JPH04315978A - Reception device - Google Patents

Reception device

Info

Publication number
JPH04315978A
JPH04315978A JP3109625A JP10962591A JPH04315978A JP H04315978 A JPH04315978 A JP H04315978A JP 3109625 A JP3109625 A JP 3109625A JP 10962591 A JP10962591 A JP 10962591A JP H04315978 A JPH04315978 A JP H04315978A
Authority
JP
Japan
Prior art keywords
signal
time
output
frequency
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3109625A
Other languages
Japanese (ja)
Inventor
Mikio Funai
船井 幹夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3109625A priority Critical patent/JPH04315978A/en
Publication of JPH04315978A publication Critical patent/JPH04315978A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To realize highly sensitive reception and also to enable measurement of the input frequency of an incoming radio wave. CONSTITUTION:A miner 3 which provides dispersion compensation characteristics to the output of a phase modulator 6 to mix the output with high frequency signals received and convert the output into an intermediate frequency, and a dispersion type delay line 9 which tilts delay time as to the output of the mixer 3 within an intermediate frequency band, are provided. A signal compressor 7 time compresses a phase modulation signal obtained through the dispersion type delay line 9, so that a time compression signal is obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、レーダ電波等を高感
度で探知する受信装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a receiving device that detects radar radio waves and the like with high sensitivity.

【0002】0002

【従来の技術】図7は例えば本出願と同一出願人に係る
特開平2−202127号公報に示された従来の受信装
置を示すブロック図であり、図において、1は受信アン
テナ、2は受信周波数を決めるバンドパスフィルタ(以
下、BPFという)、3は周波数のミキサ、4はコヒー
レントな局発信号を出力する局部発振器、5は符号発生
器、6は局発信号を時系列的な符号で位相変調する位相
変調器、7は信号圧縮器、8は包絡線検波を行う検波器
である。
2. Description of the Related Art FIG. 7 is a block diagram showing a conventional receiving apparatus disclosed in, for example, Japanese Patent Application Laid-Open No. 202127/1999 filed by the same applicant as the present application. In the figure, 1 is a receiving antenna, 2 is a receiving A band pass filter (hereinafter referred to as BPF) that determines the frequency, 3 a frequency mixer, 4 a local oscillator that outputs a coherent local oscillation signal, 5 a code generator, and 6 a time-series code for the local oscillation signal. A phase modulator that performs phase modulation, 7 a signal compressor, and 8 a detector that performs envelope detection.

【0003】次に動作について説明する。受信アンテナ
1で受信した電波はBPF2を経由してミキサ3に至る
。一方、局部発振器4から出力されるコヒーレントな局
発信号は、符号発生器5から発せられる時系列的な符号
によって位相変調器6で0またはπ(180°)の位相
変化を生じるよう変調される。この時系列的な符号は、
例えばPN符号(Pseudo−Noise  Cod
e)やバーカ符号(Barker  Code)のよう
に周波数的に拡散させるための符号であり、ここでは1
5素子からなるM系列である。図7はこの関係を示す図
であり、図8(a)は15素子の符号順列を示し、この
位相変調を行った信号の自己相関関数が図8(b),(
c)になることが知られている。つまり、時間幅T=1
5τで変調した場合、周波数的には図8(c)で示すス
ペクトルの拡散が行われ、これを整合フィルタによって
時間圧縮した波形は図8(b)のように15倍に増幅さ
れた振幅が得られるものである。また、図9はこの整合
フィルタの構成例を示す。これはタップ付遅延線から1
3個の中間タップが出ており、個々のタップ間の時間差
τの出力信号を0またはπで移相した後、出力で合成加
算するデバイスである。具体的な例としては、表面弾性
波を用いたデバイスが良く知られている。
Next, the operation will be explained. Radio waves received by the receiving antenna 1 reach the mixer 3 via the BPF 2. On the other hand, the coherent local signal outputted from the local oscillator 4 is modulated by the time-series code generated from the code generator 5 so as to cause a phase change of 0 or π (180°) in the phase modulator 6. . This time series code is
For example, PN code (Pseudo-Noise Code
It is a code for frequency spreading, such as e) and Barker code, and here it is 1
This is an M series consisting of 5 elements. FIG. 7 is a diagram showing this relationship, and FIG. 8(a) shows the code permutation of 15 elements, and the autocorrelation function of the signal subjected to this phase modulation is shown in FIG. 8(b), (
c) is known to occur. In other words, time width T=1
When modulated by 5τ, the spectrum shown in Fig. 8(c) is spread in terms of frequency, and the waveform obtained by time-compressing this using a matched filter has an amplitude amplified by 15 times as shown in Fig. 8(b). That's what you get. Further, FIG. 9 shows an example of the configuration of this matched filter. This is 1 from the tapped delay line.
This device has three intermediate taps, and after phase-shifting the output signals with a time difference τ between the individual taps by 0 or π, they are combined and summed at the output. As a specific example, devices using surface acoustic waves are well known.

