JPH0431684A - Closed scroll compressor - Google Patents

Closed scroll compressor

Info

Publication number
JPH0431684A
JPH0431684A JP13377290A JP13377290A JPH0431684A JP H0431684 A JPH0431684 A JP H0431684A JP 13377290 A JP13377290 A JP 13377290A JP 13377290 A JP13377290 A JP 13377290A JP H0431684 A JPH0431684 A JP H0431684A
Authority
JP
Japan
Prior art keywords
pressure
oil
chamber
intermediate pressure
electric motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13377290A
Other languages
Japanese (ja)
Inventor
Kimio Nagata
永田 公雄
Takao Mizuno
隆夫 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13377290A priority Critical patent/JPH0431684A/en
Publication of JPH0431684A publication Critical patent/JPH0431684A/en
Pending legal-status Critical Current

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)
  • Rotary Pumps (AREA)

Abstract

PURPOSE:To enhance oiling performance by allowing the pressure of a back pressure chamber within a closed container to be first intermediate pressure, allowing pressure within the closed container to be second intermediate pressure, and thereby oiling to respective bearings and respective sliding sections based on the difference in pressure between the high pressure of an oil bank and aforesaid intermediate pressure. CONSTITUTION:When a horizontal turning scroll 8 is in operation, oil is supplied from a back pressure chamber 9 and an electric motor housing chamber 3 in order that the occurrence of oil leak out of tooth spaces is prevented, and sliding surfaces are lubricated, and oil contained in cooling medium is separated out of cooling medium by an oil separator 4 provided outside, so that separated oil is stored in a lower oil bank 12. In this place, during the period of time from the completion of suction to discharge at the compression section, the tooth spaces are communicated with the back pressure chamber 9 through a small diameter hole 14, so that the pressure of the back pressure chamber 9 is made to be first intermediate pressure. On the other hand, a passage 13 is provided, which communicates the tooth spaces just after the completion of suction by the compression section 2 with the electric motor housing chamber, so that the pressure of the electric motor housing chamber is made to be second intermediate pressure. And oil is allowed to flow based on the difference in pressure between high pressure within the oil bank 12 and aforesaid intermediate pressure, so that bearings 19, 20 and 23 are thereby lubricated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、第一の中間圧力により圧縮機構を保持すると
共に、電動機収納室を第二の中間圧力とするか、又は、
第一と第二の中間圧力室を連通し、いずれかの中間圧力
とした冷凍用密閉形スクロール圧縮機の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention maintains the compression mechanism at a first intermediate pressure and sets the electric motor storage chamber at a second intermediate pressure, or
The present invention relates to the structure of a hermetic scroll compressor for refrigeration, in which first and second intermediate pressure chambers are communicated with each other and one of the intermediate pressures is set.

〔従来の技術〕[Conventional technology]

