JPH0431695A - Centrifugal impeller - Google Patents

Centrifugal impeller

Info

Publication number
JPH0431695A
JPH0431695A JP13608290A JP13608290A JPH0431695A JP H0431695 A JPH0431695 A JP H0431695A JP 13608290 A JP13608290 A JP 13608290A JP 13608290 A JP13608290 A JP 13608290A JP H0431695 A JPH0431695 A JP H0431695A
Authority
JP
Japan
Prior art keywords
blade
shroud
hub
vane
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13608290A
Other languages
Japanese (ja)
Other versions
JP2730268B2 (en
Inventor
Kiyoshi Bando
潔 板東
Yasunori Adachi
足立 安功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2136082A priority Critical patent/JP2730268B2/en
Publication of JPH0431695A publication Critical patent/JPH0431695A/en
Application granted granted Critical
Publication of JP2730268B2 publication Critical patent/JP2730268B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PURPOSE:To improve pressure feed characteristics in an range of low flow rate by extending the leading edge of each vane to the surface of a hub from a starting point at the specified position of a parallel section in the shroud surface, and thereby setting the length of each vane along the shroud surface at one equal to or more than the length of each vane along the surface of the hub. CONSTITUTION:A centrifugal impeller is furnished with a plurality of vanes 4 which is formed between a hub 2 fixed onto the impeller rotating shaft and shroud 3 disposed while being faced to the hub 2. A shroud surface 3a acting as the inner surface side of the shroud 3 includes a parallel section 3b on the suction side B, and it is raised up along a gently curved line from an end section at the downstream side of the parallel section 3b up to a vane outlet port 0. In this place, a leading edge 4a which is the end periphery of each vane 4 at its suction side, is linearly extended to the surface of the hub 2 from a starting point C1 in the vicinity of an end section at the upstream side of the parallel section 3b, and the length Ls of each vane along the shroud surface 3a is set at one equal to or more than the length Lh of each vane along the surface 2a of the hub. In addition, the outlet angle beta of each vane 4 is set at the angle of 30 deg. to 40 deg..

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、回転によって流体を圧送する遠心式圧縮機
や遠心式送風機に用いられる羽根車の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to improvements in impellers used in centrifugal compressors and centrifugal blowers that pump fluid through rotation.

〈従来の技術〉 従来、遠心式羽根車として、第11図に示すように、回
転軸91に取り付けられたハブ(心根)92と、これに
対向させて設けられたシュラウド(側板)93との間に
、二次元形状又は三次元形状の羽根94を複数枚配列し
ているものが提供されている。
<Prior Art> Conventionally, as shown in FIG. 11, a centrifugal impeller has a hub 92 attached to a rotating shaft 91 and a shroud (side plate) 93 provided opposite to the hub 92. There is provided one in which a plurality of two-dimensional or three-dimensional blades 94 are arranged between them.

上記羽根車の各構成要素の形状は、インペラー効率に重
要な影響を及はすことから、当該各要素での損失の発生
を最少限にすべく、種々の設計法が提唱されている。し
かし、上記羽根車においては、多くの要因が複雑にから
まりあって、インペラー効率に影響を及ぼしていること
から、設計通りの性能を得ることは困難であり、試験と
解析を積み重ねることにより、所望の性能を確保してい
るのか実状である。
Since the shape of each component of the impeller has an important influence on impeller efficiency, various design methods have been proposed to minimize the loss in each component. However, in the impeller mentioned above, many factors are intricately intertwined and affect the impeller efficiency, so it is difficult to obtain the performance as designed. The actual situation is whether the desired performance is being secured.

従来提供されている羽根車においては、例えば特開昭5
5−134797号公報に示されているように、羽根9
4のシュラウド面93aに沿った長さLsが、ハブ面9
2aに沿った長さLhに対して短くなるように設定され
ている。
For conventionally provided impellers, for example,
As shown in Japanese Patent No. 5-134797, the blade 9
The length Ls along the shroud surface 93a of No. 4 is the length Ls along the shroud surface 93a of the hub surface 9.
It is set to be shorter than the length Lh along 2a.

また、羽根出口角度は、通常45°〜60″に設定され
ている。
Further, the blade exit angle is usually set to 45° to 60″.

