとpHが4をこえてしまう。原子比を0.52〜1.
00にすることによってpHを0〜4とするのが容易と
なる。
The pH at the end of the reaction is preferably in the range of 0 to 4, and in the present invention, it can be easily adjusted within this range by adjusting the Mn/Br atomic ratio and the concentration of the residual hydrobromic acid aqueous solution. be able to. If this pH is lower than 0, this means that an excess of hydrogen bromide remains, which becomes an impurity and corrodes the equipment and containers that come into contact with it. There will also be more. On the other hand, when the pH is higher than 4, the product manganese bromide is easily hydrolyzed.
The resulting fine particles of manganese hydroxide and manganese oxide hydrate precipitate during manufacturing, storage, and use, causing many harms. These fine particles may adhere to the walls of containers, pipes, etc.
or clog the pump. Also, when used as a catalyst, it will reduce the quality and purity of the product. pH
When the number is 0 to 4, the unreacted hydrogen bromide content is low, corrosion problems are suppressed, and the formation of precipitates due to hydrolysis can be prevented, and when used as a catalyst, its performance is further improved. pH can be easily measured and adjusted with a pH meter. Furthermore, the preferred pH range is 2 to 3,
The aforementioned effect becomes even greater. When the pH is within this range, when using 47 wt% hydrobromic acid and metal manganese,
The amount of remaining HBr can be 0.01 wt% or less. When the above Mn/Br atomic ratio is smaller than 0.52,
It takes a long time to raise the pH to 0 or higher, or it becomes impossible to raise the pH to 0 or higher.On the other hand, if it is higher than 1.00, the pH will exceed 4. The atomic ratio is 0.52 to 1.
By setting the pH to 00, it becomes easy to adjust the pH to 0 to 4.

【0013】マンガン化合物と水性臭化水素の系への添
加の順序は、■マンガン源に臭化水素を加える,■臭化
水素にマンガン源を加える,■マンガン源と臭化水素を
同時に加える、のいずれでもよい。また、その添加の方
式についても、バッチ式,半連続式,連続式のいずれで
もよい。しかし、本発明における反応は、大きな発熱反
応であり、Mn/Br原子比の高い系ほど反応が穏やか
になるので、■の方式が望ましい。また、操作性,反応
の制御,反応熱の除去,pHの調節等から、マンガン源
を反応槽にあらかじめ張り込み、次に臭化水素を連続的
又は間欠的に加え、加え終わった後pHを測定しながら
、pH0〜4の範囲で液を抜き出し、必要あれば濾過す
るのが最も好ましい。とくに、フレーク状金属マンガン
を使用する場合、溶解筒を別に設け、ここに金属マンガ
ンを入れて臭化水素との反応を行わせ、反応液を槽と該
溶解筒の間を循環させ、槽へ水性臭化水素源を供給し、
その槽で冷却,加温,攪拌(pHの測定のために攪拌す
る必要がある)などを行なう方式が有利である。
The order of addition of the manganese compound and aqueous hydrogen bromide to the system is: (1) adding hydrogen bromide to the manganese source, (2) adding the manganese source to hydrogen bromide, (2) adding the manganese source and hydrogen bromide simultaneously. Either of these is fine. Further, the addition method may be a batch method, a semi-continuous method, or a continuous method. However, the reaction in the present invention is a large exothermic reaction, and the system with a higher Mn/Br atomic ratio has a milder reaction, so method (2) is preferable. In addition, for ease of operation, reaction control, removal of reaction heat, pH adjustment, etc., it is recommended to fill the reaction tank with a manganese source in advance, then add hydrogen bromide continuously or intermittently, and measure the pH after the addition is complete. However, it is most preferable to extract the liquid in a pH range of 0 to 4 and filter it if necessary. In particular, when using flaky metal manganese, a separate melting tube is provided, the metal manganese is put there and reacted with hydrogen bromide, and the reaction liquid is circulated between the tank and the melting tube, and then transferred to the tank. providing an aqueous hydrogen bromide source;
It is advantageous to perform cooling, heating, stirring (stirring is required for pH measurement), etc. in the tank.

【0014】均一に反応を行わせるために攪拌するほう
が望ましいが、攪拌しなくても反応は充分進行する。攪
拌は、通常の攪拌機による攪拌でも、ポンプ循環による
攪拌でもよい。
Although it is preferable to stir the mixture in order to carry out the reaction uniformly, the reaction proceeds satisfactorily even without stirring. The stirring may be carried out by a normal stirrer or by pump circulation.