電動機収納室を吸入圧力と吐出圧力の中間圧力とし、イ
ンジェクションで冷却する構造は特開昭57−1958
88号公報に記載の従来例がある。しかし、この従来例
の密閉形スクロール圧縮機では、次の問題点がある。ま
ず、第一に、圧縮室に吸入、又は、給油された油は、密
閉容器外に吐出され、冷凍サイクルを経て吸入管に戻り
、中間圧導入管からは戻らないため、密閉容器下部の中
間圧力下に油溜を形成することはできない。さらに、冷
凍サイクル内を循環する。油量(油上り量)は徐々に多
くなり、圧縮機内の軸受を含めた摺動部への油サイクル
が形成できない。又、ケーシング内を吐出圧力とし、吸
入圧力と吐出圧力の中間の圧力となる背圧室圧力により
、旋回スクロールと固定スクロールを密着させて圧縮機
構を保持すると共に、吐出圧力と中間の圧力の圧力差で
摺動部を給油する構造は特公告昭62−37238号公
報に記載の例がある。しかし、この従来装置では、ケー
シングを高圧に耐える肉厚にする必要があり1重量も重
くなり、コスト高となる。又、電動機を吐出ガスにて冷
却することになるため、高温で使用されることになり、
電動機の絶縁種のグレードを上げる必要がある。又高温
になると巻線抵抗が増して電動機効率が低下する。高圧
方式はこの状態で使用せざるを得ないなどの不具合点が
ある。
The structure in which the motor storage chamber is set at an intermediate pressure between the suction pressure and the discharge pressure and is cooled by injection is based on Japanese Patent Application Laid-Open No. 57-1958.
There is a conventional example described in Japanese Patent No. 88. However, this conventional hermetic scroll compressor has the following problems. First of all, the oil sucked or supplied into the compression chamber is discharged outside the closed container, returns to the suction pipe through the refrigeration cycle, and does not return from the intermediate pressure introduction pipe. It is not possible to form an oil sump under pressure. Furthermore, it circulates within the refrigeration cycle. The amount of oil (the amount of oil coming up) gradually increases, making it impossible to form an oil cycle for the sliding parts including the bearings inside the compressor. In addition, the inside of the casing has a discharge pressure, and the pressure in the back pressure chamber, which is between the suction pressure and the discharge pressure, holds the compression mechanism by bringing the orbiting scroll and fixed scroll into close contact with each other, and also maintains the pressure between the discharge pressure and the intermediate pressure. An example of a structure for differentially lubricating the sliding parts is described in Japanese Patent Publication No. 37238/1983. However, in this conventional device, the casing needs to be thick enough to withstand high pressure, which increases the weight and increases the cost. In addition, since the electric motor is cooled with discharged gas, it is used at high temperatures.
It is necessary to improve the grade of motor insulation. Furthermore, when the temperature increases, the winding resistance increases and the motor efficiency decreases. The high-pressure method has some drawbacks, such as the fact that it has to be used in this condition.

〔発明が解決しようとする課題と課題を解決するための手段〕[Problem to be solved by the invention and means for solving the problem]

上記荒田(特開昭57−195888号)の従来技術は
油上りに対する油回収手段と各軸受への給油方法に関す
る考慮がされておらず、油上り量に伴い安定して油を圧
縮機内に確保できなくなり、軸受への給油ができなくな
る。又、電動機側軸受は微少差圧なうえ、給油も関連し
て、不安定な給油となっていた。
The conventional technology of Arata (Japanese Patent Application Laid-Open No. 57-195888) does not take into consideration oil recovery means and oil supply method for each bearing against oil rise, and oil is stably maintained in the compressor as the amount of oil rises. This makes it impossible to supply oil to the bearing. Furthermore, the motor side bearing had a slight differential pressure, and the oil supply was also related, resulting in unstable oil supply.

本発明の目的は、密閉容器内を中間圧力とし、吐出ガス
と吐出ガス中に含まれる油分を圧縮部より、直接、密閉
容器外へ吐出し、外部設置の油分離器により、油と冷媒
ガスに分離し、油溜から外部配管で圧縮機の給油系と結
び、密閉容器内の背圧室を第一の中間圧力と密閉容器内
を第二の中間圧力とし、油溜部の高圧との圧力差により
、各軸受および全ての摺動部へ給油することにある。
The purpose of the present invention is to maintain an intermediate pressure inside the sealed container, discharge the discharged gas and the oil contained in the discharged gas directly to the outside of the sealed container from the compression part, and separate the oil and refrigerant gas by an externally installed oil separator. The oil sump is connected to the oil supply system of the compressor by external piping, and the back pressure chamber inside the sealed container is set to a first intermediate pressure, and the inside of the sealed container is set to a second intermediate pressure, which is connected to the high pressure in the oil sump. The purpose is to supply oil to each bearing and all sliding parts using a pressure difference.

〔作用〕[Effect]

旋回スクロールを包囲し、固定スクロールとフレームと
クランク軸で囲まれる空間に圧縮途中のガスを小孔を介
して導き、第一の中間圧力となる背圧室を形成する。
Gas that is being compressed is guided through small holes into a space surrounding the orbiting scroll and surrounded by the fixed scroll, frame, and crankshaft, thereby forming a back pressure chamber having a first intermediate pressure.

