JPH0431650A - Direct injection type internal combustion engine - Google Patents

Direct injection type internal combustion engine

Info

Publication number
JPH0431650A
JPH0431650A JP2134753A JP13475390A JPH0431650A JP H0431650 A JPH0431650 A JP H0431650A JP 2134753 A JP2134753 A JP 2134753A JP 13475390 A JP13475390 A JP 13475390A JP H0431650 A JPH0431650 A JP H0431650A
Authority
JP
Japan
Prior art keywords
injection
pressure
air
combustion
protrusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2134753A
Other languages
Japanese (ja)
Other versions
JP2759374B2 (en
Inventor
Toshiichi Imamori
今森 敏一
Ryoichi Ohashi
大橋 良一
Hitoshi Inaba
均 稲葉
Shigeru Yoshikawa
吉川 滋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Diesel Engine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Diesel Engine Co Ltd filed Critical Yanmar Diesel Engine Co Ltd
Priority to JP2134753A priority Critical patent/JP2759374B2/en
Publication of JPH0431650A publication Critical patent/JPH0431650A/en
Application granted granted Critical
Publication of JP2759374B2 publication Critical patent/JP2759374B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0481Intake air cooling by means others than heat exchangers, e.g. by rotating drum regenerators, cooling by expansion or by electrical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0645Details related to the fuel injector or the fuel spray
    • F02B23/0648Means or methods to improve the spray dispersion, evaporation or ignition
    • F02B23/0651Means or methods to improve the spray dispersion, evaporation or ignition the fuel spray impinging on reflecting surfaces or being specially guided throughout the combustion space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0672Omega-piston bowl, i.e. the combustion space having a central projection pointing towards the cylinder head and the surrounding wall being inclined towards the cylinder center axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0412Multiple heat exchangers arranged in parallel or in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/02Gas passages between engine outlet and pump drive, e.g. reservoirs
    • F02B37/025Multiple scrolls or multiple gas passages guiding the gas to the pump drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/08EGR systems specially adapted for supercharged engines for engines having two or more intake charge compressors or exhaust gas turbines, e.g. a turbocharger combined with an additional compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/14Direct injection into combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0618Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston having in-cylinder means to influence the charge motion
    • F02B23/0621Squish flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/013Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/02Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
    • F02D2009/0201Arrangements; Control features; Details thereof
    • F02D2009/0283Throttle in the form of an expander
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To decrease generation amount of NOx by devising the internal combustion engine so that a part of fuel spray is caught on a central projection part while injection pressure and injection rate are restrained low at an injection initial stage and to that a combustion field is kept at a very low temperature. CONSTITUTION:A central projection part 10 projected upward from a bottom wall 5a part is formed in the central part of a combustion chamber 5 of an upper end open type formed on the upper wall of a piston 1. Additionally, a high pressure injection rate control injection system is set to start injecting fuel slightly before a top dead center and to restrain injection rate and injection pressure low during an injection initial stage near the top dead center together. Furthermore, an intercooler 27 connected to a compressor unit 26 of a supercharger 24 is connected to a supply air manifold 21, and supercharged air is cooled down by an aftercooler 35 after it is recompressed by a compressor unit 31, and it is lowered down to 0 - 5 deg.C simultaneously while supply air pressure is lower by expanding it at an air turbine unit 32.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、排気タービン過給機及びインタークーラを備
え、ピストン上壁に形成された燃焼室に燃料噴射弁から
直接燃料を噴射する直接噴射式内燃機関に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a direct injection system that includes an exhaust turbine supercharger and an intercooler, and injects fuel directly from a fuel injection valve into a combustion chamber formed on an upper wall of a piston. Regarding internal combustion engines.

(従来の技術) 第20図はこの種内燃機関の一般的な全体構造を示して
おり、機関の両側に給気マニホルド21及び排気マニホ
ルド22を備え、排気マニホルド22に排気タービン過
給機24のタービン部25を接続し、コンプレッサ部2
6はインタークーラ27を介して給気マニホルド21に
接続している。
(Prior Art) FIG. 20 shows the general overall structure of this type of internal combustion engine, which includes an intake manifold 21 and an exhaust manifold 22 on both sides of the engine, and an exhaust turbine supercharger 24 connected to the exhaust manifold 22. The turbine section 25 is connected to the compressor section 2.
6 is connected to the air supply manifold 21 via an intercooler 27.

吸気の温度が例えば略20℃であるとすると、過給機2
4のコンプレッサ部26で圧縮されることにより略゛1
00℃に上昇し、インタークーラ27で40℃〜50℃
に冷却されて給気マニホルド21に供給される。
If the temperature of the intake air is, for example, approximately 20°C, the supercharger 2
By being compressed by the compressor section 26 of 4, approximately ゛1
00℃ and 40℃~50℃ at intercooler 27
The air is cooled down and supplied to the air supply manifold 21.

従来の燃焼室としては、第17図のようなトロイダル型
、第18図のような浅皿型あるいは第19図のような内
周テーパー面を有するスキッシュリップ型等があり、こ
れらの燃焼室には燃料の噴霧を抑制する手段は講じられ
ていない。
Conventional combustion chambers include a toroidal type as shown in Figure 17, a shallow dish type as shown in Figure 18, and a squish lip type with a tapered inner surface as shown in Figure 19. No measures were taken to suppress fuel spray.

また従来の燃料制御噴射系は、噴射カム形状の変更によ
り第21図に示すように噴射圧を高圧化すると、噴射初
期から急速に燃料噴射率が上昇するため、燃料弁が開く
と同時に一気に噴射量が増加する。このような状態で燃
焼させると、燃料噴射開始後、着火遅れ期間中に多量の
燃料が高圧化により微粒化され、着火時には多量の空気
と混合した燃料が一気に燃焼する。この時の燃焼中は、
空気を圧縮しての圧力及び温度が高く、かつ酸素濃度が
標準空気と同一のため、火炎温度が非常に高く、NOx
が多く排出する。即ち燃料初期におけるNOxの排出量
が多くなるという不具合が生じる。
In addition, in conventional fuel control injection systems, when the injection pressure is increased by changing the injection cam shape as shown in Figure 21, the fuel injection rate increases rapidly from the initial stage of injection, so the injection is performed all at once as soon as the fuel valve opens. The amount increases. When the fuel is combusted in such a state, a large amount of fuel is atomized by increasing the pressure during the ignition delay period after the start of fuel injection, and at the time of ignition, the fuel mixed with a large amount of air is combusted all at once. During this combustion,
The pressure and temperature of compressed air are high, and the oxygen concentration is the same as standard air, so the flame temperature is extremely high and NOx
is emitted in large quantities. That is, a problem arises in that the amount of NOx emitted during the initial stage of fueling increases.