【0015】本発明は、前述のとおり、反応の終了時系
に過剰のマンガン源が残る。反応を行わせた系からマン
ガン源を除くには、濾過する必要があるが、この濾過は
、通常のガラス繊維濾布を使用する遠心濾過器,加圧濾
過器などやカートリッジフィルター等で行えばよい。 とくに、フレーク状金属マンガンを用いる場合、残存す
る金属マンガンは底に沈み、浮遊固体はごく少ないので
、濾過操作が容易である。  金属マンガンを使用する
場合は水素が、また炭酸マンガンを使用する場合は炭酸
ガスが副生するが、これら副生ガスは、水をコンデンス
させて排出してもよく、水を同伴させたまま排出しても
よい。濃度の高い臭化マンガン水溶液を得たい場合は後
者が望ましく、臭化水素酸水溶液として47wt%のも
のを使用する場合には2〜3wt%の濃度向上が見込め
る。
As described above, in the present invention, an excess manganese source remains at the end of the reaction. In order to remove the manganese source from the reaction system, it is necessary to filter it, but this filtration can be performed using a centrifugal filter, pressure filter, etc. using a normal glass fiber filter cloth, or a cartridge filter. good. In particular, when flaky metallic manganese is used, the remaining metallic manganese sinks to the bottom and there are very few suspended solids, making the filtration operation easy. Hydrogen is produced when metallic manganese is used, and carbon dioxide gas is produced when manganese carbonate is used, but these by-product gases can be discharged by condensing water, or they can be discharged with water still accompanying them. You may. When it is desired to obtain a highly concentrated manganese bromide aqueous solution, the latter is preferable, and when a 47 wt% hydrobromic acid aqueous solution is used, an increase in concentration of 2 to 3 wt% can be expected.

【0016】[0016]

【発明の効果】本発明によれば、多くのそして重要な効
果が発現する。以下列記する。 (1)原料のMn/Br原子比を0.52〜1.00に
調節することによって、高純度で高品質の臭化マンガン
水溶液を経済性良く効率的に、しかも簡単な操作で製造
することができる。 (2)特に品質上重要な、水性臭化水素の過剰量を容易
に最小限にでき、装置腐食の抑制および微細不純物粒子
の生成抑制を達成することができ、製品を触媒として用
いるときの効果をより大きくできる。 (3)反応の制御は容易であり、製造上課題となる除熱
,副生ガス量などを簡単に調整することができる。 (4)pH0〜4の高純度かつ高品質の臭化マンガン水
溶液を容易に製造することができる。
ADVANTAGEOUS EFFECTS OF THE INVENTION According to the present invention, many and important effects are realized. Listed below. (1) By adjusting the Mn/Br atomic ratio of the raw materials to 0.52 to 1.00, a high-purity, high-quality manganese bromide aqueous solution can be produced economically, efficiently, and with simple operations. Can be done. (2) The excess amount of aqueous hydrogen bromide, which is especially important for quality, can be easily minimized, and equipment corrosion and generation of fine impurity particles can be suppressed, which is effective when the product is used as a catalyst. can be made larger. (3) The reaction is easy to control, and heat removal, amount of by-product gas, etc., which are issues in production, can be easily adjusted. (4) A highly pure and high quality manganese bromide aqueous solution with a pH of 0 to 4 can be easily produced.

【0017】[0017]