〈発明が解決しようとする課題〉 ところが、上記従来の遠心式羽根車によれば、低流量域
において、羽根94の前縁94a近傍のシュラウド面9
3a側領域Eで、流体の旋回失速や逆流が生じ易いこと
、羽根出口のマツハ数か大きくなること、上記前縁94
a付近のシュラウド面9Ba側における羽根94の相対
マツ71数が大きくなること等から、効率が悪いという
問題かあった。
<Problem to be Solved by the Invention> However, according to the conventional centrifugal impeller described above, in the low flow region, the shroud surface 9 near the leading edge 94a of the blade 94
In the region E on the 3a side, swirling stall or backflow of the fluid is likely to occur, the Matsuha number at the blade outlet becomes large, and the leading edge 94
There was a problem that the efficiency was poor because the number of relative pines 71 of the blade 94 on the shroud surface 9Ba side near a was large.

特に、フロンを用いるターボ圧縮機においては、音速が
百数十mと低く、マツハ数が1を超える領域が多くなり
、効率改善を図る上でネックとなっていた。また、使用
点風量範囲が広いことから、広い風量域に亘って高い効
率を発揮することが要請されるが、かかる要請を満足す
るものは提供されていないのが実状である。
In particular, in turbo compressors that use fluorocarbons, the speed of sound is as low as 100-odd meters, and there are many areas where the Matzuha number exceeds 1, which has been a bottleneck in improving efficiency. Further, since the range of air volume at the point of use is wide, it is required to exhibit high efficiency over a wide range of air volume, but the reality is that no product has been provided that satisfies this requirement.

この発明は上記問題点に鑑みてなされたものてあり、広
範囲の流量域に亘って良好な効率を確保することができ
る遠心式羽根車を提供することを目的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a centrifugal impeller that can ensure good efficiency over a wide flow range.

く課題を解決するための手段〉 上記目的を達成するためのこの発明に係る遠心式羽根車
は、シュラウド面3aとハブ面2aとの間に、三次元形
状の羽根4を複数枚配列している遠心式羽根車において
、シュラウド面3aの吸込側Bに、羽根車の回転軸線と
平行な平行部3bが形成されており、羽根4の前縁4a
が、上記平行部3bを起点にハブ面2a側に延びている
と共に、シュラウド面3aに沿った羽根長さLsが、ハ
ブ面2aに沿った羽根長さLh以上に設定され、且つ、
羽根出口角度βが30@〜40″に設定されているもの
である。
Means for Solving the Problems> A centrifugal impeller according to the present invention to achieve the above object has a plurality of three-dimensionally shaped blades 4 arranged between the shroud surface 3a and the hub surface 2a. In the centrifugal impeller, a parallel portion 3b parallel to the rotational axis of the impeller is formed on the suction side B of the shroud surface 3a, and
extends toward the hub surface 2a from the parallel portion 3b, and the blade length Ls along the shroud surface 3a is set to be equal to or greater than the blade length Lh along the hub surface 2a, and
The blade exit angle β is set to 30@-40''.

く作用〉 上記の構成の遠心式羽根車によれば、羽根4の前縁4a
がシュラウド面3aの平行部3bの所定位置を起点C1
としてハブ面2a側に延びていると共に、シュラウド面
3aに沿った羽根長さLsを、ハブ面2aに沿った羽根
長さLh以上に設定しているので、羽根前縁4aのシュ
ラウド面3a側が、吸込側Bに大きく張り出すことにな
る(特に第2図参照)。この結果、羽根4の前縁4a近
傍のシュラウド3側領域Eにおいて、流体の旋回失速や
逆流か生じるのを抑制することができる。
According to the centrifugal impeller having the above configuration, the leading edge 4a of the blade 4
starts from a predetermined position on the parallel portion 3b of the shroud surface 3a C1
Since the blade length Ls along the shroud surface 3a is set to be greater than the blade length Lh along the hub surface 2a, the blade leading edge 4a on the shroud surface 3a side extends as shown in FIG. , it will protrude greatly on the suction side B (see especially Fig. 2). As a result, in the shroud 3 side region E near the leading edge 4a of the blade 4, it is possible to suppress the swirling stall or backflow of the fluid.

