JPH0431651A - Direct injection type internal combustion engine - Google Patents

Direct injection type internal combustion engine

Info

Publication number
JPH0431651A
JPH0431651A JP2134754A JP13475490A JPH0431651A JP H0431651 A JPH0431651 A JP H0431651A JP 2134754 A JP2134754 A JP 2134754A JP 13475490 A JP13475490 A JP 13475490A JP H0431651 A JPH0431651 A JP H0431651A
Authority
JP
Japan
Prior art keywords
injection
air
pressure
supply air
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2134754A
Other languages
Japanese (ja)
Inventor
Toshiichi Imamori
今森 敏一
Ryoichi Ohashi
大橋 良一
Hitoshi Inaba
均 稲葉
Shigeru Yoshikawa
吉川 滋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Diesel Engine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Diesel Engine Co Ltd filed Critical Yanmar Diesel Engine Co Ltd
Priority to JP2134754A priority Critical patent/JPH0431651A/en
Publication of JPH0431651A publication Critical patent/JPH0431651A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0481Intake air cooling by means others than heat exchangers, e.g. by rotating drum regenerators, cooling by expansion or by electrical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0645Details related to the fuel injector or the fuel spray
    • F02B23/0648Means or methods to improve the spray dispersion, evaporation or ignition
    • F02B23/0651Means or methods to improve the spray dispersion, evaporation or ignition the fuel spray impinging on reflecting surfaces or being specially guided throughout the combustion space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0696W-piston bowl, i.e. the combustion space having a central projection pointing towards the cylinder head and the surrounding wall being inclined towards the cylinder wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0412Multiple heat exchangers arranged in parallel or in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/08EGR systems specially adapted for supercharged engines for engines having two or more intake charge compressors or exhaust gas turbines, e.g. a turbocharger combined with an additional compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/14Direct injection into combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0618Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston having in-cylinder means to influence the charge motion
    • F02B23/0621Squish flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To decrease generation amount of NOx by devising the internal combustion engine so that a part of the conical part of fuel spray injected from a fuel injection valve 3 flows along a conical surface while injection pressure and injection rate are restrained low at an injection initial stage and so that a combustion field is kept at a very low temperature, too. CONSTITUTION:A conical part 10 of a gently inclined angle is formed on the bottom part of a combustion chamber 5 of an upper edge open type formed on the upper wall of a piston 1. Additionally, a high pressure injection rate control injection system is set to start fuel injection a little before a top dead center and to restrain injection rate and injection pressure low during an injection initial period near the top dead center. Furthermore, an intercooler 27 connected to a compressor unit 26 of a supercharger 24 is connected to a supply air manifold 21 through a supply air cooling system 30, and after recompressing supercharged air in a compressor unit 31, supply air is lowered down to 0 - 5 deg.C simultaneously when the supply air pressure is lowered by expanding it by an air turbine unit 32.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、排気タービン過給機及びインタークラを備え
、ピストン上壁に形成した浅底形燃焼室に燃料噴射弁か
ら直接燃料を噴射する直接噴射式内燃機関に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention is equipped with an exhaust turbine supercharger and an intercooler, and injects fuel directly from a fuel injection valve into a shallow combustion chamber formed on the upper wall of a piston. Relating to direct injection internal combustion engines.

(従来技術) 第12図はこの種内燃機関の一般的な全体構造を示して
おり、機関の両側に給気マニホルド21及び排気マニホ
ルド22を備え、排気マニホルド22に排気タービン過
給機24のタービン部25を接続し、コンプレッサ部2
6はインタークーラ27を介して給気マニホルド21に
接続している。
(Prior Art) Fig. 12 shows the general overall structure of this type of internal combustion engine, which includes an intake manifold 21 and an exhaust manifold 22 on both sides of the engine, and a turbine of an exhaust turbine supercharger 24 in the exhaust manifold 22. section 25 and compressor section 2.
6 is connected to the air supply manifold 21 via an intercooler 27.

吸気の温度が例えば略20℃であるとすると、過給機2
4のコンプレッサ部26で圧縮されることにより略10
0℃に上昇し、インタークーラ27で40℃〜50℃に
冷却されて給気マニホルド21に供給される。
If the temperature of the intake air is, for example, approximately 20°C, the supercharger 2
By being compressed by the compressor section 26 of 4, approximately 10
The temperature rises to 0° C., is cooled to 40° C. to 50° C. by the intercooler 27, and is supplied to the air supply manifold 21.

従来の燃料制御噴射系は、噴射カム形状の変更により第
13図に示すように噴射圧を高圧化すると、噴射初期か
ら急速に燃料噴射率が上昇するため、燃料弁が開くと同
時に一気に噴射量が増加する。
In conventional fuel control injection systems, when the injection pressure is increased by changing the shape of the injection cam as shown in Figure 13, the fuel injection rate increases rapidly from the initial stage of injection, so the amount of injection increases at once as soon as the fuel valve opens. increases.

第9図〜第11図は従来型の浅底形燃焼室であり、燃焼
室5の底部にゆるやかな円錐部10を有し、上方の燃料
噴射弁3に対向している。上死点をクランク角0°とし
て第9図はクランク角2″における噴射初期、第10図
はクランク角6°における燃焼初期、第11図はクラン
ク角23″における噴射後期(燃焼中期)を示している
9 to 11 show a conventional shallow-bottomed combustion chamber, which has a gentle conical portion 10 at the bottom of the combustion chamber 5, facing the fuel injection valve 3 above. Assuming that the top dead center is at a crank angle of 0°, Figure 9 shows the early stage of injection at a crank angle of 2'', Figure 10 shows the early stage of combustion at a crank angle of 6°, and Figure 11 shows the late stage of injection (middle stage of combustion) at a crank angle of 23''. ing.