【実施例】次に本発明を実施例により更に具体的に説明
する。 実施例1 フレーク状金属マンガン(東ソー株式会社製、普通品)
280.1gを滴下ロート,攪拌羽根,サンプル抜き出
し管,ジムロート冷却管付き2リットル丸底フラスコに
入れ、内部を窒素置換した。該丸底フラスコを水で冷却
しつつ、滴下ロートにより47wt%臭化水素酸水溶液
(東ソー株式会社製)の添加を開始した。臭化水素酸水
溶液の滴下と同時に水素ガスが発生し、液温は約90℃
まで上昇してから降下し始めた。そこで水による冷却を
止め、加温して反応液を65℃に保った。発生した水素
ガスは冷却管に通じ、水を凝縮させフラスコに還流し、
水素ガスはパージした。臭化水素酸水溶液は、1403
.6g(すなわち、Mn/Br原子比0.62)を30
分かけて添加した。その添加開始から約500g添加し
た時点で攪拌を開始した。臭化水素酸添加終了後、さら
に攪拌および反応液の65℃の温度調節を続け、サンプ
リングを随時行い、反応液のpHが2になった時点で、
反応液を孔径1μmのガラス繊維濾紙で濾過した。 濾過は極めて容易であり、3分以内で全量濾過され、清
澄な臭化マンガン水溶液を得ることができた。この臭化
マンガン水溶液のpHは、2.8であった。
[Examples] Next, the present invention will be explained in more detail with reference to Examples. Example 1 Flake metal manganese (manufactured by Tosoh Corporation, ordinary product)
280.1 g was placed in a 2-liter round-bottomed flask equipped with a dropping funnel, stirring blade, sample extraction tube, and Dimroth cooling tube, and the inside was purged with nitrogen. While cooling the round bottom flask with water, addition of a 47 wt % hydrobromic acid aqueous solution (manufactured by Tosoh Corporation) was started using a dropping funnel. Hydrogen gas is generated at the same time as the hydrobromic acid aqueous solution is added, and the liquid temperature is approximately 90℃.
It rose to a certain point and then began to fall. Then, cooling with water was stopped, and the reaction solution was heated and maintained at 65°C. The generated hydrogen gas passes through a cooling pipe, condenses water, and returns to the flask.
Hydrogen gas was purged. Hydrobromic acid aqueous solution is 1403
.. 6g (i.e. Mn/Br atomic ratio 0.62) at 30
Added in portions. Stirring was started when about 500 g was added from the start of the addition. After the addition of hydrobromic acid was completed, stirring and temperature control of the reaction solution to 65°C were continued, and sampling was performed from time to time. When the pH of the reaction solution reached 2,
The reaction solution was filtered through glass fiber filter paper with a pore size of 1 μm. Filtration was extremely easy, and the entire amount was filtered within 3 minutes to obtain a clear manganese bromide aqueous solution. The pH of this manganese bromide aqueous solution was 2.8.

【0018】この臭化マンガン水溶液を分析したところ
、臭化マンガン濃度は54.4wt%,未反応の臭化水
素は0.01wt%以下と高純度であった。この臭化マ
ンガン水溶液を1年間サンプル瓶中に保存しても濁りを
生ぜず、組成も変化しなかった。残った金属マンガンに
上記のフレーク状金属マンガンを添加し、上記と同じ条
件で実施して、上記とほぼ同じ品質の臭化マンガン水溶
液をえた。
[0018] When this manganese bromide aqueous solution was analyzed, the manganese bromide concentration was 54.4 wt%, and the unreacted hydrogen bromide was 0.01 wt% or less, indicating high purity. Even when this manganese bromide aqueous solution was stored in a sample bottle for one year, it did not become cloudy and its composition did not change. The flaky manganese metal described above was added to the remaining manganese metal, and the test was carried out under the same conditions as above to obtain a manganese bromide aqueous solution having almost the same quality as above.

【0019】比較例1 フレーク状金属マンガンを537.4g(すなわち、M
n/Br原子比1.20)用い、実施例1と同様に反応
を行った。ただし、反応後の反応液中のpHは調整が難
しく、短時間の内に上昇し4.20となり、黄褐色の微
粒子状の沈殿物が生成した。反応液は、濾過性が悪く濾
過に長時間を要した。えられた臭化マンガン水溶液のp
Hは、4.18であり、濾過直後では、濁りはなかった
が、数時間放置すると、濁りが生じ沈殿物が生成した。
Comparative Example 1 537.4 g of flaky metallic manganese (that is, M
The reaction was carried out in the same manner as in Example 1 using (n/Br atomic ratio 1.20). However, the pH in the reaction solution after the reaction was difficult to adjust and rose within a short period of time to 4.20, resulting in the formation of yellow-brown fine particulate precipitates. The reaction solution had poor filterability and took a long time to filter. p of the obtained manganese bromide aqueous solution
H was 4.18, and there was no turbidity immediately after filtration, but when left for several hours, turbidity occurred and a precipitate was formed.