また、シュラウド面3aに沿った羽根長さLsか従来よ
りも長くなること、及び上記起点01部の直径D2が最
小となり、羽根4の前縁4aにおける相対マツハ数を小
さくすることができことから、低流量域における圧送特
性を改善することかできる。
In addition, the blade length Ls along the shroud surface 3a is longer than before, and the diameter D2 of the starting point 01 becomes the minimum, making it possible to reduce the relative Matsuha number at the leading edge 4a of the blade 4. , it is possible to improve the pumping characteristics in the low flow rate range.

また、上記羽根4の主としてシュラウド面3a側の形状
調整に加えて、羽根出口角度βを30゜〜40°に設定
することにより、羽根出口のマツハ数を1以下にするこ
とができるという知見を得た。したがって、全体として
遠心式羽根車の効率を効果的に高めることができる。
Furthermore, in addition to adjusting the shape of the blade 4 mainly on the shroud surface 3a side, the Matsuha number at the blade exit can be reduced to 1 or less by setting the blade exit angle β to 30° to 40°. Obtained. Therefore, the efficiency of the centrifugal impeller can be effectively increased as a whole.

〈実施例〉 以下実施例を示す添付図面によって詳細に説明する。<Example> Embodiments will be described in detail below with reference to the accompanying drawings showing embodiments.

第1図はこの発明に係る遠心式羽根車の一実施例を示す
要部断面図である。同図において、羽根車は、回転軸l
に固定されたハブ2と、このハブ2に対向させて配置さ
れたシュラウド3との間に、複数枚の羽根4か形成され
ているものであり、上記回転軸1は、図示しない増速機
構を介して回転駆動される。
FIG. 1 is a sectional view of a main part of an embodiment of a centrifugal impeller according to the present invention. In the figure, the impeller has a rotation axis l
A plurality of blades 4 are formed between a hub 2 fixed to the hub 2 and a shroud 3 placed opposite to the hub 2, and the rotating shaft 1 is connected to a speed increasing mechanism (not shown). Rotationally driven through.

上記シュラウド3の内面側であるシュラウド面3aは、
吸込側B(上流側)に、羽根車の回転軸線と平行な平行
部3bを有し、この平行部3bの下流側の端部から羽根
出口Oにかけて、なだらかな曲線で以て立ち上げられて
いる。
The shroud surface 3a, which is the inner surface of the shroud 3, is
It has a parallel part 3b parallel to the rotation axis of the impeller on the suction side B (upstream side), and is raised with a gentle curve from the downstream end of this parallel part 3b to the blade outlet O. There is.

第2図も参照して、上記羽根4は、形状が羽根幅方向へ
変化する三次元形状のものであり、その吸込側の端縁で
ある前縁4aが、上記平行部3bの上流側端部近傍を起
点C1として、ハブ面2a側に直線的に延びていると共
に、シュラウド面3aに沿った羽根長さLsと、ハブ面
2aに沿った羽根長さLhが、 L  s  / L  h ≧ 1 より好ましくは、 Ls/Lh−1,05〜1.1 の関係を満足するように形成されている。即ち、上記羽
根4は、シュラウド面3aに沿った羽根長さLsか、ハ
ブ面2aに沿った羽根長さLhと等しいか、それよりも
長くなるように設定されている。この結果、羽根4は、
上記起点C1と、前縁4aとハブ面2aとの交点A1と
を結ぶ線Jの、回転軸1に対する傾斜角度αが、例えば
25〜30″程度ぐらいまで緩やかになると共に、羽根
4の前縁4aのシュラウド面3a側が、吸込側Bに大き
く張り出すことになる。そして、上記羽根4の出口角度
β(第3図参照)は、30@〜40″に設定されている
。なお、羽根出口付近の少なくとも数十■は、当該出口
角度βと同じ角度に設定されているのが、要求ヘッドの
増減に応じて外径を縮小又は拡大する場合に、インペラ
ーの特性を相似的に変化させることができることから好
ましい。また、上記羽根4の出口幅Wは、設計風量に応
して適宜調整される。
Referring also to FIG. 2, the blade 4 has a three-dimensional shape whose shape changes in the blade width direction, and the leading edge 4a, which is the edge on the suction side, is the upstream end of the parallel portion 3b. The vane length Ls along the shroud surface 3a and the vane length Lh along the hub surface 2a are L s / L h ≧ 1, more preferably, it is formed so as to satisfy the relationship Ls/Lh-1.05 to 1.1. That is, the blade 4 is set to be equal to or longer than the blade length Ls along the shroud surface 3a or the blade length Lh along the hub surface 2a. As a result, the blade 4 is
The inclination angle α of the line J connecting the starting point C1 and the intersection A1 of the leading edge 4a and the hub surface 2a with respect to the rotating shaft 1 becomes gentle to about 25 to 30'', for example, and the leading edge of the blade 4 The shroud surface 3a side of the blade 4a largely protrudes toward the suction side B.The exit angle β (see FIG. 3) of the blade 4 is set to 30@ to 40''. In addition, at least several tens of squares near the blade exit are set to the same angle as the exit angle β, so that when the outer diameter is reduced or expanded according to the increase or decrease of the required head, the characteristics of the impeller can be made similar. This is preferable because it can be changed to Further, the outlet width W of the blade 4 is adjusted as appropriate depending on the designed air volume.