従来の燃焼室5は円錐部10の頂点角度θCと燃料噴射
角θNとが略同じに設定され、第9図の噴射初期から噴
霧中心線Aの到達距離L2が長く、円錐部10に殆んど
触れない空間噴射となっている。上記噴霧中心線Aの到
達距離は第10図のL7及び第11図のL23で示すよ
うにピストン1の変位にかかわらず殆んど変化しない。
In the conventional combustion chamber 5, the apex angle θC of the conical portion 10 and the fuel injection angle θN are set to be approximately the same, and the reach distance L2 of the spray center line A from the initial stage of injection in FIG. It is a space jet that cannot be touched. The reach distance of the spray center line A hardly changes regardless of the displacement of the piston 1, as shown by L7 in FIG. 10 and L23 in FIG. 11.

第10図のように燃焼初期においていわゆる空間噴射状
態で、かつ噴射圧が高いと、噴霧P内への空気の流入量
が多く、着火時には多量の空気と混合した燃料が一気に
燃焼する。この時の燃焼場は、空気を圧縮しての圧力及
び温度が高、く、かつ酸素濃度が標準空気と同一のため
、火炎温度が非常に高く、NOxが多く排出する。即ち
燃焼初期におけるNOxの排出量が多(なるという不具
合が生じる。
As shown in FIG. 10, when combustion is in a so-called space injection state and the injection pressure is high at the beginning of combustion, a large amount of air flows into the spray P, and at the time of ignition, a large amount of fuel mixed with air is combusted at once. In the combustion field at this time, the pressure and temperature of the compressed air are high and the oxygen concentration is the same as standard air, so the flame temperature is very high and a large amount of NOx is emitted. That is, a problem arises in that a large amount of NOx is emitted at the initial stage of combustion.

(発明の目的) 本発明の目的は、給気温度の低減、燃料噴射率及び噴射
圧の制御並びに燃焼室形状の工夫により、燃焼初期に生
成されるNOxの低減効果を向上させ、燃焼中期以降で
は燃料噴射圧の高圧化等により混合気形成を良くして、
出力性能を向上させると共に、黒煙の発生を減少させる
ことである。
(Objective of the Invention) The object of the present invention is to improve the effect of reducing NOx generated in the early stage of combustion by reducing the intake air temperature, controlling the fuel injection rate and injection pressure, and devising the shape of the combustion chamber. Then, improve the mixture formation by increasing the fuel injection pressure, etc.
The objective is to improve output performance and reduce the generation of black smoke.

(目的を達成するための技術的手段) 上記目的を達成するために本発明は、 燃料噴射率及び燃料噴射圧を、上死点付近の燃焼初期で
抑制し、燃焼中期、後期で増大、高圧化させる燃料制御
噴射系と、 燃焼室の底部に、燃焼室中心部から半径方向外方にゆく
に従い徐々に低くなる緩やかな傾斜面の円錐部を形成し
、円錐部の上方に位置する燃料噴射弁の燃料噴射角度を
上記円錐部の頂点角度よりも小さくすることにより、噴
射初期においては噴霧域全域が円錐面に当接して円錐面
に沿って流れ、ピストンの下降により順次噴霧到達距離
が増え、中期以降においては噴霧域が円錐面から離れて
高圧噴射されるようにしだ浅底形燃焼室と、インターク
ーラからの給気を再度圧縮するコンプレッサ部、該コン
プレッサ部からの給気を再度冷却するアフタークーラ及
び該アフタークーラからの給気を膨脂させて給気マニホ
ルドに供給すると共に上記コンプレッサ部を駆動するエ
アタービン部よりなる給気冷却システムとを、 備えたことを特徴としている。
(Technical Means for Achieving the Object) In order to achieve the above object, the present invention suppresses the fuel injection rate and fuel injection pressure at the early stage of combustion near top dead center, and increases at the middle and late stages of combustion, resulting in high pressure. A fuel control injection system that forms a conical part at the bottom of the combustion chamber with a gently sloped surface that gradually becomes lower as it goes radially outward from the center of the combustion chamber, and a fuel injection system that is located above the conical part. By making the fuel injection angle of the valve smaller than the apex angle of the conical part, the entire spray area comes into contact with the conical surface and flows along the conical surface at the beginning of injection, and as the piston descends, the spray reach distance gradually increases. , from the middle stage onward, the spray area moves away from the conical surface and high-pressure injection is performed.A shallow-bottomed combustion chamber, a compressor section that recompresses the air supplied from the intercooler, and a re-cooling of the air supplied from the compressor. The present invention is characterized by comprising an aftercooler that expands and supplies air from the aftercooler to an air supply manifold, and an air supply cooling system that includes an air turbine section that drives the compressor section.

また出力性能を一層向上させるために、排気タビン過給
機に、低圧段過給機及びブレインタクーラを接続して2
段過給とする。
In addition, in order to further improve output performance, a low pressure stage supercharger and brain cooler are connected to the exhaust turbine supercharger.
Stage supercharging.

またNOxの低減効果を一層向上させるために、排気の
一部を給気に再循環するEGR装置を付加する。
Additionally, in order to further improve the NOx reduction effect, an EGR device is added that recirculates a portion of the exhaust gas to the supply air.