【0020】比較例2 フレーク状金属マンガンを223.9g(すなわち、M
n/Br原子比0.50)用い、実施例1と同様に反応
を行った。ただし、反応は激しく、一時突沸という危険
な状態となった。また、反応液中のpHは−1以上に上
昇せず、やむをえずそのようにpHが低いまま濾過操作
を行った。えられた臭化マンガン水溶液のpHは−1以
下であり、未反応臭化水素は0.35wt%であった。
Comparative Example 2 223.9 g of flaky metallic manganese (that is, M
The reaction was carried out in the same manner as in Example 1 using (n/Br atomic ratio 0.50). However, the reaction was violent and a dangerous situation called bumping occurred at one point. In addition, the pH in the reaction solution did not rise to -1 or higher, and the filtration operation was carried out with the pH kept at such a low level. The pH of the obtained manganese bromide aqueous solution was -1 or less, and unreacted hydrogen bromide was 0.35 wt%.

【0021】実施例2 炭酸マンガン1/2水和物(関東化学社製、試薬特級、
)440.0gを滴下ロート,攪拌羽根,サンプル抜き
出し管,ジムロート冷却管付き2リットル丸底フラスコ
に入れ、内部を窒素置換した。該丸底フラスコ内の温度
を50〜70℃に維持しつつ、滴下ロートにより47w
t%臭化水素酸水溶液(東ソー株式会社製)の添加を開
始した。臭化水素酸水溶液の滴下と同時に炭酸ガスが発
生した。発生した炭酸ガスは冷却管に通じ、水を凝縮さ
せフラスコに還流し、炭酸ガスはパージした。臭化水素
酸水溶液は、1032.6g(すなわち、Mn/Br原
子比0.59)を30分かけて添加した。その添加開始
から約500g添加した時点で攪拌を開始した。臭化水
素酸添加終了後、さらに攪拌および反応液の65℃の温
度調節を続け、サンプリングを随時行い、反応液のpH
が2.39になった時点で、反応液を孔径1μmのガラ
ス繊維濾紙で濾過した。濾過は極めて容易であり、5分
以内で全量濾過され、清澄な臭化マンガン水溶液を得る
ことができた。この臭化マンガン水溶液のpHは、2.
66であった。
Example 2 Manganese carbonate hemihydrate (manufactured by Kanto Kagaku Co., Ltd., reagent special grade,
) was placed in a 2-liter round-bottomed flask equipped with a dropping funnel, a stirring blade, a sample extraction tube, and a Dimroth cooling tube, and the inside was purged with nitrogen. While maintaining the temperature inside the round bottom flask at 50 to 70°C, 47W was added using the dropping funnel.
Addition of t% hydrobromic acid aqueous solution (manufactured by Tosoh Corporation) was started. Carbon dioxide gas was generated simultaneously with the dropping of the hydrobromic acid aqueous solution. The generated carbon dioxide gas was passed through a cooling pipe, water was condensed and refluxed into the flask, and the carbon dioxide gas was purged. 1032.6 g of the hydrobromic acid aqueous solution (ie, Mn/Br atomic ratio 0.59) was added over 30 minutes. Stirring was started when about 500 g was added from the start of the addition. After the addition of hydrobromic acid is completed, stirring and temperature control of the reaction solution to 65°C are continued, and sampling is performed from time to time to determine the pH of the reaction solution.
When the value reached 2.39, the reaction solution was filtered through glass fiber filter paper with a pore size of 1 μm. Filtration was extremely easy, and the entire amount was filtered within 5 minutes to obtain a clear manganese bromide aqueous solution. The pH of this manganese bromide aqueous solution is 2.
It was 66.