電動機収納室にインジェクションパイプを接続し、吸入
につながらない圧縮室に連通させてモータ収納室を第二
中間圧力とする。電動機収納室に冷媒ガスをインジェク
ションしてモータを冷却する。この冷媒は圧縮室に回収
するが、この回収の際、電動機収納室に排出された油も
同時に回収可能とする。冷媒回収通路が吸入に連通しな
い圧縮室で形成されるので冷力低下は発生せず、又、こ
の連通系路により、電動機収納室の第二の中間圧力を安
定化できる。
An injection pipe is connected to the motor storage chamber and communicated with a compression chamber that is not connected to suction, so that the motor storage chamber is brought to a second intermediate pressure. The motor is cooled by injecting refrigerant gas into the motor storage chamber. This refrigerant is recovered into the compression chamber, and during this recovery, the oil discharged into the motor storage chamber can also be recovered at the same time. Since the refrigerant recovery passage is formed of a compression chamber that does not communicate with the suction, a drop in cooling power does not occur, and this communication passage allows the second intermediate pressure in the motor storage chamber to be stabilized.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。第1
図は横形圧縮機を示す。密閉容器1内を中間圧力(高圧
と低圧の中間で低圧に近い)とする密閉形スクロール圧
縮機において、冷媒ガスの流れは、密閉容器を貫通する
吸入管5より、圧縮機外部より吸入する冷媒ガスは低温
低圧な冷媒ガスと冷凍サイクルから戻って来たごくわず
かな油分を含んでいる。この冷媒ガスは、逆止弁6を開
き固定スクロール7と旋回スクロール8の歯溝に入り旋
回スクロールの旋回運動により、ただちに。
An embodiment of the present invention will be described below with reference to FIG. 1st
The figure shows a horizontal compressor. In a hermetic scroll compressor that maintains an intermediate pressure (between high pressure and low pressure, close to low pressure) inside the hermetic container 1, the flow of refrigerant gas is the refrigerant sucked from outside the compressor through the suction pipe 5 that penetrates the hermetic container. The gas contains low-temperature, low-pressure refrigerant gas and a very small amount of oil returned from the refrigeration cycle. This refrigerant gas immediately enters the tooth gap between the fixed scroll 7 and the orbiting scroll 8 by opening the check valve 6 and by the orbiting movement of the orbiting scroll.

容積を縮小する。この際、油の回収と、歯溝の洩れ防止
と摺動面の潤滑を目的とした油を背圧室9と電動機収納
室3から供給する。冷媒ガスは所定の圧力まで上がると
密閉容器を貫通する吐出管1oより吐出する。この高圧
高圧な冷媒ガス中には油分が含まれており、外部設置の
油分離器4内で油分と冷媒ガスとを分離し、冷媒ガスは
冷凍サイクル中の凝縮器へ流れる。一方、油分離器内で
分離された油分は、油滴となり下部の油溜12に溜まる
。次に圧縮部の吸入完了から吐出までの間の歯溝と背圧
室9を小径の孔14で連通し、第一の中間圧力となる背
圧室9を形成する。又、同様な方法で圧縮部2の吸入完
了直後の歯溝と電動機収納室を連通する通路13を設け
、この通路により電動機収納室を第二の中間圧力となる
中間圧力とした。
Reduce volume. At this time, oil is supplied from the back pressure chamber 9 and the motor storage chamber 3 for the purpose of oil recovery, prevention of tooth groove leakage, and lubrication of sliding surfaces. When the refrigerant gas reaches a predetermined pressure, it is discharged from a discharge pipe 1o that passes through the closed container. This high-pressure refrigerant gas contains oil, and the oil and refrigerant gas are separated in an externally installed oil separator 4, and the refrigerant gas flows to a condenser in the refrigeration cycle. On the other hand, the oil separated in the oil separator becomes oil droplets and accumulates in the oil reservoir 12 at the bottom. Next, the tooth gap between the completion of suction and discharge of the compression part and the back pressure chamber 9 are communicated through a small diameter hole 14 to form a back pressure chamber 9 having a first intermediate pressure. In addition, in a similar manner, a passage 13 is provided which communicates the tooth groove of the compression part 2 immediately after suction is completed with the electric motor housing chamber, and this passage sets the electric motor housing chamber to an intermediate pressure that is a second intermediate pressure.