(作用) エアタービン等による給気冷却システムにより給気温度
を0〜5℃に極力低減した状態とし、上死点付近の場の
圧力、温度の高い燃焼初期には、低噴射率及び低噴射圧
による少量噴射を行なうと共に、燃料噴射弁から噴射さ
れる噴霧は円錐部に当接して、一部か円錐面に付着し、
他は円錐面に沿って流れる。これにより噴霧内への流入
空気量は減り、初期噴霧周りの局部高温火炎温度及び量
を抑制する。即ち初期燃焼を抑制し、それによりNOx
の生成を抑える。
(Operation) The supply air temperature is kept as low as possible to 0 to 5 degrees Celsius by the supply air cooling system using an air turbine, etc., and low injection rate and low injection are applied at the beginning of combustion when the pressure and temperature near top dead center are high. In addition to performing a small amount of injection using pressure, the spray injected from the fuel injection valve comes into contact with the conical part and partially adheres to the conical surface.
Others flow along the conical surface. This reduces the amount of air flowing into the spray, suppressing the local high temperature flame temperature and volume around the initial spray. In other words, it suppresses initial combustion, thereby reducing NOx
suppresses the generation of

その後、ピストン下降変位(圧力降下)に同調して徐々
に噴射率及び噴射圧が増加すると同時に、噴霧の到達距
離が長くなり、噴霧が円錐部から離れて付着噴霧が減少
し、そして高圧による空中噴射になり、流入空気量か増
加して、燃焼が促進される。
After that, the injection rate and injection pressure gradually increase in synchronization with the downward displacement (pressure drop) of the piston, and at the same time, the reach distance of the spray becomes longer, the spray moves away from the cone, the adhering spray decreases, and the high pressure causes This increases the amount of incoming air and promotes combustion.

またこの時燃焼初期に付着した燃料が蒸発して、後期の
噴霧内に空気と共に流入する。これにより混合気形成が
よくなって、黒煙の発生が抑制される。
Further, at this time, the fuel attached during the initial stage of combustion evaporates and flows into the spray at the latter stage along with air. This improves air-fuel mixture formation and suppresses the generation of black smoke.

(実施例) まず燃焼室の形状を説明すると、第1図〜第3図は本発
明を適用した直接噴射式ディーゼル機関の浅底形燃焼室
の断面図を示しており、上死点をクランク角O″として
第1図はクランク角2°付近における噴射初期状態、第
2図はクランク角6°付近における燃焼初期、第3図は
クランク角23°付近における燃焼中期(噴射後期)の
時を示している。
(Example) First, to explain the shape of the combustion chamber, Figs. 1 to 3 show cross-sectional views of the shallow-bottomed combustion chamber of a direct injection diesel engine to which the present invention is applied, and the top dead center is As the angle O'', Fig. 1 shows the initial state of injection at a crank angle of about 2°, Fig. 2 shows the initial stage of combustion at a crank angle of about 6°, and Fig. 3 shows the middle stage of combustion (late injection) at a crank angle of about 23°. It shows.

第1図において、シリンダヘッド2には燃料噴射弁3か
少し傾斜した状態で固定されており、燃料噴射弁3の下
端ノズル部はシリンダ4の中心線01から少しずれた位
置に位置すると共に、シリンダ4内に上方から臨んでい
る。
In FIG. 1, a fuel injection valve 3 is fixed to the cylinder head 2 in a slightly inclined state, and the lower end nozzle portion of the fuel injection valve 3 is located at a position slightly offset from the center line 01 of the cylinder 4. It faces into the cylinder 4 from above.

ピストン1の土壁には、上記燃料噴射弁3のノズル部か
ら僅かにシリンダ中心01側にずれた位置の中心線02
を中心とする浅底円盤形の燃焼室5が上端開口状に形成
されている。燃焼室5の内周面7は緩やかな円弧状に形
成されている。
The earth wall of the piston 1 has a center line 02 at a position slightly shifted toward the cylinder center 01 from the nozzle portion of the fuel injection valve 3.
A shallow disk-shaped combustion chamber 5 with a center at the bottom is formed with an open top end. The inner circumferential surface 7 of the combustion chamber 5 is formed into a gentle arc shape.

燃焼室5の底部には、燃焼室中心線02から半径方向外
方にゆくに従い徐々に低くなる緩やかな傾斜角の円錐部
10が形成されており、該円錐部10の頂点はピストン
頂壁面より低く位置している。
A conical part 10 is formed at the bottom of the combustion chamber 5 and has a gentle slope that gradually decreases as it goes radially outward from the combustion chamber center line 02, and the apex of the conical part 10 is higher than the piston top wall surface. It is located low.

燃料噴射弁3の先端ノズル部には複数の噴口が形成され
、各噴口から噴射される噴霧Pの仮想中心線A間の噴射
角θNは、上記円錐部10の電点角度θCとの関係上次
のように設定されている。
A plurality of nozzles are formed in the tip nozzle portion of the fuel injection valve 3, and the injection angle θN between the virtual center lines A of the spray P injected from each nozzle is determined based on the relationship with the electric point angle θC of the conical portion 10. It is set as follows.

第1図の噴射初期において、円錐部10の角度θCと噴
射中心線Aとのなす角度α、βか150〜1800とな
るように、また噴霧Pの全域が円錐部10に当接するよ
うな噴霧到達距離L2(例えば5〜30+om<らい)
になるように、燃料噴射角θNと円錐部10の角度θC
とは関係付けられている。
At the initial stage of injection as shown in FIG. Reach distance L2 (e.g. 5-30+om < lei)
The fuel injection angle θN and the angle θC of the conical portion 10 are set so that
is related to.