【0004】また、上記ミキサ3においては、単に中間
周波数に周波数変換するだけでなく、以上のM系列によ
る位相変調が行われるので、これを整合フィルタの関係
になっている信号圧縮器7を通した後、検波してやれば
、図8(b)で示す時間圧縮信号が得られる。通常、レ
ーダ信号のパルス幅は1μsec位が多く、短いもので
0.1μsec程度である。従って1μsec/15=
約67nsecをτの時間に設定した場合、これを受信
する装置の帯域幅は一般に30MHz 以上あるので、
この変調波を通す帯域幅としては十分に足りるものであ
る。従って、受信装置の感度としては、この場合15倍
の信号増幅が得られるが、雑音も増加するので、実際に
は10log15=約12dBの向上が図れることにな
る。電波の探知確率を良くするため、広帯域化した受信
装置では、パルス幅の長い信号に対しては本来最適の帯
域幅より広帯域化せざるを得ないことになるが、上記で
述べたように逆に信号を拡散させることで、受信感度の
改善が可能である。
Furthermore, the mixer 3 performs not only frequency conversion to an intermediate frequency, but also phase modulation using the above M sequence. After that, if the signal is detected, a time-compressed signal shown in FIG. 8(b) can be obtained. Usually, the pulse width of a radar signal is often about 1 μsec, and the shortest pulse width is about 0.1 μsec. Therefore 1μsec/15=
If approximately 67 nsec is set as the time of τ, the bandwidth of the device that receives this is generally 30 MHz or more, so
This is a sufficient bandwidth for passing this modulated wave. Therefore, in this case, the sensitivity of the receiving device can be amplified 15 times, but since the noise also increases, it is actually possible to improve the sensitivity by 10log15=approximately 12 dB. In order to improve the detection probability of radio waves, a wideband receiving device has no choice but to use a wider bandwidth than the originally optimal bandwidth for signals with long pulse widths, but as mentioned above, the reverse is true. It is possible to improve reception sensitivity by spreading the signal.

【0005】[0005]

【発明が解決しようとする課題】従来の受信装置は以上
のように構成されているので、位相変調器6では時系列
的な符号を単に位相変調するだけであり、中間周波増幅
段において時間圧縮する時刻が、変調時刻と同期し、従
って、この同期した時刻にしか圧縮信号が現われないの
で、それ以外の時間はあまり重要性を持たず、単に受信
感度の向上が図れるだけであり、また、本来、このよう
な広帯域の受信装置として必要な到来電波の搬送周波数
については測定不可能であるなどの問題点があった。
[Problems to be Solved by the Invention] Since the conventional receiving device is configured as described above, the phase modulator 6 simply phase-modulates the time-series code, and the intermediate frequency amplification stage performs time compression. The time at which the signal is transmitted is synchronized with the modulation time, and therefore, the compressed signal appears only at this synchronized time, so other times are not very important and can only improve reception sensitivity. Originally, there were problems such as the inability to measure the carrier frequency of incoming radio waves, which is necessary for such a wideband receiving device.

【0006】この発明は上記のような問題点を解消する
ためになされたもので、高感度受信を実現しながら、到
来電波の受信周波数を認識できる受信装置を得ることを
目的とする。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a receiving device that can recognize the reception frequency of incoming radio waves while realizing highly sensitive reception.

【0007】[0007]

【課題を解決するための手段】この発明に係る受信装置
は、位相変調器の出力に分散補償特性を持たせて、受信
した高周波信号と混合させ中間周波数に変換するミキサ
と、該ミキサの出力について中間周波帯域内で遅延時間
を傾斜させる分散型遅延線とを設け、信号圧縮器に、そ
の分散型遅延線を通して得られた位相変調信号を時間圧
縮させて、時間圧縮信号を得るようにしたものである。
[Means for Solving the Problems] A receiving device according to the present invention includes a mixer that gives the output of a phase modulator a dispersion compensation characteristic and mixes it with a received high frequency signal to convert it into an intermediate frequency, and an output of the mixer. A distributed delay line is provided to tilt the delay time within the intermediate frequency band, and a signal compressor time-compresses the phase modulated signal obtained through the distributed delay line to obtain a time-compressed signal. It is something.

【0008】[0008]

【作用】この発明における分散型遅延線は、中間周波数
全てを通過帯域とする遅延線であり、これにより位相変
調して拡散する時刻と時間圧縮される時間とが一定の時
間差でなく、到来受信信号の周波数に比例して変わるよ
うに、遅延時間を周波数によって変化させるようにし、
これにより受信感度の向上を図りながら、信号周波数を
識別可能にする。
[Operation] The distributed delay line in this invention is a delay line that uses all intermediate frequencies as a passband, and as a result, the time when the phase modulation is applied to spread and the time when the time is compressed is not a constant time difference, and when an incoming signal is received. The delay time is made to vary depending on the frequency so that it changes in proportion to the signal frequency,
This makes it possible to identify signal frequencies while improving reception sensitivity.

【0009】[0009]

【実施例】以下、この発明の一実施例を図について説明
する。図1において、9は信号圧縮の時刻に周波数変化
を与える第1の分散型遅延線(以下、DDLという)、
10は第1のDDL9によって生じる周波数特性を補償
する第2のDDLである。また、このほかの図7に示す
ものと同一のブロックには同一符号を付して、その重複
する説明を省略する。また、図2(a),(b)はこれ
らの第1のDDL9および第2のDDL10の遅延時間
対周波数特性を示す説明図であり、第1のDDL9は図
2(b)のようにダウンチャープを有する広帯域の分散
型遅延線である。この分散特性は傾きが−μ(sec/
HZ )であり、中間周波数(下限×fILから上限×
fIHまで)全てを通過帯域として持つ遅延線である。 一方、第2のDDL10の分散特性は傾きがμ(sec
/HZ )のアップチャープ特性を有する分散型遅延線
であるが、位相変調による拡散帯域幅だけを通過させれ
ばよい遅延線であり、それほど広い通過帯域幅は持って
いない。従って、遅延時間も第1のDDL9と比較して
それほど長い時間は必要なく、簡単なものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, 9 is a first distributed delay line (hereinafter referred to as DDL) that changes the frequency at the time of signal compression;
10 is a second DDL that compensates for the frequency characteristics caused by the first DDL 9. Further, other blocks that are the same as those shown in FIG. 7 are given the same reference numerals, and redundant explanation thereof will be omitted. Moreover, FIGS. 2(a) and 2(b) are explanatory diagrams showing the delay time versus frequency characteristics of these first DDL 9 and second DDL 10, and the first DDL 9 is down as shown in FIG. 2(b). It is a wideband distributed delay line with chirp. This dispersion characteristic has a slope of −μ(sec/
HZ ), and the intermediate frequency (lower limit x fIL to upper limit x
fIH) as a passband. On the other hand, the dispersion characteristic of the second DDL 10 has a slope of μ(sec
Although it is a distributed delay line that has an up-chirp characteristic of /HZ), it is a delay line that only needs to pass the spread bandwidth due to phase modulation, and does not have a very wide pass band width. Therefore, compared to the first DDL 9, the delay time is not so long and is simple.

【0010】次に動作について説明する。図3(a)は
信号S1と信号S2という周波数の異なる到来電波を同
時に受信したことを示す図であり、BPF2の出力にお
ける信号の周波数と時間との関係を模擬的に表わしたも
のである。一方、局発信号(fLO)は位相変調器6の
出力で図3(b)に示す関係となっており、これが第2
のDDL10を通過すると、遅延時刻に分散特性を持ち
、図3(c)に示す関係へと変化する。そこで、この結
果による局発信号とBPF2の出力信号とをミキサ3に
おいて混合すると、中間周波数に周波数変換されると同
時に、位相変調による拡散(分散遅延特性)が重畳され
、図3(d)に示すようになる。次に、このミキサ3の
出力を第1のDDL9に通すと、信号S1と信号S2の
周波数fIL,fIHによる違いから遅延時間に図3(
e)に示すような差が生じる。この例では14τの時間
差が生じており、同時に拡散による分散特性も第1のD
DL9と第2のDDL10が逆の傾斜であることから相
殺されて、本来拡散した状態、つまり図3(b)に示す
状態に戻る。これを信号圧縮器7に通した後、検波器8
により包絡線検波すれば、図3(f)に示すように信号
S1と信号S2の時間圧縮波形が分離して得られる。従
って同時刻に到来した信号S1と信号S2を分離して検
出することができ、検波波形の時刻によって到来信号の
周波数を算出する関係が理解できる。この例では、中間
周波数がfILからfIHの周波数変化に対し、検波波
形の出力時刻が1τから15τの時刻にわたって出力さ
れ。この間は比例的に変化するので、出力時刻から逆に
到来信号周波数を算出することができる。また、このよ
うな第1のDDL9および第2のDDL10におけるア
ップチャープおよびダウンチャープ特性は、ミキサ3に
おけるRF高周波と局発周波数の関係等によって逆の極
性でも考えることができる。
Next, the operation will be explained. FIG. 3(a) is a diagram showing that incoming radio waves having different frequencies, signal S1 and signal S2, are simultaneously received, and is a simulated representation of the relationship between the frequency and time of the signal at the output of the BPF 2. On the other hand, the local oscillator signal (fLO) is the output of the phase modulator 6 and has the relationship shown in FIG.
When passing through the DDL 10, the delay time has dispersion characteristics and changes to the relationship shown in FIG. 3(c). Therefore, when the local oscillation signal resulting from this result and the output signal of BPF 2 are mixed in the mixer 3, the frequency is converted to an intermediate frequency, and at the same time, the spreading (dispersion delay characteristic) due to phase modulation is superimposed, and the result is shown in FIG. 3(d). It comes to show. Next, when the output of this mixer 3 is passed through the first DDL 9, the delay time shown in FIG. 3 (
A difference as shown in e) arises. In this example, a time difference of 14τ occurs, and at the same time, the dispersion characteristics due to diffusion also change to the first D.
Since the DL9 and the second DDL10 have opposite slopes, they cancel each other out and return to the originally diffused state, that is, the state shown in FIG. 3(b). After passing this through a signal compressor 7, a detector 8
When envelope detection is performed using the above method, the time-compressed waveforms of the signal S1 and the signal S2 can be obtained separately as shown in FIG. 3(f). Therefore, it is possible to separate and detect the signal S1 and the signal S2 that arrived at the same time, and it is possible to understand the relationship in which the frequency of the arriving signal is calculated based on the time of the detected waveform. In this example, when the intermediate frequency changes from fIL to fIH, the output time of the detected waveform is output from 1τ to 15τ. Since it changes proportionally during this time, the incoming signal frequency can be calculated conversely from the output time. Further, the up-chirp and down-chirp characteristics in the first DDL 9 and the second DDL 10 can be considered to have opposite polarities depending on the relationship between the RF high frequency and the local oscillation frequency in the mixer 3, etc.

【0011】なお、上記実施例では第2のDDL10に
よって第1のDDL9の分散特性を補償する例について
示したが、この第2のDDL10は通過帯域幅が広くな
いので、分散時間もわずかである。そこで、図4に示す
ように第2のDDL10に代わってBPF11を用い、
拡散によるスペクトルの広がりを制限すると、信号圧縮
時にわずかに波形歪みが生じるが、むしろ分散特性がゆ
るやかな場合には、複数の信号分離には効果的であり、
価格的にも安価となる。
[0011] In the above embodiment, an example was shown in which the second DDL 10 compensates for the dispersion characteristics of the first DDL 9, but since the second DDL 10 does not have a wide passband width, the dispersion time is also short. . Therefore, as shown in FIG. 4, a BPF 11 is used instead of the second DDL 10,
Limiting the spread of the spectrum due to spreading causes slight waveform distortion when compressing the signal, but if the dispersion characteristics are gentle, it is effective for separating multiple signals.
It is also cheaper in price.

【0012】また、上記実施例では、0,πの2相変調
の場合を示したが、図5に示すように4相で位相変調を
行った場合にはハイブリッド回路12a,12bで0°
,90°の位相差で2系列(X,Y軸)に分けてベクト
ル変調器を形成することにより、図6に示すように、多
相変調が可能であり、これによって拡散したときの周波
数スペクトルを制限できるので、複数の信号分離に効果
的である。すなわち、位相変調器6a,6bで、0°ま
たは180°(π)の位相変調を行って合成することに
より、数1〜数4に示すような4種類の45°,135
°,225°,315°の位相関係を取り得る位相変調
器として用いることができる。
Further, in the above embodiment, the case of two-phase modulation of 0 and π was shown, but when phase modulation is performed with four phases as shown in FIG.
By forming a vector modulator by dividing into two sequences (X, Y axes) with a phase difference of 90°, multiphase modulation is possible as shown in Figure 6, and this allows the frequency spectrum when spread. This is effective for separating multiple signals. That is, by performing phase modulation of 0° or 180° (π) with the phase modulators 6a and 6b and combining the results, four types of 45°, 135° as shown in Equations 1 to 4 are obtained.
It can be used as a phase modulator that can have a phase relationship of 225°, 225°, or 315°.

【0013】[0013]

【数1】[Math 1]

【0014】[0014]

【数2】[Math 2]

【0015】[0015]

【数3】[Math 3]

【0016】[0016]

【数4】[Math 4]

【0017】また、符号の素子数が増え、単位パルス幅
(τ)を狭くする必要がある場合も、同様の理由により
効果的である。また、以上の例では分散型遅延線として
図2に示した特性の例について説明したが階段状の分散
特性を持つ場合にも適用できる。
The present invention is also effective for the same reason when the number of code elements increases and the unit pulse width (τ) needs to be narrowed. Further, in the above example, an example of the characteristic shown in FIG. 2 was explained as a distributed delay line, but it can also be applied to a case having a stepped dispersion characteristic.

【0018】[0018]

【発明の効果】以上のように、この発明によれば位相変
調器の出力に分散補償特性を持たせて、受信した高周波
信号と混合させ中間周波数に変換するミキサと、該ミキ
サの出力について中間周波帯域内で遅延時間を傾斜させ
る分散型遅延線とを設け、信号圧縮器に、その分散型遅
延線を通して得られた位相変調信号を時間圧縮させて、
時間圧縮信号を得るように構成したので、受信信号を圧
縮受信して受信感度の向上が図れるだけでなく、信号周
波数を識別することができ、しかもPN符号のビット数
を任意に決めることができるので、圧縮比を自由に設定
できるものが得られる効果がある。
As described above, according to the present invention, there is provided a mixer that gives a dispersion compensation characteristic to the output of a phase modulator, mixes it with a received high frequency signal, and converts it into an intermediate frequency, and an intermediate A distributed delay line that slopes the delay time within a frequency band is provided, and a signal compressor is configured to time-compress the phase modulated signal obtained through the distributed delay line.
Since the configuration is configured to obtain a time-compressed signal, it is possible not only to compress the received signal and improve reception sensitivity, but also to identify the signal frequency, and also to arbitrarily determine the number of bits of the PN code. Therefore, there is an effect that the compression ratio can be set freely.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の一実施例による受信装置を示すブロ
ック図である。
FIG. 1 is a block diagram showing a receiving device according to an embodiment of the present invention.

【図2】図1における第1,第2の分散型遅延線の周波
数−遅延時間特性を示す説明図である。
FIG. 2 is an explanatory diagram showing frequency-delay time characteristics of first and second distributed delay lines in FIG. 1;

【図3】図1のブロック各部における信号の遅延時間関
係を示す概念図である。
FIG. 3 is a conceptual diagram showing the delay time relationship of signals in each part of the block in FIG. 1;

【図4】この発明の他の実施例による受信装置を示すブ
ロック図である。
FIG. 4 is a block diagram showing a receiving device according to another embodiment of the invention.

【図5】この発明のさらに他の実施例による受信装置を
示すブロック図である。
FIG. 5 is a block diagram showing a receiving device according to still another embodiment of the present invention.