(発明の目的) 本発明の目的は、給気温度の低減、燃料噴射率及び噴射
圧の制御並びに燃焼室形状の工夫により、燃焼初期に生
成されるNOxの低減効果を向上させ、燃焼中期以降で
は燃料噴射圧の高圧化及びバックスキッシュの渦流等に
より混合気形成を良くして、出力性能を向上させると共
に、黒煙の発生を減少させることである。
(Objective of the Invention) The object of the present invention is to improve the effect of reducing NOx generated in the early stage of combustion by reducing the intake air temperature, controlling the fuel injection rate and injection pressure, and devising the shape of the combustion chamber. The goal is to improve the mixture formation by increasing the fuel injection pressure and creating a back squish vortex to improve output performance and reduce the generation of black smoke.

(目的を達成するための技術的手段) 上記目的を達成するために本発明は、 燃料噴射率及び燃料噴射圧を、上死点付近の燃焼初期で
抑制し、燃焼中期、後期で増大、高圧化させる燃料制御
噴射系と、 燃焼室の内周面を上端部が狭くなるような環状テーパ面
に形成し、燃焼室の中央部に上方へ突出する中央突起部
を形成して、該突起部の上端面を概ね円錐状に形成し、
突起部の上方に位置する燃料噴射弁の燃料噴射角度と突
起部上端面との関係を、噴射初期においては噴霧域の一
部が突起部上端面に当接し、燃焼中期以降においてはピ
ストンの下降により噴霧域全域が突起部から離れてテー
パ内周面に向かって噴射されるように設定した燃焼室と
、 インタークーラからの給気を再度圧縮するコンプレッサ
部、該コンプレッサ部からの給気を再度冷却するアフタ
ークーラ及び該アフタークーラからの給気を膨脹させて
給気マニホルドに供給すると共に上記コンプレッサ部を
駆動するエアタービン部よりなる給気冷却システムとを
、 備えたことを特徴としている。
(Technical Means for Achieving the Object) In order to achieve the above object, the present invention suppresses the fuel injection rate and fuel injection pressure at the early stage of combustion near top dead center, and increases at the middle and late stages of combustion, resulting in high pressure. The inner peripheral surface of the combustion chamber is formed into an annular tapered surface that narrows at the upper end, and a central protrusion that protrudes upward is formed in the center of the combustion chamber, and the protrusion The upper end surface of is formed into a generally conical shape,
The relationship between the fuel injection angle of the fuel injector located above the protrusion and the upper end surface of the protrusion is as follows: At the beginning of injection, part of the spray area comes into contact with the upper end surface of the protrusion, and after the middle stage of combustion, the piston descends. A combustion chamber that is set so that the entire spray area is injected away from the protrusion toward the tapered inner circumferential surface, a compressor section that recompresses the air supplied from the intercooler, and a compressor section that recompresses the air supplied from the compressor. The present invention is characterized by comprising an aftercooler for cooling, and an air supply cooling system that expands the air supply from the aftercooler and supplies it to the air supply manifold, and also includes an air turbine section that drives the compressor section.

また出力性能を一層向上させるために、排気タービン過
給機に、低圧段過給機及びプレインタークーラを接続し
て2段過給とする。
In order to further improve output performance, a low-pressure stage supercharger and pre-intercooler are connected to the exhaust turbine supercharger to provide two-stage supercharging.

またNOxの低減効果を一層向上させるために、排気の
一部を給気に再循環するEGR装置を付加する。
Additionally, in order to further improve the NOx reduction effect, an EGR device is added that recirculates a portion of the exhaust gas to the supply air.

(作用) エアタービン等による給気冷却システムにより給気温度
を0〜5℃に極力低減した状態とし、上死点付近の場の
圧力、温度の高い燃焼初期には、低噴射率及び低噴射圧
による少量噴射を行なうと共に、噴射される噴霧の一部
を燃焼室の中央突起部にひっかけて抑制することにより
、初期噴霧周りの局部高温火炎温度及び量を抑制する。
(Operation) The supply air temperature is kept as low as possible to 0 to 5 degrees Celsius by the supply air cooling system using an air turbine, etc., and low injection rate and low injection are applied at the beginning of combustion when the pressure and temperature near top dead center are high. By performing a small amount of pressure injection and suppressing a portion of the injected spray by catching it on the central protrusion of the combustion chamber, the local high temperature flame temperature and amount around the initial spray are suppressed.

即ち初期燃焼を抑制し、それによりNOxの生成を抑え
る。
That is, the initial combustion is suppressed, thereby suppressing the generation of NOx.

その後の燃焼中期には、ピストン下降変位(圧力降下)
に同調して徐々に噴射率及び噴射圧を増加し、燃焼室内
形状とマツチさせなから噴霧を成長させる。即ち噴射率
等の増加と共に噴霧域が中央突起部から外れ、かつ燃料
噴射弁から燃焼室内周面までの距離が長くなることによ
り噴霧燃焼域が拡がる。
During the subsequent middle stage of combustion, the piston descends (pressure drop)
The injection rate and injection pressure are gradually increased in synchronization with the combustion chamber, and the spray is grown while matching the shape of the combustion chamber. That is, as the injection rate increases, the spray region moves away from the central protrusion, and the distance from the fuel injection valve to the inner peripheral surface of the combustion chamber becomes longer, so that the spray combustion region expands.

噴射路りには高圧噴射になり、高圧噴射による噴霧の特
徴(噴霧到達距離の拡大、微粒化等)を−層発揮させる
と共に、噴射に比例した制御燃焼(超NOx燃焼維持)
を行なわせ、さらに場の圧力が降下した燃焼後期には、
高圧噴霧が略すべてテーパー内周面に当たることからの
バックスキッシュによる撹乱により、燃焼を急速に完了
させる。
High-pressure injection is applied to the injection path, and the characteristics of the spray due to high-pressure injection (extended spray reach, atomization, etc.) are fully demonstrated, and combustion is controlled in proportion to the injection (maintaining super NOx combustion).
In the later stages of combustion, when the field pressure has further decreased,
Combustion is rapidly completed due to the back squish disturbance caused by almost all of the high-pressure spray hitting the inner peripheral surface of the taper.

即ち混合気形成がよくなって、黒煙の発生が抑制される
In other words, the mixture is better formed and the generation of black smoke is suppressed.

なお前述の燃焼初期で突起部上端面に溜っていた燃料は
徐々に蒸発し、燃焼する。
Incidentally, the fuel accumulated on the upper end surface of the protrusion at the early stage of the combustion described above gradually evaporates and burns.

(実施例) まず燃焼室の形状を説明すると、第1図は本発明を適用
した直接噴射式ディーゼル機関のスキッシュリップ型燃
焼室の断面図を示しており、シリンダヘッド2には燃料
噴射弁3が少し傾斜した状態で固定されており、燃料噴
射弁3の下端ノズル部はシリンダ4の中心線01から少
しずれた位置に位置すると共に、シリンダ4内に上方か
ら臨んでいる。
(Example) First, to explain the shape of the combustion chamber, FIG. 1 shows a sectional view of a squish lip type combustion chamber of a direct injection diesel engine to which the present invention is applied. is fixed in a slightly inclined state, and the lower end nozzle portion of the fuel injection valve 3 is located at a position slightly shifted from the center line 01 of the cylinder 4 and faces into the cylinder 4 from above.

ピストン1の上壁には、上記燃料噴射弁3のノズル部と
同じ位置の中心線02を中心とする円盤形の燃焼室5が
上端開口状に形成されている。燃焼室5の環状の内周面
7は上端部側が狭くなるようにテーパー状に形成されて
おり、該テーパー内周面7の下端部分は円弧形部分7a
を介して燃焼室底壁5aにつながっている。
A disk-shaped combustion chamber 5 is formed in the upper wall of the piston 1 and has an open upper end, the combustion chamber 5 being centered on a center line 02 at the same position as the nozzle portion of the fuel injection valve 3 . The annular inner circumferential surface 7 of the combustion chamber 5 is tapered so that the upper end side becomes narrower, and the lower end portion of the tapered inner circumferential surface 7 is an arcuate portion 7a.
It is connected to the combustion chamber bottom wall 5a via.

燃焼室5の中央部には底壁5a部分から上方に突出する
円筒状の中央突起部10が形成されており、該突起部1
0の上端面10aは燃焼室中心線02を中心とする緩や
かな円錐状に形成されている。中央突起部10の上端面
10aはピストン1の上端面よりも少し低い位置に形成
されている。
A cylindrical central projection 10 is formed in the center of the combustion chamber 5 and projects upward from the bottom wall 5a.
The upper end surface 10a of the combustion chamber 0 is formed into a gentle conical shape centered on the combustion chamber centerline 02. The upper end surface 10a of the central protrusion 10 is formed at a position slightly lower than the upper end surface of the piston 1.

中央突起部10の下端部周囲は円弧形部分10cを介し
て燃焼室底壁5aにつながっている。
The periphery of the lower end of the central protrusion 10 is connected to the combustion chamber bottom wall 5a via an arcuate portion 10c.

燃料噴射弁3の先端ノズル部には複数の噴口が形成され
、各噴口から噴射される噴霧Pの仮想中心線Aと燃焼室
中心線02とのなす噴射角度αは、中央突起部10との
関係上次のように設定されている。
A plurality of nozzles are formed in the tip nozzle portion of the fuel injection valve 3 , and the injection angle α between the virtual centerline A of the spray P injected from each nozzle and the combustion chamber centerline 02 is equal to the angle α between the central projection 10 and the combustion chamber centerline 02 . The settings are as follows.

第1図の噴射初期において、その噴霧Pの概ね50%が
中央突起部10の上端面10aに当接し、噴射中期にお
いて第3図のように噴霧Pか中央突起部10の上端面1
0aから略完全にはずれ、噴霧Pがテーパー内周面7に
当接するように設定されている。ちなみに第1図では上
記仮想中心線Aが中央突起部10の上端面10aの路外
周端縁を通過するようになっている。
At the initial stage of injection shown in FIG. 1, approximately 50% of the spray P contacts the upper end surface 10a of the central protrusion 10, and at the middle stage of injection, as shown in FIG.
It is set so that the spray P deviates substantially completely from 0a and comes into contact with the tapered inner circumferential surface 7. Incidentally, in FIG. 1, the virtual center line A passes through the outer peripheral edge of the upper end surface 10a of the central protrusion 10.

第6図において、中央突起部10の上端面10aには、
燃料の付着量を制御するために直径が異なる複数の同心
の環状溝12が形成されている。
In FIG. 6, on the upper end surface 10a of the central protrusion 10,
A plurality of concentric annular grooves 12 of different diameters are formed to control the amount of fuel deposited.

環状溝12の断面形状は中心線02から半径方向外方に
ゆくに従い徐々に深くなってゆくようなくさび形状に形
成されている。
The cross-sectional shape of the annular groove 12 is formed into a wedge shape that gradually becomes deeper as it goes radially outward from the center line 02.