次に高圧噴射率制御噴射系について説明すると、噴射カ
ムのカム面の高さ及び形状等の変更により噴射率及び噴
射圧は第5図に示すように設定されている。即ち上死点
(TDC)の少し前から燃料噴射が開始され、上死点付
近の噴射初期の間は噴射率及び噴射圧は共に低く抑えら
れている。噴射中期から上昇して噴射後期■において最
大噴射圧になり、その後は急激に低くなるように設定さ
れている。第5図の■〜■は第1図〜第3図の状態に対
応する 第4図はディーゼル機関の全体略図を示しており、機関
20の両側に給気マニホルド21と排気マニホルド22
が設けられ、排気マニホルド22には高圧力比の排気タ
ービン過給機24のタービン部24が接続されている。
Next, the high-pressure injection rate control injection system will be explained. The injection rate and injection pressure are set as shown in FIG. 5 by changing the height and shape of the cam surface of the injection cam. That is, fuel injection is started slightly before top dead center (TDC), and both the injection rate and injection pressure are kept low during the initial injection period near top dead center. The injection pressure is set so that it increases from the middle of injection, reaches the maximum injection pressure in the latter half of injection (2), and then decreases rapidly. ■ to ■ in FIG. 5 correspond to the states shown in FIGS. 1 to 3. FIG. 4 shows an overall schematic diagram of a diesel engine.
A turbine section 24 of a high pressure ratio exhaust turbine supercharger 24 is connected to the exhaust manifold 22 .

タービン部24とコンプレッサ部26の間には調節バル
ブ41を介してEGR(排気ガス再循環)装置42が設
けられ、少量(例えば5〜10%程度)の排気を調節し
て給気に再循環できるようになっている。
An EGR (exhaust gas recirculation) device 42 is provided between the turbine section 24 and the compressor section 26 via a regulating valve 41 to regulate a small amount (for example, about 5 to 10%) of exhaust gas and recirculate the air supply. It is now possible to do so.

上記過給機24のコンプレッサ部26には小型のインタ
ークーラ27が接続し、該インタークーラ27はタービ
ン式の給気冷却システム30を介して給気マニホルド2
1に接続している。
A small intercooler 27 is connected to the compressor section 26 of the supercharger 24, and the intercooler 27 is connected to the air supply manifold 2 through a turbine type air supply cooling system 30.
Connected to 1.

給気冷却システム30内のエア経路中には、上流側から
順に、給気を再度圧縮するためのコンプレッサ部31と
、再度冷却するためのアフタークーラ35と、膨脹によ
り給気を極低温に下げるためのエアタービン部32と、
外部から大気を補充できる補助給気口37が接続されて
いる。コンプレッサ部31とエアタービン部32はター
ビン軸33を介して連動連結しており、タービン部32
によりコンプレッサ部31を駆動するようになっている
。補助給気口37には外部からの大気の導入のみを許す
逆止弁38が設けられ、タービン部32による給気の膨
脹により負正になった時に、外部から大気を補充する。
In the air path in the supply air cooling system 30, in order from the upstream side, there is a compressor section 31 for recompressing the supply air, an aftercooler 35 for cooling the supply air again, and a compressor section 35 for cooling the supply air again, and lowering the supply air to an extremely low temperature by expansion. an air turbine section 32 for
An auxiliary air supply port 37 is connected to which air can be replenished from the outside. The compressor section 31 and the air turbine section 32 are interlocked and connected via a turbine shaft 33.
The compressor section 31 is driven by this. The auxiliary air supply port 37 is provided with a check valve 38 that only allows atmospheric air to be introduced from the outside, and when the air supply becomes negative or positive due to the expansion of the air supply by the turbine section 32, atmospheric air is replenished from the outside.

作動を説明する。第4図においてまず給気の流れ及びそ
の温度変化について説明すると、排気タービン過給機2
4のコンブッレッサ部26部には、外部から例えば略2
0℃の吸気が吸い込まれると共に、排気マニホルド22
側からEGR装置42を介して少量の排気ガスが吸い込
まれ、圧縮される。この圧縮により給気温度は略100
℃に上昇する。またEGR装置42内では排気ガス中の
カーボン成分は除去される。
Explain the operation. In Fig. 4, the flow of supply air and its temperature change will be explained first.
For example, about 2 compressor parts 26 are connected to the compressor part 26 from the outside.
While the intake air at 0°C is sucked in, the exhaust manifold 22
A small amount of exhaust gas is sucked in from the side via the EGR device 42 and compressed. Due to this compression, the supply air temperature is approximately 100
rises to ℃. Furthermore, within the EGR device 42, carbon components in the exhaust gas are removed.

コンプレッサ部26て圧縮された給気はインターラ27
で40〜50℃に冷却された後、給気冷却システム30
に入る。給気冷却システム30内ではまずコンプレッサ
部31で再圧縮されて、略100℃まで温度が上昇する
か、アフタークーラ35で略40℃に冷却され、エアタ
ービン部32において膨脹する。それにより給気圧力が
低トすると同時に極めて低い温度(0〜5℃)にまで給
気温度は低下し、給気マニホルド21に供給される。
The supply air compressed by the compressor section 26 is
After being cooled to 40-50°C, the supply air cooling system 30
to go into. In the supply air cooling system 30, the air is first recompressed in the compressor section 31 and the temperature rises to approximately 100.degree. C., or is cooled to approximately 40.degree. C. in the aftercooler 35, and then expanded in the air turbine section 32. As a result, the supply air pressure is lowered, and at the same time, the supply air temperature is lowered to an extremely low temperature (0 to 5° C.), and the supply air is supplied to the intake manifold 21.