【0022】この臭化マンガン水溶液を分析したところ
、臭化マンガン濃度は50.5wt%,未反応の臭化水
素は0.01wt%以下と高純度であった。残った炭酸
マンガンに上記の炭酸マンガンを添加し、上記と同じ条
件で実施して、上記とほぼ同じ品質の臭化マンガン水溶
液をえた。
[0022] When this manganese bromide aqueous solution was analyzed, the manganese bromide concentration was 50.5 wt%, and the unreacted hydrogen bromide was 0.01 wt% or less, indicating high purity. The above-mentioned manganese carbonate was added to the remaining manganese carbonate and the process was carried out under the same conditions as above to obtain a manganese bromide aqueous solution having almost the same quality as above.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】金属マンガンおよび/または2価の塩基性
マンガン化合物と臭化水素とを、Mn/Br原子比0.
52〜1.00の割合で水中で反応させることを特徴と
する、臭化マンガン水溶液の製造方法。
Claims: 1. Metallic manganese and/or divalent basic manganese compound and hydrogen bromide are mixed in an Mn/Br atomic ratio of 0.
A method for producing an aqueous solution of manganese bromide, which comprises reacting in water at a ratio of 52 to 1.00.
【請求項2】金属マンガンおよび/または2価の塩基性
マンガン化合物が金属マンガンである、請求項1記載の
臭化マンガン水溶液の製造方法。
2. The method for producing an aqueous manganese bromide solution according to claim 1, wherein the metallic manganese and/or the divalent basic manganese compound is metallic manganese.
【請求項3】反応終点の系の水溶液のpHを0〜4とす
る、請求項1または請求項2記載の臭化マンガン水溶液
の製造方法。
3. The method for producing an aqueous manganese bromide solution according to claim 1 or 2, wherein the pH of the aqueous solution at the end point of the reaction system is adjusted to 0 to 4.
JP3105178A 1991-04-11 1991-04-11 Method for producing aqueous manganese bromide solution Expired - Fee Related JP2985362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3105178A JP2985362B2 (en) 1991-04-11 1991-04-11 Method for producing aqueous manganese bromide solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3105178A JP2985362B2 (en) 1991-04-11 1991-04-11 Method for producing aqueous manganese bromide solution

Publications (2)

Publication Number Publication Date
JPH04317419A true JPH04317419A (en) 1992-11-09
JP2985362B2 JP2985362B2 (en) 1999-11-29

Family

ID=14400427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3105178A Expired - Fee Related JP2985362B2 (en) 1991-04-11 1991-04-11 Method for producing aqueous manganese bromide solution

Country Status (1)

Country Link
JP (1) JP2985362B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104528831A (en) * 2014-12-27 2015-04-22 西安交通大学 Method for preparing high-purity hydrated manganese sulfate employing dual washing method
US11603571B2 (en) 2017-02-17 2023-03-14 Jfe Steel Corporation High-strength hot-rolled steel sheet and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104528831A (en) * 2014-12-27 2015-04-22 西安交通大学 Method for preparing high-purity hydrated manganese sulfate employing dual washing method
US11603571B2 (en) 2017-02-17 2023-03-14 Jfe Steel Corporation High-strength hot-rolled steel sheet and method for producing the same

Also Published As

Publication number Publication date
JP2985362B2 (en) 1999-11-29

Similar Documents

Publication Publication Date Title
JP5424562B2 (en) Method for producing cesium hydroxide solution
US3306700A (en) Method of lithium recovery
CA2736379C (en) Process for the production of high purity magnesium hydroxide
US5492681A (en) Method for producing copper oxide
NO319152B1 (en) Spheroidally agglomerated basic cobalt (II) carbonates, spheroidally agglomerated cobalt (II) hydroxides, and processes for the preparation and use thereof
JPH0517112A (en) Production of crystalline zirconium phosphate compound
EP0334713B1 (en) Process for the preparation of hydrated zirconium-oxide from granular cristalline zirconiumoxide
WO2008123566A1 (en) Carbonic acid group-containing magnesium hydroxide particle and method for producing the same
JPS59116125A (en) Manufacture of basic aluminum chlorosulfate
US8454929B2 (en) Continuous process for preparation of calcium thiosulfate liquid solution
CN110078103A (en) A kind of calcium aluminium houghite and preparation method thereof
US4490337A (en) Preparation of cupric hydroxide
JPH06127947A (en) Preparation of nickel hydroxide
JP3378007B2 (en) Method for preparing solutions of cesium and rubidium salts with high density
JPH04317419A (en) Production of aqueous manganese bromide solution
JP2952726B2 (en) Method for producing aqueous manganese bromide solution
US20070009423A1 (en) Apparatus and Methods For Producing Calcium Chloride, and Compositions and Products Made Therefrom
JP3503116B2 (en) Manufacturing method of high concentration free hydroxylamine aqueous solution
JP2675465B2 (en) Hydrous calcium carbonate and method for producing the same
KR101239605B1 (en) Aluminum hydroxide gel particles and process for production of same
US3429658A (en) Preparation of alkali metal dicyanamides
RU2747639C1 (en) Method for synthesis of potassium monophosphate
JP4273069B2 (en) Method for producing normal magnesium carbonate particles and basic magnesium carbonate particles
RU2193014C1 (en) Process of spherical nickel hydroxide production
JP5662036B2 (en) Method for producing crystalline iron arsenate from a solution containing arsenic

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees