JPH04315772A - Manufacture of interconnector for solid electrolyte fuel cell - Google Patents

Manufacture of interconnector for solid electrolyte fuel cell

Info

Publication number
JPH04315772A
JPH04315772A JP3003107A JP310791A JPH04315772A JP H04315772 A JPH04315772 A JP H04315772A JP 3003107 A JP3003107 A JP 3003107A JP 310791 A JP310791 A JP 310791A JP H04315772 A JPH04315772 A JP H04315772A
Authority
JP
Japan
Prior art keywords
lanthanum
slurry
chromate
interconnector
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3003107A
Other languages
Japanese (ja)
Other versions
JP3101720B2 (en
Inventor
Masamichi Ipponmatsu
正道 一本松
Masaji Otoshi
大歳 正司
Hiroichi Sasaki
博一 佐々木
Minoru Suzuki
稔 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP03003107A priority Critical patent/JP3101720B2/en
Publication of JPH04315772A publication Critical patent/JPH04315772A/en
Application granted granted Critical
Publication of JP3101720B2 publication Critical patent/JP3101720B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0215Glass; Ceramic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0215Glass; Ceramic materials
    • H01M8/0217Complex oxides, optionally doped, of the type AMO3, A being an alkaline earth metal or rare earth metal and M being a metal, e.g. perovskites
    • H01M8/0219Chromium complex oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To form a thin film of lanthanum chromate on a lanthanum manganate sintered body through a wet process. CONSTITUTION:Slurry of calcium-doped lanthanum chromate having A-sites in excess is applied as a thin film on a porous body made from alkaline earth metal-doped lanthanum manganate having defects in A-sites and is sintered in an oxidation atmosphere. A nonplanar interconnector can be obtained readily by application of slurry of lanthanum chromate using vacuum suction method.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、固体電解質燃料電池用
インターコネクターの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an interconnector for solid electrolyte fuel cells.

【0002】0002

【従来の技術及び発明が解決しようとする課題】固体電
解質燃料電池用インターコネクターには、1,000℃
の高温で酸化還元の両雰囲気に対して安定であること、
及び、ある程度以上の電子伝導性を有することが求めら
れる。このようなインターコネクターの製造には、ほと
んどの場合、アルカリ土類金属(Ca、Sr、Mg等)
をドープしたランタンクロメート(LaCrOx)が用
いられている。しかし、このようなLaCrOxは難焼
結性であり、常法では温度を1,600℃まで上げなけ
れば焼結しないため、インターコネクターの製造は必ず
しも容易ではなかった。
[Prior Art and Problems to be Solved by the Invention] Interconnectors for solid electrolyte fuel cells have a temperature of 1,000℃.
be stable in both redox and redox atmospheres at high temperatures;
In addition, it is required to have a certain level of electronic conductivity. The manufacture of such interconnectors mostly involves the use of alkaline earth metals (Ca, Sr, Mg, etc.)
Lanthanum chromate (LaCrOx) doped with is used. However, such LaCrOx is difficult to sinter, and cannot be sintered by conventional methods unless the temperature is raised to 1,600° C., so it has not always been easy to manufacture interconnectors.

【0003】そのため、過去には次のような方法が試み
られていた。
[0003] For this reason, the following methods have been attempted in the past.

【0004】1.LaCrOxを単独で焼結し、他の部
材と接合する方法。
1. A method of sintering LaCrOx alone and joining it with other parts.

【0005】2.ランタンマンガネ―ト(LaMnOx
)あるいはNi/ZrO2サーメット等の電極材料多孔
質体上にCVD、EVD、溶射等のドライプロセスでL
aCrOx薄膜を形成する方法。
2. Lanthanum manganate (LaMnOx)
) or by a dry process such as CVD, EVD, or thermal spraying on a porous electrode material such as Ni/ZrO2 cermet.
A method of forming aCrOx thin film.

【0006】前者の場合には、内部抵抗の制約から膜の
厚さが限られるため膜面積が大きくできないといった欠
点や、形状が平板類似のものに限られるといった欠点が
あった。一方、後者の場合にはドライプロセスであるた
め設備費が大きくなるという欠点があった。
In the former case, the thickness of the film is limited due to internal resistance constraints, so the film area cannot be increased, and the shape is limited to a flat plate. On the other hand, the latter method has the disadvantage that the equipment cost is high because it is a dry process.

【0007】また、Caド―プLaCrOxを用いた共
焼結法も試みられたが、CaO相の移動によりLaMn
OxやNi/ZrO2サーメットの焼結が妨げられると
いう欠点があった。
A co-sintering method using Ca-doped LaCrOx was also attempted, but due to the movement of the CaO phase, LaMn
There was a drawback that sintering of Ox and Ni/ZrO2 cermets was hindered.

【0008】本発明の課題は、上記欠点を解消し、La
MnOx焼結体上にLaCrOx薄膜をウェットプロセ
スで成膜する方法を提供する処にある。このような方法
によれば、大面積あるいは非平面のインターコネクター
が容易に得られるという利点もある。
The object of the present invention is to solve the above-mentioned drawbacks and to solve the problem of La
The present invention provides a method for forming a LaCrOx thin film on a MnOx sintered body by a wet process. This method also has the advantage that large-area or non-planar interconnectors can be easily obtained.

【0009】[0009]

【課題を解決するための手段】Aサイト欠陥を有するア
ルカリ土類金属ドープランタンマンガネートからなる多
孔質体上に、Aサイト過剰のカルシウムドープランタン
クロメートのスラリーを薄膜状に塗布し、これを酸化雰
囲気で焼結させる。
[Means for solving the problem] A slurry of calcium-doped lanthanum chromate with an excess of A sites is applied in a thin film onto a porous body made of alkaline earth metal-doped lanthanum manganate having A-site defects, and this is oxidized. Sinter in the atmosphere.