圧縮部歯溝との通路により、電動機収納室は、低圧に近
い第二の中間圧力に保持されている。この電動機収納室
と密閉容器を貫通する管16を設け、この管により、気
縮機外部(凝縮液の一部を蒸発する方式、又は、過冷却
器の蒸発後の冷媒ガスを導く方式がある)より冷媒液又
はガスを導き、電動機17の冷却を行なう。次に、圧縮
機内の油サイクルについて説明する、高温・高圧な油溜
12より密閉容器を貫通する給油管18で電動機収納室
の軸受19と軸受20に導かれる。電動機収納室3と背
圧室9はいずれも中間圧力になっているため高圧と中間
圧力の圧力差で、油は流れ軸受19の潤滑と軸受2oの
潤滑、および、シャフト21に設けたきり孔22より旋
回スクロール軸受23の潤滑を行なう、各軸受潤滑後の
排油は軸受19は電動機収納室3へ、軸受2oと23は
背圧室9に排油する。電動機収納室へ排油した油は電動
機を冷却した冷媒ガスとともに、通路13より圧縮部に
入り吐出される。一方、背圧室9に排油された油はオル
ダムリング15を潤滑し、その一部は孔14より圧縮部
に入り吐出される。他の排油は鏡板面14を潤滑し吸入
側の歯溝に流れ、冷媒ガスとともに吐出される。このよ
うに各摺動部を潤滑した油は全て圧縮部の歯溝に流れ込
み、回収されて冷媒ガスとともに吐出されて油分離器4
で分離され、油溜12に溜まりふたたび、各摺動部に給
油される、油サイクルとする。次に電動機冷却のための
冷媒液又はガスを圧縮機の管16まで導入する方式につ
いて説明する。圧縮機から吐出された高温・高圧な冷媒
ガスは、凝縮器25で中温・高圧な冷媒液に凝縮する。
The motor housing chamber is maintained at a second intermediate pressure close to the low pressure due to the passage with the compression part tooth groove. A pipe 16 is provided that penetrates the electric motor storage room and the sealed container, and this pipe is used to evaporate a part of the condensate from the air condenser or to guide the refrigerant gas after evaporation from the supercooler. ) to cool the electric motor 17. Next, the oil cycle in the compressor will be explained. From the high-temperature, high-pressure oil reservoir 12, the oil is led to the bearings 19 and 20 in the motor storage chamber through an oil supply pipe 18 that penetrates the closed container. Since the electric motor storage chamber 3 and the back pressure chamber 9 are both at intermediate pressure, the oil flows due to the pressure difference between the high pressure and the intermediate pressure, and lubricates the bearing 19 and the bearing 2o, as well as the cut hole provided in the shaft 21. 22 lubricates the orbiting scroll bearing 23. Waste oil after each bearing lubrication is discharged from the bearing 19 to the motor storage chamber 3, and from the bearings 2o and 23 to the back pressure chamber 9. The oil discharged into the motor storage chamber enters the compression section through the passage 13 and is discharged together with the refrigerant gas that cooled the motor. On the other hand, the oil discharged into the back pressure chamber 9 lubricates the Oldham ring 15, and a part of it enters the compression section through the hole 14 and is discharged. Other waste oil lubricates the mirror plate surface 14, flows into the tooth groove on the suction side, and is discharged together with the refrigerant gas. All the oil that has lubricated each sliding part in this way flows into the tooth groove of the compression part, is collected and discharged together with the refrigerant gas, and is sent to the oil separator 4.
This is an oil cycle in which the oil is separated in the oil reservoir 12, and then oil is supplied to each sliding part again. Next, a method for introducing refrigerant liquid or gas to the compressor pipe 16 for cooling the motor will be explained. The high-temperature, high-pressure refrigerant gas discharged from the compressor is condensed into medium-temperature, high-pressure refrigerant liquid in the condenser 25.