次に高圧噴射率制御噴射系について説明すると、噴射カ
ムのカム面の高さ及び形状等の変更により噴射率及び噴
射圧は第8図に示すように設定されている。即ち上死点
(TDC)の少し前から燃料噴射が開始され、上死点付
近の噴射初期の間は噴射率及び噴射圧は共に低く抑えら
れている。
Next, the high-pressure injection rate control injection system will be explained. The injection rate and injection pressure are set as shown in FIG. 8 by changing the height and shape of the cam surface of the injection cam. That is, fuel injection is started slightly before top dead center (TDC), and both the injection rate and injection pressure are kept low during the initial injection period near top dead center.

噴射中期で噴射率及び噴射圧は増加し、噴射後期におい
ては高圧の噴射圧になると共に噴射率も最大になり、そ
してその後は急速に低下する。なお第8図の■〜■は第
1図〜第5図の状態にそれぞれ対応する。
The injection rate and injection pressure increase in the middle stage of injection, and in the late stage of injection, the injection pressure reaches a high level and the injection rate reaches its maximum, and then rapidly decreases. Note that ■ to ■ in FIG. 8 correspond to the states in FIGS. 1 to 5, respectively.

第7図はディーゼル機関の全体略図を示しており、機関
20の両側に給気マニホルド21と排気マニホルド22
が設けられ、排気マニホルド22には高圧力比の排気タ
ービン過給機24のタービン部25が接続されている。
FIG. 7 shows an overall schematic diagram of a diesel engine, with an intake manifold 21 and an exhaust manifold 22 on both sides of the engine 20.
A turbine section 25 of a high pressure ratio exhaust turbine supercharger 24 is connected to the exhaust manifold 22 .

タービン部25とコンプレッサ部26の間には調節バル
ブ41を介してEGR(排気ガス再循環)装置42が設
けられ、少量(例えば5〜10%程度)の排気を調節し
て給気に再循環できるようになっている。
An EGR (exhaust gas recirculation) device 42 is provided between the turbine section 25 and the compressor section 26 via a control valve 41, and controls a small amount (for example, about 5 to 10%) of exhaust gas to recirculate the air supply. It is now possible to do so.

上記過給機24のコンプレッサ部26には小型のインタ
ークーラ27が接続し、該インターク−ラ27はタービ
ン式の給気冷却システム30を介して給気マニホルド2
1に接続している。
A small intercooler 27 is connected to the compressor section 26 of the supercharger 24, and the intercooler 27 is connected to the air supply manifold 2 through a turbine type air supply cooling system 30.
Connected to 1.

給気冷却システム30内のエア経路中には、上流側から
順に、給気を再度圧縮するためのコンプレッサ部31と
、再度冷却するためのアフタークーラ35と、膨脹によ
り給気を極低温に下げるためのエアタービン部32と、
外部から大気を補充できる補助給気口37が接続されて
いる。コンプレッサ部31とエアタービン部32はター
ビン軸33を介して連動連結しており、タービン部32
によりコンプレッサ部31を駆動するようになっている
。補助給気口37には外部からの大気の導入のみを許す
逆止弁38が設けられ、タービン部32による給気の膨
脹により負圧になった時に、外部から大気を補充する。
In the air path in the supply air cooling system 30, in order from the upstream side, there is a compressor section 31 for recompressing the supply air, an aftercooler 35 for cooling the supply air again, and a compressor section 35 for cooling the supply air again, and lowering the supply air to an extremely low temperature by expansion. an air turbine section 32 for
An auxiliary air supply port 37 is connected to which air can be replenished from the outside. The compressor section 31 and the air turbine section 32 are interlocked and connected via a turbine shaft 33.
The compressor section 31 is driven by this. The auxiliary air supply port 37 is provided with a check valve 38 that only allows atmospheric air to be introduced from the outside, and is replenished with atmospheric air from the outside when the pressure becomes negative due to the expansion of the air supply by the turbine section 32.

作動を説明する。第7図においてまず給気の流れ及びそ
の温度変化について説明すると、排気タビン過給機24
のコンブッレッサ部26部には、外部から例えば略20
℃の吸気が吸い込まれると共に、排気マニホルド22側
からEGR装置42を介して少量の排気ガスが吸い込ま
れ、圧縮される。この圧縮により給気温度は略100℃
に上昇する。またEGR装置42内では排気ガス中のカ
ーボン成分は除去される。
Explain the operation. In FIG. 7, the flow of supply air and its temperature change will be explained first.
For example, approximately 20
℃ intake air is sucked in, and a small amount of exhaust gas is sucked in from the exhaust manifold 22 side via the EGR device 42 and compressed. Due to this compression, the supply air temperature is approximately 100℃
rise to Furthermore, within the EGR device 42, carbon components in the exhaust gas are removed.

コンプレッサ部26で圧縮された給気はインターラ27
で40〜50℃に冷却された後、給気冷却システム30
に入る。給気冷却システム30内ではまずコンプレッサ
部31で再圧縮されて、略100℃まで温度が上昇する
が、アフタークーラ35で略40℃に冷却され、エアタ
ービン部32において膨脹する。それにより給気圧力が
低下すると同時に極めて低い温度(0〜5℃)にまで給
気温度は低下し、給気マニホルド21に供給される。
The air supply compressed by the compressor section 26 is
After being cooled to 40-50°C, the supply air cooling system 30
to go into. In the supply air cooling system 30, the air is first recompressed in the compressor section 31 and its temperature rises to approximately 100.degree. C., but is cooled to approximately 40.degree. C. in the aftercooler 35 and expanded in the air turbine section 32. As a result, the supply air pressure decreases, and at the same time, the supply air temperature decreases to an extremely low temperature (0 to 5° C.) and is supplied to the supply air manifold 21.

次に燃焼室内における変化を説明する。噴射開始時にお
いては、噴射率及び噴射圧は低い値に抑制されており、
また第1図のように噴霧Pの略50%は燃焼室5内に直
接式るが、残りの50%は突起部10の上端面10aに
当接して抑制される。
Next, changes in the combustion chamber will be explained. At the start of injection, the injection rate and pressure are suppressed to low values,
Further, as shown in FIG. 1, approximately 50% of the spray P is directly injected into the combustion chamber 5, but the remaining 50% comes into contact with the upper end surface 10a of the protrusion 10 and is suppressed.