以上の構成であれば、羽根4の前縁4aの傾斜角度αか
かなり緩やかになっていると共に、羽根4のシュラウド
面3a側が、吸込側Bへ大きく張り出していることから
、上記前縁4aの近傍のシュラウド3側領域Eにおいて
、流体の旋回失速や逆流が生じるのを抑制することがで
きる。また、シュラウド面3aに沿った羽根長さLsが
従来よりも長くなること、及び上記起点01部の直径D
2が最小となり、羽根4の前縁4aにおける相対マツハ
数を小さくすることができことから、低流量域における
インペラー向流れを改善することができる。さらに、上
記羽根4の主としてシュラウド面3a側の形状調整に加
えて、羽根出口角度βを306〜40°に設定すること
により、羽根出口Oの相対及び絶対マツハ数を1以下に
することができ、さらにハブ面2 a %中央流面、シ
ュラウド面3aにおいて翼面上相対マツハ数を前縁4a
のごとく一部を除いて1以下にすることができる。した
がって、全体として、羽根車の効率を効果的に高めるこ
とができる。
With the above configuration, the inclination angle α of the leading edge 4a of the blade 4 is quite gentle, and since the shroud surface 3a side of the blade 4 largely protrudes toward the suction side B, the leading edge 4a of the blade 4 is In the nearby shroud 3 side region E, it is possible to suppress the occurrence of swirling stall or backflow of the fluid. Further, the blade length Ls along the shroud surface 3a is longer than before, and the diameter D of the starting point 01 is
2 becomes the minimum, and the relative Matsuha number at the leading edge 4a of the blade 4 can be reduced, so that the flow in the direction of the impeller in the low flow rate region can be improved. Furthermore, in addition to adjusting the shape of the blade 4 mainly on the shroud surface 3a side, by setting the blade exit angle β to 306 to 40°, the relative and absolute Matsuha numbers of the blade exit O can be made 1 or less. , further, the relative Matsuha number on the wing surface at the hub surface 2 a % central flow surface and shroud surface 3 a is calculated by the leading edge 4 a
It can be set to 1 or less with some exceptions, as shown below. Therefore, the efficiency of the impeller can be effectively increased as a whole.

[試験■] 本件発明に係る羽根車(試験例1)と従来の羽根車(比
較例1)とを、同一のターボ圧縮機に装着して、各風量
域における断熱効率の比較試験を行なった。但し、作業
流体は、フロン11を用いた。また、試験例1及び比較
例1の子午線面における羽根形状を第4図に示す。同図
において試験例1、比較例1のそれぞれの羽根入り口径
D2は216 mmであり、羽根出口径D1は410 
mmであり、さらに、羽根出口角度βは試験例1が30
゜であり比較例1が45″である。
[Test ■] The impeller according to the present invention (Test Example 1) and the conventional impeller (Comparative Example 1) were installed in the same turbo compressor, and a comparative test of adiabatic efficiency in each air volume range was conducted. . However, Freon 11 was used as the working fluid. Further, the blade shapes in the meridian plane of Test Example 1 and Comparative Example 1 are shown in FIG. In the figure, the blade inlet diameter D2 of Test Example 1 and Comparative Example 1 is 216 mm, and the blade outlet diameter D1 is 410 mm.
mm, and further, the blade exit angle β is 30 mm in Test Example 1.
°, and Comparative Example 1 is 45''.

この比較試験結果を第5図に示す。同図から明らかなよ
うに、試験例1は、各風量域において比較例1よりも断
熱効率が向上している。なお、同図において断熱効率は
、試験例1の最大断熱効率を100%としている(以下
同様)。
The results of this comparative test are shown in FIG. As is clear from the figure, Test Example 1 has better heat insulation efficiency than Comparative Example 1 in each air volume range. In addition, in the figure, the maximum insulation efficiency of Test Example 1 is set as 100% for the insulation efficiency (the same applies hereinafter).

[試験■] 試験例1の羽根前縁4aとシュラウド面3aとの交点を
、シュラウド面3aの平行部3bよりも羽根出口O寄り
に設定したもの、即ち、前縁4aのシュラウド面3a側
か吸込側Bに張り出さない形状のものを作成しく比較例
2)、これと試験例1との断熱効率を比較する試験を、
それぞれ同一の試験条件で行なった。
[Test ■] In Test Example 1, the intersection point between the blade leading edge 4a and the shroud surface 3a was set closer to the blade outlet O than the parallel part 3b of the shroud surface 3a, that is, the point of intersection between the blade leading edge 4a and the shroud surface 3a was set closer to the blade outlet O than the parallel part 3b of the shroud surface 3a, that is, the point of intersection between the blade leading edge 4a and the shroud surface 3a was set closer to the blade outlet O than the parallel portion 3b of the shroud surface 3a, that is, the point of intersection of the blade leading edge 4a and the shroud surface 3a was set closer to the blade outlet O than the parallel part 3b of the shroud surface 3a. A test was conducted to compare the insulation efficiency of Comparative Example 2) with Test Example 1 to create a shape that does not protrude to the suction side B.
Each test was conducted under the same test conditions.

この比較試験結果を第6図に示す。同図から明らかなよ
うに、比較例2は、各風量域において試験例1よりも圧
縮機の効率が低下している。
The results of this comparative test are shown in FIG. As is clear from the figure, the efficiency of the compressor in Comparative Example 2 is lower than that in Test Example 1 in each air volume range.

[試験■] 試験例1の羽根出口角度βを40°にした試験例2と、
45°にした比較例3とを作成し、これらと試験例1の
各風量域における断熱効率を比較する試験を、それぞれ
同一の試験条件で行なった。
[Test ■] Test example 2 in which the blade exit angle β of test example 1 was set to 40°,
Comparative Example 3 was prepared with an angle of 45°, and a test was conducted to compare the insulation efficiency in each air volume range with Test Example 1 under the same test conditions.

また、これらの、羽根4の負圧面及び圧力面における羽
根前縁4aから羽根出口Oに至る相対マツハ数Mwを調
べた。
Furthermore, the relative Matsuha numbers Mw from the blade leading edge 4a to the blade outlet O on the suction surface and pressure surface of the blade 4 were investigated.

各風量域における断熱効率を第7図に示す。また、試験
例1の相対マツハ数Mwを第8図に、試験例2の相対マ
ツハ数Mwを第9図に、比較例3の相対マツハ数Mwを
第10図にそれぞれ示す。
Figure 7 shows the insulation efficiency in each air volume range. Further, the relative Matsuha number Mw of Test Example 1 is shown in FIG. 8, the relative Matsuha number Mw of Test Example 2 is shown in FIG. 9, and the relative Matsuha number Mw of Comparative Example 3 is shown in FIG.

但し、各図において、(a)図は羽根4のシュラウド面
3a側における相対マツハ数Mwを示し、(b)図はシ
ュラウド面3aとハブ面2aとの中間部における相対マ
ツハ数Mwを示し、(c)図はハブ面2a側における相
対マツハ数Mwを示す。
However, in each figure, (a) shows the relative Matsuha number Mw on the shroud surface 3a side of the blade 4, and (b) shows the relative Matsuha number Mw at the intermediate part between the shroud surface 3a and the hub surface 2a, The figure (c) shows the relative Matsuha number Mw on the hub surface 2a side.

また、同図において、横軸は、羽根全長に対する相対位
置を示し、その左側が羽根前縁4a側であり、右側が羽
根出口側である。
Further, in the figure, the horizontal axis indicates a relative position to the overall length of the blade, with the left side being the blade leading edge 4a side and the right side being the blade exit side.

第7図から明らかなように、試験例1及び試験例2は、
各風量域において比較例3よりも断熱効率が向上してい
る。また、第8図及び第9図より明らかなように、試験
例1及び試験例2については、羽根4の何れの部分らに
おいても相対マツハ数Mwが1以下であるのに対して、
比較例3は、シュラウド面3a側において、相対マツハ
数Mwが1を超える部分が存在する。しかも、シュラウ
ド面3a側において、負圧面と圧力面との相対マツハ数
Mwが逆転する部分が生じている。したがって、効率を
高めるには、羽根出口角度βを30〜40″の範囲に設
定し、かつ負圧面と圧力面との相対マツハ数Mwかどの
位置でも逆転しな(゛ように羽根形状を決めることが必
要である。
As is clear from FIG. 7, in Test Example 1 and Test Example 2,
The insulation efficiency is improved compared to Comparative Example 3 in each air volume range. Furthermore, as is clear from FIGS. 8 and 9, in Test Examples 1 and 2, the relative Matsuha number Mw is 1 or less in any part of the blade 4, whereas
In Comparative Example 3, there is a portion where the relative Matsuha number Mw exceeds 1 on the shroud surface 3a side. Moreover, on the shroud surface 3a side, there is a portion where the relative Matsush number Mw between the negative pressure surface and the pressure surface is reversed. Therefore, in order to increase efficiency, the blade exit angle β should be set in the range of 30 to 40'', and the blade shape should be determined so that the relative Matsuha number Mw between the suction surface and the pressure surface does not reverse at any position. It is necessary.

なお、羽根4の前縁4aとしては、図示した直線形状の
もののほか、中央部が下流側へ凹入する湾曲形状のもの
であってもよい。また、上記前縁4aとシュラウド面3
aとの交点(起点CI)は、図示したものよりもざらに
吸込側B側へ設定してもよい。
The leading edge 4a of the blade 4 may have a linear shape as shown in the figure, or may have a curved shape in which the center portion is recessed toward the downstream side. In addition, the leading edge 4a and the shroud surface 3
The intersection point with a (starting point CI) may be set more roughly toward the suction side B than what is illustrated.