この液冷媒は主膨張弁26をへて蒸発器27に入り、低
温・低圧な冷媒ガスとなり、圧縮機に吸入される、いわ
ゆる、一般の冷凍サイクルにおいて、凝縮液冷媒の一部
を分岐し補助膨張弁28により低温・中圧な冷媒液、又
は、ガスとし、配管29を流れ圧縮機の管16より、噴
射する方式とする。この他の方式として、過冷却器(図
示せず)の蒸発ガスを圧縮機の管16より、噴射する方
式がある。次に圧縮機を停止した場合、逆止弁6はただ
ちに閉じ、吸入側は、容積が小さいためすぐに圧力が上
がり逆転を防止する。
This liquid refrigerant passes through the main expansion valve 26, enters the evaporator 27, becomes a low-temperature, low-pressure refrigerant gas, and is sucked into the compressor.In a so-called general refrigeration cycle, a part of the condensed liquid refrigerant is branched off and auxiliary. The expansion valve 28 generates a low-temperature, medium-pressure refrigerant liquid or gas, which flows through the pipe 29 and is injected from the pipe 16 of the compressor. Another method is to inject evaporated gas from a supercooler (not shown) through a pipe 16 of a compressor. Next, when the compressor is stopped, the check valve 6 is immediately closed, and since the suction side has a small volume, the pressure immediately rises to prevent reverse rotation.

従って密閉容器内は中間圧力に保持されるため、油分離
器4と電動機収納室3の圧力差で軸受19と軸受20と
軸受23には通路18より給油され、油溜12の油が、
電動機収納室3と背圧室9に移動する場合がある。これ
を防止するため、給油管18には阻止弁30を設けた。
Therefore, since the inside of the sealed container is maintained at an intermediate pressure, the bearings 19, 20, and 23 are supplied with oil from the passage 18 due to the pressure difference between the oil separator 4 and the motor storage chamber 3, and the oil in the oil sump 12 is
It may move to the motor storage chamber 3 and back pressure chamber 9. In order to prevent this, a blocking valve 30 is provided in the oil supply pipe 18.

同様に電動機冷却のための液噴射管である配管29には
阻止弁31を設けた。又、吐出管10と油分離器4の間
に逆止弁32を設け、密閉容器内の冷媒ガス、又は、油
の出入りをなくすることにより密閉容器内を中間圧力に
保持する方式とした。
Similarly, a blocking valve 31 is provided in the pipe 29, which is a liquid injection pipe for cooling the motor. In addition, a check valve 32 is provided between the discharge pipe 10 and the oil separator 4 to prevent refrigerant gas or oil from flowing in and out of the closed container, thereby maintaining the inside of the closed container at an intermediate pressure.

こうして、冷媒ガスサイクルと、油サイクルが、なりた
ち、冷凍サイクルが構成できた。又、本図では横形圧縮
機として説明したが、たで膨圧縮機も同様に構成できる
。本実施例によれば、■全ての軸受及び摺動部が高圧と
中間圧力の差圧により給油となり軸受及び摺動部の信頼
性が確保された。
In this way, the refrigerant gas cycle and oil cycle formed a refrigeration cycle. In addition, although the horizontal compressor is described in this figure, a vertical expansion compressor can also be constructed in the same manner. According to this embodiment, (1) all the bearings and sliding parts were lubricated by the differential pressure between the high pressure and the intermediate pressure, and the reliability of the bearings and sliding parts was ensured;

■電動機は冷媒冷却となるため、常に、低温で使用可能
となる。■密閉容器内が中間圧力となるため、薄肉化と
することができた。
■Since the electric motor is cooled with refrigerant, it can always be used at low temperatures. ■Since the inside of the closed container has an intermediate pressure, it was possible to make the wall thinner.