次に燃焼室内における変化を説明する。噴射初期におい
ては第1図のように噴霧Pの全部が円錐部10に当り、
一部は円錐部10に付着し、残りは円錐部10に沿って
外方へと流れる。この時空気は噴霧の上側からしか噴霧
内に流れ込まず、流入空気量は抑制される。
Next, changes in the combustion chamber will be explained. At the initial stage of injection, all of the spray P hits the conical part 10 as shown in FIG.
A portion attaches to the cone 10 and the rest flows outward along the cone 10. At this time, air flows into the spray only from the upper side of the spray, and the amount of air flowing in is suppressed.

第2図の燃焼初期においては噴霧到達距離L7は第1図
の到達距#ItL2よりも延び、空気流入量は少し増え
るが、噴射率及び噴射圧は低い値に抑制されており、ま
た噴霧Pはその全体がまだ円錐部10に当っており、第
1図と同様噴霧の上側からしか噴霧内に流れ込まないの
で、流入空気量は抑制された状態であり、かつ前述のよ
うに給気冷却システム30により場の給気温度は極力低
減した状態であるので、これにより燃焼初期における急
激な燃焼は抑えられ、NOXのυト出量は減少する。
In the early stage of combustion in Fig. 2, the spray reach L7 is longer than the reach #ItL2 in Fig. 1, and the amount of air inflow increases slightly, but the injection rate and injection pressure are suppressed to low values, and the spray P is still in contact with the conical part 10 in its entirety, and as in FIG. 1 only flows into the spray from the upper side, so the amount of incoming air is suppressed, and as mentioned above, the supply air cooling system 30, the supply air temperature in the field is reduced as much as possible, so that rapid combustion at the initial stage of combustion is suppressed, and the amount of NOx emitted is reduced.

さらにピストンが下って第3図の噴射後期(燃焼中期)
になると、噴霧Pの到達距離L23が長くなり、噴霧P
が円錐部]0から離れて付着噴霧か減少し、そして高圧
による空中噴射になり、流入空気量が増加し、また円弧
状内周面7に沿ってピストン1とシリンダヘッド2の隙
間11に吹き出し、燃焼が促進される。
As the piston moves further down, the latter stage of injection (middle stage of combustion) shown in Figure 3.
, the reach distance L23 of the spray P becomes longer and the spray P
[conical part] 0, the adhering spray decreases, becomes an aerial jet due to high pressure, the amount of incoming air increases, and it is blown out into the gap 11 between the piston 1 and the cylinder head 2 along the arcuate inner circumferential surface 7. , combustion is promoted.

またこの時燃焼初期に付着した燃料が蒸発して、後期の
噴霧内に空気と共に流入する。これらにより混合気形成
がよくなって、黒煙の発生が抑制される。
Further, at this time, the fuel attached during the initial stage of combustion evaporates and flows into the spray at the latter stage along with air. These improve air-fuel mixture formation and suppress the generation of black smoke.

第6図は排気色並びにNOxの発生量の変化を示すグラ
フであり、実線で示すグラフAlは従来例、−点鎖線で
示すグラフA3は本発明による第1図の燃焼室、第5図
の高圧噴射率制御噴射系並びに第4図の給気冷却システ
ム及びEGR装置を備えた場合の変化を示している。ま
た破線で示すグラフA2は、グラフA3の上記条件から
EGR装置を外した場合の変化を示し、ている。
FIG. 6 is a graph showing changes in exhaust color and NOx generation amount. Graph Al shown by a solid line is the conventional example, graph A3 shown by a dashed-dotted line is the combustion chamber of FIG. 1 according to the present invention, and It shows changes in the case where the high-pressure injection rate control injection system and the supply air cooling system and EGR device of FIG. 4 are provided. Graph A2 indicated by a broken line shows the change when the EGR device is removed from the above conditions of graph A3.

(別の実施例) (1)第4図の仮想線で示すようにEGR装置42を給
気マニホルド21と排気マニホルド22の間に直接型は
渡す構造でもよい。
(Another Embodiment) (1) A structure may be adopted in which the EGR device 42 is directly passed between the air supply manifold 21 and the exhaust manifold 22 as shown by the imaginary line in FIG.

(2)第7図は請求項2記載の2段過給方式を適用した
例であり、高圧段用の排気タービン過給機24に低圧段
過給機50を付加している。両過給機24.50のター
ビン部51.25同志が排気管55を介して接続し、コ
ンプレッサ部52.26同志かプレインタークーラ53
を介して接続している。
(2) FIG. 7 is an example in which the two-stage supercharging method according to claim 2 is applied, in which a low-pressure stage supercharger 50 is added to the high-pressure stage exhaust turbine supercharger 24. Turbine sections 51.25 of both superchargers 24.50 are connected via exhaust pipes 55, compressor sections 52.26 and pre-intercooler 53
are connected via.

これによると過給圧の増大により給気の圧力比を上げ、
給気冷却システム30のエアタービン部32の膨脹比を
増大させて、極低温の給気の流量を増大させ、出力性能
を一層向上させることができる。
According to this, increasing the boost pressure increases the pressure ratio of the supply air,
The expansion ratio of the air turbine section 32 of the charge air cooling system 30 can be increased to increase the flow rate of cryogenic charge air and further improve output performance.