なおその一部は燃焼室5内へと滑っていくが、残りは上
端面10aの環状構12内に溜る。
A part of it slides into the combustion chamber 5, but the rest accumulates in the annular structure 12 on the upper end surface 10a.

従って噴射量及び空気流入量は低く抑えられ、かつ前述
のように給気冷却システム30により場の圧力及び温度
は極力低減した状態であるので、燃焼初期における急激
な燃焼は抑えられ、NOxの生成は抑えられる。
Therefore, the injection amount and air inflow amount are kept low, and as mentioned above, the pressure and temperature of the field are reduced as much as possible by the charge air cooling system 30, so rapid combustion in the early stage of combustion is suppressed, and NOx is generated. can be suppressed.

ピストン1の下降に従い第2図のように燃料噴射弁3か
ら突起部10が遠ざかると共に噴霧Pは突起部上端面1
0aに当接する割合が減少してゆき、第3図のように噴
射中期において、噴霧Pは略その全部が突起部10の上
端面10aから外れる。これに同調して前記制御噴射系
により噴射率及び噴射圧が増大されるので、噴霧域が拡
大すると共に噴霧長さも長くなり、噴霧域が成長し、燃
焼室5のテーパー内周面7に当接する。
As the piston 1 descends, the projection 10 moves away from the fuel injection valve 3 as shown in FIG.
The proportion of the spray P that comes into contact with the projection 0a decreases, and almost all of the spray P comes off the upper end surface 10a of the protrusion 10 in the middle of the injection period as shown in FIG. In synchrony with this, the injection rate and injection pressure are increased by the control injection system, so that the spray area expands and the spray length also increases, causing the spray area to grow and hit the tapered inner circumferential surface 7 of the combustion chamber 5. come into contact with

噴射後期に入ると最大の高圧噴射と共に、第4図のよう
にバックスキッシュ流Sが形成され、空気流入量が増加
して火炎は拡散し、燃焼が促進される。一方突起部10
の溝12に溜っていた燃料は蒸発し、バックスキッシュ
流Sの火炎と共に燃焼する。
In the latter half of the injection, with the maximum high-pressure injection, a back squish flow S is formed as shown in FIG. 4, the amount of air inflow increases, the flame spreads, and combustion is promoted. On the other hand, the protrusion 10
The fuel accumulated in the groove 12 evaporates and burns together with the flame of the back squish flow S.

なおさらに圧力降下した燃焼後期においては、第5図の
ように噴霧Pは一部が直接ピストン1とシリンダヘッド
2の間にも供給される。
Furthermore, in the later stages of combustion when the pressure has further decreased, a portion of the spray P is also directly supplied between the piston 1 and the cylinder head 2, as shown in FIG.

第9図は排気色並びにNOxの発生量の変化を示すグラ
フであり、実線で示すグラフAIは従来例、−点鎖線で
示すグラフA3は本発明による第1図の燃焼室、第8図
の高圧噴射率制御噴射系並びに第7図の給気冷却システ
ム及びEGR装置を備えた場合の変化を示している。ま
た破線で示すグラフA2は、グラフA3の上記条件から
EGR装置を外した場合の変化を示している。
FIG. 9 is a graph showing changes in exhaust color and NOx generation amount. Graph AI shown by a solid line is the conventional example, graph A3 shown by a dashed-dotted line is the combustion chamber of FIG. It shows changes in the case where the high-pressure injection rate control injection system and the supply air cooling system and EGR device of FIG. 7 are provided. Further, graph A2 indicated by a broken line shows a change when the EGR device is removed from the above conditions of graph A3.

(別の実施例) (1)第7図の仮想線で示すようにEGR装置42を給
気マニホルド21と排気マニホルド22の間に直接架は
渡す構造でもよい。
(Another Embodiment) (1) As shown by the imaginary line in FIG. 7, the EGR device 42 may be directly placed between the air supply manifold 21 and the exhaust manifold 22.

(2)第10図は請求項2記載の2段過給方式を適用し
た例であり、高圧段用の排気タービン過給機24に低圧
段過給機50を付加している。両過給機24.50のタ
ービン部51.25同志が排気管55を介して接続し、
コンプレッサ部52.26同志がプレインタークーラ5
3を介して接続している。
(2) FIG. 10 is an example in which the two-stage supercharging method according to claim 2 is applied, in which a low-pressure stage supercharger 50 is added to the high-pressure stage exhaust turbine supercharger 24. Turbine sections 51.25 of both superchargers 24.50 are connected via an exhaust pipe 55,
Compressor section 52.26 comrade is pre-intercooler 5
It is connected via 3.

これによると過給圧の増大により給気の圧力比を上げ、
給気冷却システム30のエアタービン部32の膨脹比を
増大させて、極低温の給気の流量を増大させ、出力性能
を一層向上させることができる。
According to this, increasing the boost pressure increases the pressure ratio of the supply air,
The expansion ratio of the air turbine section 32 of the charge air cooling system 30 can be increased to increase the flow rate of cryogenic charge air and further improve output performance.

また低圧段過給機50のタービン部51の入口にスクロ
ール切換え弁60を取り付けて、タービン部51に入る
排気の流通断面積を可変とすることもできる。即ちセン
サー等により、給気マニホルド21の給気圧が低い時あ
るいは給気温度が高い時等を検知して、図示のようにス
クロール弁60で排気管55を半分量じることにより、
排気の流速を上げてタービン回転を増大させ、給気量不
足を補う。
Further, by attaching a scroll switching valve 60 to the inlet of the turbine section 51 of the low-pressure stage supercharger 50, the flow cross-sectional area of the exhaust gas entering the turbine section 51 can be made variable. That is, by detecting with a sensor etc. when the supply pressure of the supply air manifold 21 is low or when the supply air temperature is high, etc., the exhaust pipe 55 is half-filled with the scroll valve 60 as shown in the figure.
Increases the flow rate of the exhaust gas and increases the rotation of the turbine to compensate for the lack of air supply.