他の実施例として、第2図および第3図により説明する
。第2図、第3図はツインスクロール圧縮機を示す。
Another embodiment will be explained with reference to FIGS. 2 and 3. Figures 2 and 3 show a twin scroll compressor.

第2図は、密閉容器1内に二つの圧縮機構部33.34
を設け、各圧縮機構部が単独で運転可能とし、容量制御
幅と容量の拡大と圧縮機のまとまりを良くした。第1図
と同様の作用・効果がある。詳細な説明は省略する。又
、液冷媒を導入するための管16と阻止弁他は一系統に
まとめたが、必要に応じて、各圧縮機構部ごとに二系統
にする場合も考えられる。
FIG. 2 shows two compression mechanisms 33 and 34 inside the closed container 1.
This allows each compression mechanism section to operate independently, expanding the capacity control range and capacity, and improving the organization of the compressor. It has the same action and effect as in Fig. 1. Detailed explanation will be omitted. Further, although the pipe 16 for introducing the liquid refrigerant, the blocking valve, and the like are combined into one system, it is possible to use two systems for each compression mechanism section, if necessary.

第3図は、第1図に圧縮機を二台並列に設けたものであ
る。各圧縮機は単独で運転可能とし、容量制御幅と容量
の拡大を目的としたものである。
FIG. 3 shows a configuration in which two compressors are installed in parallel in FIG. 1. Each compressor can be operated independently, with the aim of expanding capacity control range and capacity.

圧縮機台数は二台以上何台でも可能である。この実施例
でも第1図と同様の作用・効果があり、詳細な説明省略
する。
The number of compressors can be any number from two to more. This embodiment also has the same functions and effects as those in FIG. 1, so detailed explanation will be omitted.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、背圧室を第一の中間圧力、電動機収納
室を第二の中間圧力とすることができるので各軸受及び
摺動面の給油方法を高圧と中間圧力の圧力差で潤滑する
ことができる。各軸受・給油後の排油はすべて圧縮室に
回収し、外部油分離器で油分離回収し、再結油すること
ができる。
According to the present invention, since the back pressure chamber can be set to the first intermediate pressure and the motor storage chamber to the second intermediate pressure, each bearing and sliding surface can be lubricated by the pressure difference between the high pressure and the intermediate pressure. can do. All waste oil from each bearing and after oiling is collected in the compression chamber, separated and recovered by an external oil separator, and can be reconsolidated.

さらに、電動機の冷却は冷媒冷却とすることができるの
で運用条件に応じた冷媒量を噴射することにより、十分
に電動機の低温冷却ができ、電動機効率が良い条件で使
用できる。
Furthermore, since the electric motor can be cooled by refrigerant cooling, by injecting an amount of refrigerant according to the operating conditions, the electric motor can be sufficiently cooled at a low temperature, and the electric motor can be used under conditions with good efficiency.

さらに、ケーシングの薄肉軽量化が可能となる。Furthermore, the casing can be made thinner and lighter.

又本発明の構造によれば、各軸受を差圧で給油するため
、たて形、よこ形の両方の構造が可能となる。二台の圧
縮機構部を同一ケーシングに収縮するツインタイプや複
数台の圧縮機を並列する場合に有利である6
Further, according to the structure of the present invention, since each bearing is lubricated by differential pressure, both vertical and horizontal structures are possible. This is advantageous when using a twin type compressor that compresses two compression mechanisms into the same casing, or when multiple compressors are arranged in parallel6.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の密閉形スクロール圧縮機の
冷媒系統図、第2図は第1図の電動機室どうしを結合し
た、密閉形ツインスクロール圧縮機の冷媒系統図を示す
。 第3図は第1図の圧縮機を二台並列に接続した密閉形ツ
インスクロール圧縮機の冷媒系統図を示す。 3・・・電動機室、4・・・油分離器、9・・・背圧室
、10・・・吐出管、13・・・通路、14・・・孔、
16・・・管、18・・・給油管、22・・・きり孔。
FIG. 1 shows a refrigerant system diagram of a hermetic scroll compressor according to an embodiment of the present invention, and FIG. 2 shows a refrigerant system diagram of a hermetic twin scroll compressor in which the motor compartments of FIG. 1 are connected. FIG. 3 shows a refrigerant system diagram of a hermetic twin scroll compressor in which two compressors shown in FIG. 1 are connected in parallel. 3... Motor room, 4... Oil separator, 9... Back pressure chamber, 10... Discharge pipe, 13... Passage, 14... Hole,
16...Pipe, 18...Oil supply pipe, 22...Drill hole.