〈発明の効果〉 以上のように、この発明の遠心式羽根車によれば、羽根
の前縁が、シュラウド面側の平行部側へ張り出している
と共に、羽根出口角度が30°〜40″に設定されてい
るので、マツハ数ヲ小さくすることができる結果、損失
の減少に寄与することができる。また、ハブ長さに対し
、シュラウド長さを大とすることにより、低流量域にお
いて発生するシュラウド面の旋回失速性逆流を緩和し、
低流量特性を改善できる。さらに、羽根前縁半径が最小
のため羽根入口の相対マツハ数を小さくてき、これらが
相乗的に働いて広い風量域において効率を高めることが
できるという特有の効果を奏する。
<Effects of the Invention> As described above, according to the centrifugal impeller of the present invention, the leading edge of the blade protrudes toward the parallel portion of the shroud surface, and the blade exit angle is 30° to 40″. As a result, the shroud length can be made larger than the hub length, which reduces the loss that occurs in the low flow range. Mitigates rotational stall backflow on the shroud surface,
Low flow characteristics can be improved. Furthermore, since the vane leading edge radius is minimum, the relative Matsuha number at the vane inlet can be reduced, and these act synergistically to provide the unique effect of increasing efficiency over a wide air volume range.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の遠心式羽根車の一実施例示す要部断
面図、 第2図は羽根の子午面形状を示す模式図。 第3図は羽根の正面図、 第4図は試験例1に係る羽根と、比較例1に係る羽根の
平面円形翼列を示す模式図、 第5図は試験例1と比較例1の断熱効率を示すグラフ図
。 第6図は試験例1と比較例2の断熱効率を示すグラフ図
。 第7図は試験例1、試験例2、および比較例3の断熱効
率を示すグラフ図、 第8図、第9図、および第10図は、それぞれ試験例1
、試験例2、および比較例3についての羽根の相対マツ
ハ数を示すグラフ図であって、そのうち(a)図は羽根
のシュラウド面側における相対マツハ数を示すグラフ図
、(b)図はシュラウド面とハブ面との中間部における
相対マツハ数を示すグラフ図、(C)図はハブ面側にお
ける相対マツハ数を示すグラフ図、 第11図は従来例を示す要部断面図。 1・・・回転軸、2a・・・ハブ面、 3a・・・シュラウド面、4・・・羽根、4a・・・前
縁、β・・・羽根出口角度、C1・・・起点、B・・・
吸込側、 Ls・・・シュラウド面に沿った羽根長さ、Lh・・・
ハブ面に沿った羽根長さ。
FIG. 1 is a sectional view of a main part showing an embodiment of the centrifugal impeller of the present invention, and FIG. 2 is a schematic diagram showing the meridian shape of the blade. Fig. 3 is a front view of the blade, Fig. 4 is a schematic diagram showing a planar circular blade row of the blade according to Test Example 1 and the blade according to Comparative Example 1, and Fig. 5 is the heat insulation of Test Example 1 and Comparative Example 1. A graph diagram showing efficiency. FIG. 6 is a graph showing the insulation efficiency of Test Example 1 and Comparative Example 2. Figure 7 is a graph showing the insulation efficiency of Test Example 1, Test Example 2, and Comparative Example 3. Figures 8, 9, and 10 are each of Test Example 1.
, Test Example 2, and Comparative Example 3; FIG. FIG. 11 is a graph showing the relative Matsuha number at the intermediate part between the surface and the hub surface, FIG. 11 is a graph showing the relative Matsuha number at the hub surface side, and FIG. DESCRIPTION OF SYMBOLS 1... Rotating shaft, 2a... Hub surface, 3a... Shroud surface, 4... Vane, 4a... Leading edge, β... Vane exit angle, C1... Starting point, B...・・・
Suction side, Ls... blade length along the shroud surface, Lh...
Blade length along the hub surface.

Claims (1)

【特許請求の範囲】[Claims] 1、シュラウド面(3a)とハブ面(2a)との間に、
三次元形状の羽根(4)を複数枚配列している遠心式羽
根車において、シュラウド面(3a)の吸込側(B)に
、羽根車の回転軸線と平行な平行部(3b)が形成され
ており、羽根(4)の前縁(4a)が、上記平行部(3
b)を起点にハブ面(2a)側に延びていると共に、シ
ュラウド面(3a)に沿った羽根長さ(Ls)が、ハブ
面(2a)に沿った羽根長さ(Lh)以上に設定され、
且つ、羽根出口角度(β)が30°〜40°に設定され
ていることを特徴とする遠心式羽根車。
1. Between the shroud surface (3a) and the hub surface (2a),
In a centrifugal impeller in which a plurality of three-dimensional shaped blades (4) are arranged, a parallel portion (3b) parallel to the rotation axis of the impeller is formed on the suction side (B) of the shroud surface (3a). The front edge (4a) of the blade (4) is aligned with the parallel part (3).
The vane length (Ls) along the shroud surface (3a) is set to be greater than or equal to the vane length (Lh) along the hub surface (2a). is,
A centrifugal impeller characterized in that the blade exit angle (β) is set to 30° to 40°.
JP2136082A 1990-05-25 1990-05-25 Centrifugal impeller Expired - Lifetime JP2730268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2136082A JP2730268B2 (en) 1990-05-25 1990-05-25 Centrifugal impeller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2136082A JP2730268B2 (en) 1990-05-25 1990-05-25 Centrifugal impeller

Publications (2)

Publication Number Publication Date
JPH0431695A true JPH0431695A (en) 1992-02-03
JP2730268B2 JP2730268B2 (en) 1998-03-25

Family

ID=15166829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2136082A Expired - Lifetime JP2730268B2 (en) 1990-05-25 1990-05-25 Centrifugal impeller

Country Status (1)