また低圧段過給機50のタービン部51の入口にスクロ
ール切換え弁60を取り付けて、タービン部51に入る
排気の流通断面積を可変とすることもできる。即ちセン
サー等により、給気マニホルド21の給気圧か低い時あ
るいは給気温度か高い時等を検知して、図示のようにス
クロール弁60で排気管55を半分閉じることにより、
排気の流速を上げてタービン回転を増大させ、給気量不
足を補う。
Further, by attaching a scroll switching valve 60 to the inlet of the turbine section 51 of the low-pressure stage supercharger 50, the flow cross-sectional area of the exhaust gas entering the turbine section 51 can be made variable. That is, by detecting with a sensor etc. when the supply pressure of the supply air manifold 21 is low or when the supply air temperature is high, etc., the exhaust pipe 55 is half-closed with the scroll valve 60 as shown in the figure.
Increases the flow rate of the exhaust gas and increases the rotation of the turbine to compensate for the lack of air supply.

(3)第8図は2段過給方式を採用すると同時にEGR
装置42も取り付けた例である。EGR装置42は低圧
段過給機50のタービン部51とコンプレッサ部52の
間に取り付けられているが、仮想線で示すようにEGR
装置42を給気マニホルド21と排気マニホルド22の
間に直接架は渡す構造でもよい。
(3) Figure 8 shows that a two-stage supercharging system is adopted and at the same time EGR
This is an example in which a device 42 is also attached. The EGR device 42 is installed between the turbine section 51 and the compressor section 52 of the low-pressure supercharger 50.
A structure in which the device 42 is directly placed between the air supply manifold 21 and the exhaust manifold 22 may be used.

(発明の効果) 以上説明したように本発明によると: (1)噴射初期においては高圧噴射率制御噴射系によっ
て噴射圧及び噴射率か低く抑えらると共に、燃料噴射弁
3から噴射される噴霧Pは円錐部10に当接して、一部
が円錐面に付着し、他は円錐面に沿って流れ、しかも燃
焼の場は給気冷却システム30によって極低温にされて
いる。従って噴霧内への流入空気量は減り、初期燃焼か
抑制され、それによりNOXの生成量を減少させること
かできる。
(Effects of the Invention) As explained above, according to the present invention: (1) In the early stage of injection, the injection pressure and injection rate are kept low by the high-pressure injection rate control injection system, and the spray injected from the fuel injection valve 3 P comes into contact with the conical part 10, with some of it adhering to the conical surface and the other flowing along the conical surface, and the combustion field is kept at a cryogenic temperature by the air supply cooling system 30. Therefore, the amount of air flowing into the spray is reduced, and the initial combustion is suppressed, thereby reducing the amount of NOx produced.

(2)ピストン1の下降に従って噴霧Pの到達距離りが
長くなり、噴霧Pが円錐部10がら離れて付着噴霧か減
少し、そして高圧による空中噴射になり、流入空気量が
増加して、燃焼が促進される。
(2) As the piston 1 descends, the reach of the spray P becomes longer, the spray P separates from the conical part 10, and the adhering spray decreases, and then becomes aerial injection due to high pressure, and the amount of incoming air increases, resulting in combustion. is promoted.

これらにより混合気形成がよくなって、黒煙の発生が抑
制される。
These improve air-fuel mixture formation and suppress the generation of black smoke.

(3)排気タービン過給機24に低圧段過給機50を付
加して2段過給とすることにより、過給圧の増大により
給気の圧縮比を上げ、給気冷却システム30のエアター
ビン部32の膨脹比を増大させることができる。従って
極低温の給気の流量を増大させ、出力性能を一層向上さ
せることができる。
(3) By adding a low-pressure stage supercharger 50 to the exhaust turbine supercharger 24 to achieve two-stage supercharging, the compression ratio of the charge air is increased by increasing the supercharging pressure, and the air in the charge air cooling system 30 is The expansion ratio of the turbine section 32 can be increased. Therefore, the flow rate of the cryogenic supply air can be increased, and the output performance can be further improved.