Claims (1)

【特許請求の範囲】[Claims] 1.密閉容器内に、スクロール圧縮機の圧縮部と電動機
を一体に連設して収納する密閉形スクロール圧縮機にお
いて、 前記密閉容器外と連通する導入管と圧縮部吸入口を連結
し、旋回スクロールとフレームで包囲された室を第一の
中間圧力とし、前記密閉容器外と連通する他の前記導入
管と圧縮部吐出口を連結し、前記密閉容器内を第二の中
間圧力としたことを特徴とする密閉形スクロール圧縮機
1. In a hermetic scroll compressor in which a compression part and an electric motor of the scroll compressor are integrally housed in a hermetic container, an inlet pipe communicating with the outside of the hermetic container and a suction port of the compression part are connected, and an orbiting scroll and an electric motor are connected to each other. A first intermediate pressure is set in a chamber surrounded by a frame, and a second intermediate pressure is set inside the closed container by connecting the other introduction pipe communicating with the outside of the closed container and the compression section discharge port. Hermetic scroll compressor.
JP13377290A 1990-05-25 1990-05-25 Closed scroll compressor Pending JPH0431684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13377290A JPH0431684A (en) 1990-05-25 1990-05-25 Closed scroll compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13377290A JPH0431684A (en) 1990-05-25 1990-05-25 Closed scroll compressor

Publications (1)

Publication Number Publication Date
JPH0431684A true JPH0431684A (en) 1992-02-03

Family

ID=15112616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13377290A Pending JPH0431684A (en) 1990-05-25 1990-05-25 Closed scroll compressor

Country Status (1)

Country Link
JP (1) JPH0431684A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5385453A (en) * 1993-01-22 1995-01-31 Copeland Corporation Multiple compressor in a single shell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5385453A (en) * 1993-01-22 1995-01-31 Copeland Corporation Multiple compressor in a single shell

Similar Documents

Publication Publication Date Title
JP2768004B2 (en) Rotary multi-stage gas compressor
US4545747A (en) Scroll-type compressor
US8109116B2 (en) Dual compressor air conditioning system with oil level regulation
JP2812022B2 (en) Multi-stage gas compressor with bypass valve device
US7438539B2 (en) Hermetic type scroll compressor and refrigerating and air-conditioning apparatus
KR100339797B1 (en) Lubrication system for screw compressors using an oil still
US6422844B2 (en) Screw compressor
JPS644076B2 (en)
JP2000080983A (en) Compressor
CN1816696B (en) Scroll-type fluid machine
JP4337820B2 (en) Scroll type fluid machinery
CN108072198B (en) Compressor assembly, control method thereof and refrigerating/heating system
WO2020067196A1 (en) Multistage compression system
JPH05133368A (en) Two-stage compression refrigerator provided with check valve device
JPH0431684A (en) Closed scroll compressor
JP2002303284A (en) Rotary multistage compressor
JPH05113182A (en) Sealed type scroll compressor
JP2002317784A (en) Rotary two-stage compressor
JPS6187988A (en) Scroll compressor
WO2023139829A1 (en) Rotary compressor
JP4546136B2 (en) Screw refrigeration equipment
JPH03194182A (en) Sealed type scroll compressor
JP2000027756A (en) Compressor
JP2502756B2 (en) Air conditioner
JPH0447192A (en) Compression device for extremely low temperature refrigerator