【図6】位相変調器を用いて作った4つの位相関係の信
号を示す説明図である。
FIG. 6 is an explanatory diagram showing four phase-related signals created using a phase modulator.

【図7】従来の受信装置を示すブロック図である。FIG. 7 is a block diagram showing a conventional receiving device.

【図8】時系列符号と時間圧縮波形およびスペクトル拡
散波形との関係を示す説明図である。
FIG. 8 is an explanatory diagram showing the relationship between a time series code, a time compression waveform, and a spread spectrum waveform.

【図9】整合フィルタの構成を示す接続図である。FIG. 9 is a connection diagram showing the configuration of a matched filter.

【符号の説明】[Explanation of symbols]

3  ミキサ 4  局部発振器 5  符号発生器 6  位相変調器 7  信号圧縮器 8  検波器 9  分散型遅延線 3 Mixer 4 Local oscillator 5 Code generator 6 Phase modulator 7 Signal compressor 8 Detector 9 Distributed delay line

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  時系列的な符号を発生する符号発生器
と、局部発振器からの局発信号を上記符号で位相変調す
る位相変調器と、該位相変調器の出力に分散補償特性を
持たせて、受信した高周波信号と混合させ、中間周波数
に変換するミキサと、該ミキサ出力について中間周波帯
域内で、遅延時間を傾斜させる分散型遅延線と、該分散
型遅延線を通して得られた位相変調信号を時間圧縮する
信号圧縮器と、該信号圧縮器の出力から時間圧縮信号を
取り出す検波器とを備えた受信装置。
Claim 1: A code generator that generates a time-series code, a phase modulator that phase-modulates a local signal from a local oscillator with the code, and an output of the phase modulator that has dispersion compensation characteristics. a mixer that mixes the received high-frequency signal with the received high-frequency signal and converts it to an intermediate frequency; a distributed delay line that tilts the delay time within the intermediate frequency band for the output of the mixer; and a phase modulation obtained through the distributed delay line. A receiving device comprising a signal compressor that time-compresses a signal, and a detector that extracts the time-compressed signal from the output of the signal compressor.
JP3109625A 1991-04-16 1991-04-16 Reception device Pending JPH04315978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3109625A JPH04315978A (en) 1991-04-16 1991-04-16 Reception device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3109625A JPH04315978A (en) 1991-04-16 1991-04-16 Reception device

Publications (1)

Publication Number Publication Date
JPH04315978A true JPH04315978A (en) 1992-11-06

Family

ID=14515032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3109625A Pending JPH04315978A (en) 1991-04-16 1991-04-16 Reception device

Country Status (1)

Country Link
JP (1) JPH04315978A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5892288B2 (en) * 2013-02-19 2016-03-23 トヨタ自動車株式会社 Radar and object detection method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5892288B2 (en) * 2013-02-19 2016-03-23 トヨタ自動車株式会社 Radar and object detection method

Similar Documents

Publication Publication Date Title
US4100498A (en) Discrete chirp frequency synthesizer
US4532603A (en) Chirp transform correlator
US5424631A (en) Hybrid instantaneous frequency measurement compressive receiver apparatus and method
JPH07104063A (en) Ultrasonic object measuring device
US5151921A (en) Spread spectrum communication device
US4704737A (en) Compressive receiver having pulse width expansion
JPH025344B2 (en)
JP3293829B2 (en) How to recover a frequency modulated signal
US5073898A (en) Communication device
CA2076799A1 (en) Ultra-widebandwidth compressive receiver
JPH04315978A (en) Reception device
JP3397158B2 (en) ECM radar device
US4267600A (en) Modulation monitoring apparatus
JPS6136190B2 (en)
JP2002006031A (en) Pulse compression-type radar device
JPH04236386A (en) Receiver
RU2115236C1 (en) Communication system with wide-band signals
RU2192093C1 (en) Digital and analog data transmission equipment
RU2071066C1 (en) Method for spectral analysis of signals
JP2603024B2 (en) Radar equipment
CA1236180A (en) Surface acoustic wave device for data rate reduction
JP2779515B2 (en) Propagation path measurement device using spread spectrum waves
JPH02202127A (en) Receiver
Staniforth A study of interference in the HF aeronautical bands
JPH04152286A (en) Transmission time controlled radar device