(4)EGR装置を付加することにより、酸素濃度を低
下させ、燃焼を緩慢にできるので、NOXの発生量は一
層低減する。
(4) By adding an EGR device, the oxygen concentration can be lowered and combustion can be slowed down, so the amount of NOx generated can be further reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用したデイ−セル機関の燃焼室であ
って、噴射初期の状態を示す縦断面図、第2図は燃焼初
期の状態を示す燃焼室の縦断面図、第3図は噴射後期(
燃焼中期)の状態を示す縦断面図、第4図はディーゼル
機関の全体略図、第5図は筒内圧、噴射圧、噴射率、平
均ガス温度及び熱発生率の変化を示すグラフ、第6図は
NOxの変化並びに排気色の変化を示すグラフ、第7図
は2段過給方式を採用したディーゼル機関の全体略図、
第8図は2段過給方式及びEGR装置を採用したディー
ゼル機関の全体略図、第9図〜第11図は従来例の燃焼
室であって、それぞれ噴射初期、燃焼初期、及び噴射後
期(燃焼中期)の状態を示す縦断面略図、第12図は従
来例のディーゼル機関の全体略図、第13図は従来の燃
料制御噴射系による噴射圧及び噴射率のグラフである。 1・・・ピストン、2・・・シリンダヘッド、3・・・
燃料噴射弁、4・・・シリンダ、5・・・燃焼室、10
・・・円錐部、24・・・排気タービン過給機、27・
・・インタークーラ、30・・給気冷却システム、31
・・・アフタークーラ、32・・・膨脹用エアタービン
、42・・・EGR装置、50・・・低圧段過給機、5
3・・・プレインタークーラ特許出願人 ヤンマーディ
ーゼル株式会社#缶り争まpシステ4 EcyplAa DC −クランク角鷹 第to図 第1/図 手続補正組醐式) 1.事件の表示 平成 2年 特 許 願 第134754号2、発明の
名称 直接噴射式内燃機関 3、補正をする者 事件との関係   特許出願人 住 所 大阪市北区茶屋町1番32号 名 称 (678)ヤンマーディーゼル株式会社代表者
 代表取締役 山 岡 淳 男 4、代理人 住 所  大阪市北区東天満2丁目9番4号千代田ビル
東館7階(昏530) (1)願書に最初に添付した図面を別紙の通りに浄書す
る(内容に変更なし)。 8、添付書類の目録 図面(全図)            各1通以上 5、補正命令の日付  (発送臼)平成2年8月28日
6、補正の対象  図面
FIG. 1 is a longitudinal cross-sectional view of the combustion chamber of a day cell engine to which the present invention is applied, showing the initial state of injection, FIG. 2 is a longitudinal cross-sectional view of the combustion chamber showing the initial combustion state, and FIG. is late injection (
Fig. 4 is a schematic diagram of the entire diesel engine; Fig. 5 is a graph showing changes in cylinder pressure, injection pressure, injection rate, average gas temperature, and heat release rate; Fig. 6 is a graph showing changes in NOx and exhaust color, and Figure 7 is an overall schematic diagram of a diesel engine that uses a two-stage supercharging system.
Fig. 8 is an overall schematic diagram of a diesel engine that employs a two-stage supercharging system and an EGR device, and Figs. FIG. 12 is an overall schematic diagram of a conventional diesel engine, and FIG. 13 is a graph of injection pressure and injection rate by a conventional fuel control injection system. 1...Piston, 2...Cylinder head, 3...
Fuel injection valve, 4... cylinder, 5... combustion chamber, 10
... Conical part, 24 ... Exhaust turbine supercharger, 27.
... Intercooler, 30 ... Supply air cooling system, 31
... Aftercooler, 32 ... Expansion air turbine, 42 ... EGR device, 50 ... Low pressure stage supercharger, 5
3... Pre-intercooler patent applicant Yanmar Diesel Co., Ltd. Display of the case 1990 Patent Application No. 1347542, Name of the invention Direct injection internal combustion engine3, Person making the amendment Relationship to the case Patent applicant address 1-32 Chayamachi, Kita-ku, Osaka Name ( 678) Yanmar Diesel Co., Ltd. Representative Representative Director Atsushi Yamaoka 4, Agent address 7th floor, East Building, Chiyoda Building, 2-9-4 Higashitenma, Kita-ku, Osaka (Koma 530) (1) First attached to the application form Print the drawing as shown on the attached sheet (no changes to the content). 8. Inventory drawings of attached documents (all drawings) At least 1 copy each 5. Date of amendment order (dispatch) August 28, 1990 6. Subject of amendment Drawings

Claims (3)

【特許請求の範囲】[Claims] (1)排気タービン過給機及びインタークーラを備え、
ピストン上壁に形成した浅底型燃焼室に燃料噴射弁から
直接燃料を噴射する直接噴射式内燃機関において、 燃料噴射率及び燃料噴射圧を、上死点付近の燃焼初期で
抑制し、燃焼中期、後期で増大、高圧化させる高圧噴射
率制御噴射系と、 燃焼室の底部に、燃焼室中心部から半径方向外方にゆく
に従い徐々に低くなる緩やかな傾斜面の円錐部を形成し
、円錐部の上方に位置する燃料噴射弁の燃料噴射角度を
上記円錐部の頂点角度よりも小さくすることにより、噴
射初期においては噴霧域全域が円錐面に当接して円錐面
に沿って流れ、ピストンの下降により順次噴霧到達距離
が増え、中期以降においては噴霧域が円錐面から離れて
高圧噴射されるようにした浅底形燃焼室と、 前記インタークーラからの給気を再度圧縮するコンプレ
ッサ部、該コンプレッサ部からの給気を再度冷却するア
フタークーラ及び該アフタークーラからの給気を膨脹さ
せて給気マニホルドに供給すると共に上記コンプレッサ
部を駆動するエアタービン部よりなる給気冷却システム
とを、 備えたことを特徴とする直接噴射式内燃機関。
(1) Equipped with an exhaust turbine supercharger and an intercooler,
In a direct injection internal combustion engine that injects fuel directly from a fuel injection valve into a shallow-bottomed combustion chamber formed on the upper wall of the piston, the fuel injection rate and fuel injection pressure are suppressed at the early stage of combustion near top dead center, and during the middle stage of combustion. , a high-pressure injection rate control injection system that increases pressure in the later stage, and a conical part with a gently sloped surface that gradually becomes lower as it goes radially outward from the center of the combustion chamber at the bottom of the combustion chamber. By making the fuel injection angle of the fuel injection valve located above the conical part smaller than the apex angle of the conical part, at the beginning of injection, the entire spray area comes into contact with the conical surface and flows along the conical surface, causing the piston to A shallow combustion chamber in which the spray reach distance gradually increases as it descends, and the spray region moves away from the conical surface in the middle and later stages for high-pressure injection; a compressor section that recompresses the air supplied from the intercooler; A supply air cooling system comprising an aftercooler that cools the supply air from the compressor section again, and an air turbine section that expands the supply air from the aftercooler and supplies it to the supply manifold, and also drives the compressor section. A direct injection internal combustion engine.
(2)請求項1記載の直接噴射式内燃機関において、排
気タービン過給機に、低圧段過給機及びプレインターク
ーラを接続して2段過給としたことを特徴とする直接噴
射式内燃機関。
(2) The direct injection internal combustion engine according to claim 1, characterized in that the exhaust turbine supercharger is connected to a low pressure stage supercharger and a pre-intercooler to provide two-stage supercharging. institution.
(3)請求項1記載の直接噴射式内燃機関において、排
気の一部を給気に再循環するEGR装置を付加したこと
を特徴とする直接噴射式内燃機関。
(3) The direct injection internal combustion engine according to claim 1, further comprising an EGR device that recirculates part of the exhaust gas to air supply.
JP2134754A 1990-05-24 1990-05-24 Direct injection type internal combustion engine Pending JPH0431651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2134754A JPH0431651A (en) 1990-05-24 1990-05-24 Direct injection type internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2134754A JPH0431651A (en) 1990-05-24 1990-05-24 Direct injection type internal combustion engine