(3)第11図は2段過給方式を採用すると同時にEG
R装置42も取り付けた例である。EGR装置42は低
圧段過給機50のタービン部51とコンプレッサ部52
の間に取り付けられているが、仮想線で示すように給気
マニホルド21と排気マニホルド22の間に直接設ける
ことも可能である。
(3) Figure 11 shows the adoption of the two-stage supercharging system and the EG
This is an example in which an R device 42 is also attached. The EGR device 42 includes a turbine section 51 and a compressor section 52 of a low-pressure supercharger 50.
Although it is installed between the air supply manifold 21 and the exhaust manifold 22 as shown in phantom, it is also possible to install it directly between the air supply manifold 21 and the exhaust manifold 22.

(4)第12図は燃焼室の変形例であって、中央突起部
10に環状のくびれ部15を形成した構造である。中央
突起部10の周壁の上部付近が最小外径になるように湾
曲状にくびれでいる。
(4) FIG. 12 shows a modification of the combustion chamber, which has a structure in which an annular constriction 15 is formed in the central protrusion 10. The peripheral wall of the central protrusion 10 is constricted in a curved manner so that the outer diameter is the minimum near the upper part.

この構造によるとバックスキッシュ流Sの火炎により突
起部10の上端面10aを効率良く加熱することにより
、滞留燃料の蒸発を促進し、カーボンの堆積を防ぎ、か
つその蒸発噴霧Qをバックスキッシュ流にうまく載せて
燃焼させることができるので、燃焼が促進される。
According to this structure, by efficiently heating the upper end surface 10a of the protrusion 10 by the flame of the back squish flow S, the evaporation of the accumulated fuel is promoted, carbon deposition is prevented, and the evaporated spray Q is converted into the back squish flow. Since it can be placed well and combusted, combustion is promoted.

(5)第13図は第12図と同様に中央突起部10の周
壁に環状のくびれ部15を形成した構造であるが、くび
れ部15は上端部付近が最小外径になるようにくびれで
いる。
(5) FIG. 13 shows a structure in which an annular constriction 15 is formed on the peripheral wall of the central protrusion 10 as in FIG. There is.

(6)第14図は突起部10の上端面10aに円周溝1
2及び放射状溝13を形成した例である。
(6) FIG. 14 shows a circumferential groove 1 on the upper end surface 10a of the protrusion 10.
2 and radial grooves 13 are formed.

(7)第15図は突起部10の上端面10aに多数のく
ぼみ17を形成した例である。
(7) FIG. 15 shows an example in which a large number of depressions 17 are formed in the upper end surface 10a of the protrusion 10.

(8)第16図は突起部10の上端面10aに多数のい
ぼ状の突起18を形成した例である。
(8) FIG. 16 shows an example in which a large number of wart-like protrusions 18 are formed on the upper end surface 10a of the protrusion 10.

(発明の効果) 以上説明したように本発明によると: (1)噴射初期においては高圧噴射率制御噴射系によっ
て噴射圧及び噴射率が低く抑えらると共に、燃焼室内に
おいて噴霧Pの一部が中央突起部1゜にひっかかり、し
かも燃焼の場は給気冷却システム30によって極低温に
されているので、確実な石火と共に初期燃焼が抑制され
、それによりN。
(Effects of the Invention) As explained above, according to the present invention: (1) In the early stage of injection, the injection pressure and injection rate are kept low by the high-pressure injection rate control injection system, and a part of the spray P is Since it is caught on the central protrusion 1°, and the combustion field is kept at an extremely low temperature by the air supply cooling system 30, initial combustion is suppressed along with reliable stone fire, thereby producing nitrogen.

Xの生成量を減少させることができる。The amount of X produced can be reduced.

(2)ピストン1の下降に従って噴霧Pが中央突起部1
0から外れていき、かつ噴射圧及び噴射率が増大すると
共に燃料噴射弁3がら燃焼室内周面7までの距離が長く
なり、燃焼中期以降は高圧噴霧が略すべでテーパー内周
面7に当るようになり、それによりバックスキッシュの
渦流が形成され、混合気形成がよくなって急速燃焼して
燃焼が完了する。したがって出力が向上すると同時に黒
煙の発生が抑制される。
(2) As the piston 1 descends, the spray P is transferred to the central protrusion 1.
0, and as the injection pressure and injection rate increase, the distance from the fuel injector 3 to the combustion chamber circumferential surface 7 becomes longer, and after the middle of combustion, almost all of the high-pressure spray hits the tapered inner circumferential surface 7. As a result, a back squish vortex is formed, which improves air-fuel mixture formation, leading to rapid combustion and completion of combustion. Therefore, the output is improved and at the same time, the generation of black smoke is suppressed.

(3)排気タービン過給機24に低圧段過給機50を付
加して2段過給とすることにより、過給圧の増大により
給気の圧力比を上げ、給気冷却システム30のエアター
ビン部32の膨脹比を増大させることができる。従って
極低温の給気の流量を増大させ、出力性能を一層向上さ
せることができる。
(3) By adding the low-pressure stage supercharger 50 to the exhaust turbine supercharger 24 to achieve two-stage supercharging, the pressure ratio of the charge air is increased by increasing the supercharging pressure, and the air in the charge air cooling system 30 is The expansion ratio of the turbine section 32 can be increased. Therefore, the flow rate of the cryogenic supply air can be increased, and the output performance can be further improved.