Country Link
JP (1) JP2730268B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100524505B1 (en) * 1997-11-18 2005-12-26 아이티티 매뉴팩츄어링 엔터프라이즈, 인코포레이티드 Pump impeller
US20130272895A1 (en) * 2011-02-24 2013-10-17 Akihiro Nakaniwa Impeller, rotor comprising same, and impeller manufacturing method
JP2014213007A (en) * 2013-04-26 2014-11-17 日立アプライアンス株式会社 Household vacuum cleaner
JP2017061921A (en) * 2015-07-06 2017-03-30 杭州三花研究院有限公司Hangzhou Sanhua Research Institute Co.,Ltd. Electrically driven pump
US9664055B2 (en) 2011-12-26 2017-05-30 Mitsubishi Industries, Ltd. Impeller and rotary machine provided with the same
US9903385B2 (en) 2011-08-29 2018-02-27 Mitsubishi Heavy Industries Compressor Corporation Impeller, rotary machine including the same, and method for manufacturing impeller

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060300A (en) * 1983-09-12 1985-04-06 Matsushita Electric Ind Co Ltd Impreller of motor fan for vacuum cleaner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060300A (en) * 1983-09-12 1985-04-06 Matsushita Electric Ind Co Ltd Impreller of motor fan for vacuum cleaner

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100524505B1 (en) * 1997-11-18 2005-12-26 아이티티 매뉴팩츄어링 엔터프라이즈, 인코포레이티드 Pump impeller
US20130272895A1 (en) * 2011-02-24 2013-10-17 Akihiro Nakaniwa Impeller, rotor comprising same, and impeller manufacturing method
US9611742B2 (en) * 2011-02-24 2017-04-04 Mitsubishi Heavy Industries, Ltd. Impeller, rotor comprising same, and impeller manufacturing method
US9903385B2 (en) 2011-08-29 2018-02-27 Mitsubishi Heavy Industries Compressor Corporation Impeller, rotary machine including the same, and method for manufacturing impeller
US9664055B2 (en) 2011-12-26 2017-05-30 Mitsubishi Industries, Ltd. Impeller and rotary machine provided with the same
JP2014213007A (en) * 2013-04-26 2014-11-17 日立アプライアンス株式会社 Household vacuum cleaner
JP2017061921A (en) * 2015-07-06 2017-03-30 杭州三花研究院有限公司Hangzhou Sanhua Research Institute Co.,Ltd. Electrically driven pump
US10415582B2 (en) 2015-07-06 2019-09-17 Hangzhou Sanhua Research Institute Co., Ltd. Electrically driven pump

Also Published As

Publication number Publication date
JP2730268B2 (en) 1998-03-25

Similar Documents

Publication Publication Date Title
JP4668413B2 (en) Turbomachine impeller
US7517193B2 (en) Centrifugal compressor and manufacturing method for impeller
JP2931432B2 (en) Impeller of water pump or general-purpose pump
AU2007209185B2 (en) Improved impeller and fan
JP5608062B2 (en) Centrifugal turbomachine
JPH06241197A (en) Diffuser having impeller for centrifugal and mixed flow pump
EP0040534A1 (en) Compressor diffuser
US7186080B2 (en) Fan inlet and housing for a centrifugal blower whose impeller has forward curved fan blades
KR20080002882A (en) Turbine wheel
JPH08505915A (en) Impeller
JP5766595B2 (en) Centrifugal turbomachine
CN207554416U (en) A kind of centrifugal impeller of splitterr vanes
JPH0431695A (en) Centrifugal impeller
JP2767747B2 (en) Cross flow blower
JP2004044473A (en) Impeller and centrifugal compressor
JP6620440B2 (en) Centrifugal compressor
JP6362980B2 (en) Turbo machine
JP4727425B2 (en) Centrifugal impeller and clean system equipped with it
JP3746740B2 (en) Centrifugal compressor
JPH05149297A (en) Centrifugal fan
JP6785623B2 (en) Fluid machine
JP2020518761A (en) Impeller, fan and motor
CN112096656A (en) Axial flow fan blade, axial flow fan and air conditioner
JP3276011B2 (en) Centrifugal pump impeller
CN213360556U (en) Axial flow fan blade, axial flow fan and air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071219

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 13