Publications (1)

Publication Number Publication Date
JPH0431651A true JPH0431651A (en) 1992-02-03

Family

ID=15135786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2134754A Pending JPH0431651A (en) 1990-05-24 1990-05-24 Direct injection type internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0431651A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0849448A1 (en) * 1996-12-19 1998-06-24 Cummins Engine Company, Inc. Deep angle injection nozzle and piston having complementary combustion bowl
WO2000020735A1 (en) * 1997-04-11 2000-04-13 Yanmar Diesel Engine Co., Ltd. Combustion system for direct injection diesel engines
US6353962B1 (en) 1998-04-28 2002-03-12 Asmo Co., Ltd. Wiper and wiper blade for vehicles
US6732703B2 (en) 2002-06-11 2004-05-11 Cummins Inc. Internal combustion engine producing low emissions
US7210448B2 (en) 2002-06-11 2007-05-01 Cummins, Inc. Internal combustion engine producing low emissions
EP2204560A1 (en) 2008-12-17 2010-07-07 Honda Motor Co., Ltd Direct fuel-injection engine
US8677970B2 (en) 2011-03-17 2014-03-25 Cummins Intellectual Property, Inc. Piston for internal combustion engine
JP2016186258A (en) * 2015-03-27 2016-10-27 いすゞ自動車株式会社 Combustion chamber structure for direct-injection engine

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0849448A1 (en) * 1996-12-19 1998-06-24 Cummins Engine Company, Inc. Deep angle injection nozzle and piston having complementary combustion bowl
WO2000020735A1 (en) * 1997-04-11 2000-04-13 Yanmar Diesel Engine Co., Ltd. Combustion system for direct injection diesel engines
CN1099525C (en) * 1997-04-11 2003-01-22 洋马柴油机株式会社 Combustion system for direct injection diesel engines
US6553960B1 (en) 1997-04-11 2003-04-29 Yanmar Co., Ltd. Combustion system for direct injection diesel engines
US6353962B1 (en) 1998-04-28 2002-03-12 Asmo Co., Ltd. Wiper and wiper blade for vehicles
US6966294B2 (en) 2002-06-11 2005-11-22 Cummins Inc. Internal combustion engine producing low emissions
US6732703B2 (en) 2002-06-11 2004-05-11 Cummins Inc. Internal combustion engine producing low emissions
US7210448B2 (en) 2002-06-11 2007-05-01 Cummins, Inc. Internal combustion engine producing low emissions
EP2204560A1 (en) 2008-12-17 2010-07-07 Honda Motor Co., Ltd Direct fuel-injection engine
US8627798B2 (en) 2008-12-17 2014-01-14 Honda Motor Co., Ltd. Direct fuel-injection engine
US8677970B2 (en) 2011-03-17 2014-03-25 Cummins Intellectual Property, Inc. Piston for internal combustion engine
USRE46806E1 (en) 2011-03-17 2018-04-24 Cummins Intellectual Property, Inc. Piston for internal combustion engine
JP2016186258A (en) * 2015-03-27 2016-10-27 いすゞ自動車株式会社 Combustion chamber structure for direct-injection engine

Similar Documents

Publication Publication Date Title
US6543411B2 (en) Method for generating a homogeneous mixture for auto-ignition internal combustion engines and for controlling the combustion process
JP3796102B2 (en) EGR device
EP2808522B1 (en) System and method of operating an internal combustion engine
US7117843B2 (en) Emission reduction in a diesel engine using an alternative combustion process and a low-pressure EGR loop
JP2003176741A (en) Controller for internal combustion engine
JP2005146893A (en) Internal combustion engine and control method of internal combustion engine
JP2002180864A (en) Compression self-ignition type internal combustion engine with supercharger
JP2008025534A (en) Premixed compression self-ignition internal combustion engine
JP2005248748A (en) Diesel engine
JP2002188474A (en) Control device for diesel engine with turbosupercharger
JP2006233898A (en) Egr device
JP2008025543A (en) Exhaust gas recirculation system for internal-combustion engine
JP2996971B1 (en) Mirror cycle engine
JPH0431651A (en) Direct injection type internal combustion engine
JP2009047014A (en) Control device for diesel engine
JPH04103867A (en) Diesel engine with supercharger
JPH0431653A (en) Direct injection type internal combustion engine
JP2006336466A (en) Diesel engine
JP2759374B2 (en) Direct injection internal combustion engine
JP4924280B2 (en) Diesel engine control device.
JP2000008963A (en) Exhaust gas recirculation device for supercharged engine
WO2011118029A1 (en) Combustion controller for internal combustion engine
JP2008121494A (en) Controller of internal combustion engine
JP2002155791A (en) Control device of diesel engine
US10760476B2 (en) Engine system and method of controlling the same