(4)EGR装置を付加することにより、酸素濃度を低
下させ、燃焼を緩慢にできるので、NOxの発生量は一
層低減する。
(4) By adding an EGR device, the oxygen concentration can be lowered and combustion can be slowed down, so the amount of NOx generated can be further reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用したディーゼル機関の燃焼室であ
って、燃焼開始時の状態を示す縦断面図、第2図〜第5
図は上記第1図の燃料開始時以降、燃焼後期までの噴射
状態の変化を順次示す縦断面図、第6図は第1図の中央
突起部の斜視図、第7図はディーゼル機関の全体略図、
第8図は筒内圧、噴射圧、噴射率、平均ガス温度及び熱
発生率の変化を示すグラフ、第9図はNOxの変化並び
に排気色の変化を示すグラフ、第10図は2段過給方式
を採用したディーゼル機関の全体略図、第11図は2段
過給方式及びEGR装置を採用したディーゼル機関の全
体略図、第12図及び第13図はそれぞれ中央突起部の
変形例を示す断面図、第14図〜第16図は中央突起部
の上端面の変形例を示す斜視図、第17図〜第19図は
従来例の縦断面略図、第20図は従来例のディーゼル機
関の全体略図、第21図は従来の燃料制御噴射系による
噴射圧及び噴射率のグラフである。1・・・ピストン、
2・・・シリンダヘッド、3・・・燃料噴射弁、4・・
・シリンダ、5・・・燃焼室、7・・・テーパー内周面
、10・・・中央突起部、10a・・・上端面、24・
・・排気タービン過給機、27・・・インタークーラ、
30・・・給気冷却システム、31・・・アフタークー
ラ、32・・・膨脹用エアタービン、42・・・EGR
装置、50・・・低圧段過給機、53・・・プレインタ
ークーラ特許出願人 ヤンマーディーゼル株式会社第4
図 第6図 yA面の浄二(内容に変更なし) EGR装置 Jυ 靭弧玲!pシス転 TDC →7ランクM崖 上圧を潴龍 第7図 燃 費 第12図 第13図 第1−+図 第17図 第1′?図 第18図 ■ンσ丁 二\ぐ〉夕7
FIG. 1 is a longitudinal sectional view of the combustion chamber of a diesel engine to which the present invention is applied, showing the state at the start of combustion, and FIGS.
The figure is a vertical cross-sectional view showing sequential changes in the injection state from the start of fuel to the late stage of combustion in Figure 1 above, Figure 6 is a perspective view of the central protrusion in Figure 1, and Figure 7 is the entire diesel engine. Schematic diagram,
Figure 8 is a graph showing changes in cylinder pressure, injection pressure, injection rate, average gas temperature, and heat release rate. Figure 9 is a graph showing changes in NOx and exhaust color. Figure 10 is a graph showing two-stage supercharging. Figure 11 is an overall schematic diagram of a diesel engine that employs a two-stage supercharging system and an EGR system, and Figures 12 and 13 are cross-sectional views showing modified examples of the central protrusion, respectively. , FIGS. 14 to 16 are perspective views showing modified examples of the upper end surface of the central protrusion, FIGS. 17 to 19 are schematic vertical cross-sectional views of the conventional example, and FIG. 20 is an overall schematic diagram of the conventional diesel engine. , FIG. 21 is a graph of injection pressure and injection rate by a conventional fuel control injection system. 1... Piston,
2... Cylinder head, 3... Fuel injection valve, 4...
・Cylinder, 5... Combustion chamber, 7... Tapered inner peripheral surface, 10... Center protrusion, 10a... Upper end surface, 24...
...Exhaust turbine supercharger, 27...Intercooler,
30... Supply air cooling system, 31... Aftercooler, 32... Expansion air turbine, 42... EGR
Device, 50...Low pressure stage supercharger, 53...Pre-intercooler patent applicant Yanmar Diesel Co., Ltd. No. 4
Figure 6: Joji on side yA (no change in content) EGR device Jυ Utsukurei! p cis rotation TDC → 7 rank M cliff top pressure Tanlong Fig. 7 Fuel consumption Fig. 12 Fig. 13 Fig. 1-+ Fig. 17 Fig. 1'? Figure 18■nσcho2\gu〉Evening 7

Claims (3)

【特許請求の範囲】[Claims] (1)排気タービン過給機及びインタークーラを備え、
ピストン上壁に形成した燃焼室に燃料噴射弁から直接燃
料を噴射する直接噴射式内燃機関において、 燃料噴射率及び燃料噴射圧を、上死点付近の燃焼初期で
抑制し、燃焼中期、後期で増大、高圧化させる高圧噴射
率制御噴射系と、 燃焼室の内周面を上端部が狭くなるような環状テーパ面
に形成し、燃焼室の中央部に上方へ突出する中央突起部
を形成して、該突起部の上端面を概ね円錐状に形成し、
突起部の上方に位置する燃料噴射弁の燃料噴射角度と突
起部上端面との関係を、燃焼初期においては噴霧域の一
部が突起部上端面に当接し、燃焼中期以降においてはピ
ストンの下降により噴霧域全域が突起部から離れてテー
パ内周面に向かって噴射されるように設定した燃焼室と
、 前記インタークーラからの給気を再度圧縮するコンプレ
ッサ部、該コンプレッサ部からの給気を再度冷却するア
フタークーラ及び該アフタークーラからの給気を膨脹さ
せて給気マニホルドに供給すると共に上記コンプレッサ
部を駆動するエアタービン部よりなる給気冷却システム
とを、 備えたことを特徴とする直接噴射式内燃機関。
(1) Equipped with an exhaust turbine supercharger and an intercooler,
In a direct injection internal combustion engine, in which fuel is injected directly from a fuel injection valve into a combustion chamber formed on the upper wall of the piston, the fuel injection rate and fuel injection pressure are suppressed at the early stage of combustion near top dead center, and at the middle and late stages of combustion. A high-pressure injection rate control injection system that increases pressure and increases the pressure, an annular tapered inner surface of the combustion chamber that narrows at the upper end, and a central protrusion that protrudes upward in the center of the combustion chamber. forming the upper end surface of the protrusion into a generally conical shape;
The relationship between the fuel injection angle of the fuel injector located above the protrusion and the upper end surface of the protrusion is as follows: At the early stage of combustion, part of the spray area comes into contact with the upper end surface of the protrusion, and after the middle stage of combustion, the piston descends. A combustion chamber configured so that the entire spray area is injected away from the protrusion toward the tapered inner peripheral surface, a compressor section that recompresses the air supplied from the intercooler, and a compressor section that compresses the air supplied from the compressor again. A direct cooling system characterized by comprising an aftercooler for re-cooling, and an air supply cooling system comprising an air turbine section that expands and supplies the supply air from the aftercooler to the supply air manifold and drives the compressor section. Injection internal combustion engine.
(2)請求項1記載の直接噴射式内燃機関において、排
気タービン過給機に、低圧段過給機及びプレインターク
ーラを接続して2段過給としたことを特徴とする直接噴
射式内燃機関。
(2) The direct injection internal combustion engine according to claim 1, characterized in that the exhaust turbine supercharger is connected to a low pressure stage supercharger and a pre-intercooler to provide two-stage supercharging. institution.
(3)請求項1記載の直接噴射式内燃機関において、排
気の一部を給気に再循環するEGR装置を付加したこと
を特徴とする直接噴射式内燃機関。
(3) The direct injection internal combustion engine according to claim 1, further comprising an EGR device that recirculates part of the exhaust gas to air supply.
JP2134753A 1990-05-24 1990-05-24 Direct injection internal combustion engine Expired - Lifetime JP2759374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2134753A JP2759374B2 (en) 1990-05-24 1990-05-24 Direct injection internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2134753A JP2759374B2 (en) 1990-05-24 1990-05-24 Direct injection internal combustion engine

Publications (2)

Publication Number Publication Date
JPH0431650A true JPH0431650A (en) 1992-02-03
JP2759374B2 JP2759374B2 (en) 1998-05-28

Family

ID=15135763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2134753A Expired - Lifetime JP2759374B2 (en) 1990-05-24 1990-05-24 Direct injection internal combustion engine

Country Status (1)

Country Link
JP (1) JP2759374B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1605147A1 (en) * 2004-06-07 2005-12-14 Delphi Technologies, Inc. Apparatus for improving combustion
FR2885650A1 (en) * 2005-05-16 2006-11-17 Peugeot Citroen Automobiles Sa Internal combustion engine, especially for automobiles, comprises raised or lowered reliefs on the piston head or cylinder head
WO2009054249A1 (en) * 2007-10-22 2009-04-30 Toyota Jidosha Kabushiki Kaisha Direct injection internal combustion engine
JP2015010591A (en) * 2013-07-02 2015-01-19 愛三工業株式会社 Fresh air introduction device in exhaust gas recirculation device of engine with supercharger
JP2016186255A (en) * 2015-03-27 2016-10-27 いすゞ自動車株式会社 Combustion chamber structure for direct-injection engine
US20170107935A1 (en) * 2015-10-14 2017-04-20 Ford Global Technologies, Llc Direct-injection internal combustion engine with piston, and method for producing a piston of an internal combustion engine of said type

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9243548B2 (en) * 2012-04-27 2016-01-26 General Electric Company Turbocharged power unit and method of operating under high load conditions

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1605147A1 (en) * 2004-06-07 2005-12-14 Delphi Technologies, Inc. Apparatus for improving combustion
FR2885650A1 (en) * 2005-05-16 2006-11-17 Peugeot Citroen Automobiles Sa Internal combustion engine, especially for automobiles, comprises raised or lowered reliefs on the piston head or cylinder head
WO2007003817A2 (en) * 2005-05-16 2007-01-11 Peugeot Citroën Automobiles SA Heat engine for motor vehicle
WO2007003817A3 (en) * 2005-05-16 2007-03-08 Peugeot Citroen Automobiles Sa Heat engine for motor vehicle
WO2009054249A1 (en) * 2007-10-22 2009-04-30 Toyota Jidosha Kabushiki Kaisha Direct injection internal combustion engine
US8424506B2 (en) 2007-10-22 2013-04-23 Toyota Jidosha Kabushiki Kaisha Direct-injection type engine
JP2015010591A (en) * 2013-07-02 2015-01-19 愛三工業株式会社 Fresh air introduction device in exhaust gas recirculation device of engine with supercharger
JP2016186255A (en) * 2015-03-27 2016-10-27 いすゞ自動車株式会社 Combustion chamber structure for direct-injection engine
US20170107935A1 (en) * 2015-10-14 2017-04-20 Ford Global Technologies, Llc Direct-injection internal combustion engine with piston, and method for producing a piston of an internal combustion engine of said type
US10436147B2 (en) * 2015-10-14 2019-10-08 Ford Global Technologies, Llc Direct-injection internal combustion engine with piston, and method for producing a piston of an internal combustion engine of said type

Also Published As

Publication number Publication date
JP2759374B2 (en) 1998-05-28

Similar Documents

Publication Publication Date Title
US6543411B2 (en) Method for generating a homogeneous mixture for auto-ignition internal combustion engines and for controlling the combustion process
JP5482716B2 (en) Diesel engine control device and diesel engine control method
JP4100401B2 (en) Internal combustion engine
JP5158266B2 (en) Combustion control device for internal combustion engine
US6712036B1 (en) Method of controlling the fuel injection in an internal combustion engine
US7204228B2 (en) Method of operating an internal combustion engine with direct fuel injection
US20070151540A1 (en) Internal combustion engine with a precombustion chamber
JP4007310B2 (en) Internal combustion engine capable of premixed compression self-ignition operation using two types of fuel
JP2002188474A (en) Control device for diesel engine with turbosupercharger
JP2005155603A (en) Internal combustion engine
JP2000274286A (en) Direct injection type diesel engine
JP2005248748A (en) Diesel engine
JP4048885B2 (en) Engine combustion control device
JPH0431650A (en) Direct injection type internal combustion engine
JP2002180881A (en) Combustion controller for diesel engine
JP5229185B2 (en) Combustion control device for internal combustion engine
US6935303B2 (en) Method of controlling the injection of fluid into an internal combustion engine
JP2759375B2 (en) Direct injection internal combustion engine
JPH0431651A (en) Direct injection type internal combustion engine
JP2001193526A (en) Control device for engine with turbosupercharger
JP2005090369A (en) Two cycle type internal combustion engine enabling self-ignition operation for self-igniting air-fuel mixture by compression
JP2004156519A (en) Combustion control device for engine
JP2003227338A (en) Spark ignition type direct injection engine
JP2003148222A (en) Compression ignition type internal combustion engine
JP5093407B2 (en) Combustion control device for internal combustion engine