【0010】ランタンクロメートのスラリーを真空吸引
法により塗布することが好ましい。
Preferably, the lanthanum chromate slurry is applied by vacuum suction.

【0011】[0011]

【作用】AサイトにCaを過剰にドープしたランタンク
ロメート(例えば、La0.70Ca0.35CrOx
;式中xは3±δ)は易焼結性のランタンクロメートと
して知られている。このスラリーを用いて、アルカリ土
類金属をドープしたAサイト欠陥を有するランタンマン
ガネートからなる多孔質体上に薄膜を形成し、これを約
1,300℃で焼成すると、ランタンマンガネートの多
孔質体上にランタンクロメートの緻密な薄膜が形成され
る。この際、ランタンマンガネートは再焼結しない(ラ
ンタンマンガネートは約1,350℃まで昇温しないと
再焼結しない。)ランタンクロメート中の過剰のCaは
粒子間にCaO相を作り、この一部がLaMnOx相へ
移動するが、LaMnOxはすでに焼結されているので
悪影響を受けない。また、LaMnOxとの反応という
点ではLaMnOx中のAサイト欠陥にCaが配位する
ため悪影響を受けにくい。
[Action] Lanthanum chromate doped with excessive Ca at the A site (for example, La0.70Ca0.35CrOx
; where x is 3±δ) is known as an easily sinterable lanthanum chromate. Using this slurry, a thin film is formed on a porous body made of lanthanum manganate doped with an alkaline earth metal and having A-site defects, and when this is fired at about 1,300°C, the porous lanthanum manganate A dense thin film of lanthanum chromate forms on the body. At this time, lanthanum manganate does not resinter (lanthanum manganate does not resinter unless the temperature is raised to approximately 1,350°C). Excess Ca in lanthanum chromate creates a CaO phase between particles, and this However, since LaMnOx has already been sintered, it is not adversely affected. In addition, in terms of reaction with LaMnOx, Ca is coordinated to the A-site defects in LaMnOx, so that it is less likely to be adversely affected.

【0012】また、ランタンクロメートのスラリーを真
空吸引法により塗布すれば、円筒などの曲面にも成膜す
ることができる。
Furthermore, by applying the lanthanum chromate slurry by vacuum suction, it is possible to form a film on a curved surface such as a cylinder.

【0013】[0013]

【実施例】【Example】

実施例1 SrをドープしたAサイト欠陥を有するランタンマンガ
ネート[(La0.9Sr0.1)0.9MnO3±δ
]の多孔質円筒上に、La0.70Ca0.35CrO
3±δ粉末(平均粒径2μm)のスラリー(LaCaC
rOx粉が50〜70重量%、他は水、ポリビニルアル
コール及び界面活性剤)を真空吸引により成膜し、室温
で乾燥した後に空気中で1,300℃で5時間焼成した
。その結果、厚さ30μmのLaCaCrOxの緻密膜
が得られた。
Example 1 Sr-doped lanthanum manganate with A-site defects [(La0.9Sr0.1)0.9MnO3±δ
] on the porous cylinder of La0.70Ca0.35CrO
Slurry of 3±δ powder (average particle size 2 μm) (LaCaC
A film containing 50 to 70% by weight of rOx powder (others being water, polyvinyl alcohol, and surfactant) was formed by vacuum suction, dried at room temperature, and then calcined in air at 1,300° C. for 5 hours. As a result, a dense film of LaCaCrOx with a thickness of 30 μm was obtained.

【0014】得られた膜を1,100℃で500時間処
理したが、電気物性や機械物性において実用上支障のあ
る変化はみられなかった。
[0014] The obtained film was treated at 1,100°C for 500 hours, but no practically harmful changes were observed in the electrical or mechanical properties.

【0015】比較例1 実施例1と同じ多孔質円筒上に真空吸引をせずにスラリ
ーを塗布し、同様の焼成を行なったが、得られた膜はガ
ス透過性があり、緻密な膜は得られなかった。 比較例2 Aサイト過剰でないカルシウムドープランタンクロメー
ト(La0.84Ca0.16CrO3±δ)粉末を用
いて実施例1と同様の実験を行なったが、まったく焼結
しなかった。
Comparative Example 1 A slurry was applied onto the same porous cylinder as in Example 1 without vacuum suction, and the same firing was performed, but the resulting film was gas permeable and the dense film was I couldn't get it. Comparative Example 2 An experiment similar to Example 1 was conducted using calcium-doped lanthanum chromate (La0.84Ca0.16CrO3±δ) powder that did not have an excess of A sites, but no sintering occurred.

【0016】比較例3 Aサイト欠陥でないストロンチウムドープランタンマン
ガネート(La0.9Sr0.1MnO3±δ)の多孔
質円筒を用いて同様の実験を行なったところ、Caがド
ープしてAサイト過剰となり、空気中のH2Oを吸収し
てLa(OH)3・nH2Oを生じたため、円筒の強度
が大幅に低下した。
Comparative Example 3 When a similar experiment was carried out using a porous cylinder of strontium-doped lanthanum manganate (La0.9Sr0.1MnO3±δ) with no A-site defects, the A-site was excessive due to Ca doping, and air Since the H2O inside was absorbed and La(OH)3.nH2O was produced, the strength of the cylinder was significantly reduced.

【0017】[0017]

【発明の効果】本発明によれば、ランタンマンガネート
焼結体上にランタンクロメート薄膜をウェットプロセス
で成膜することができる。従って、設備費を低価に抑え
ることができる。
According to the present invention, a lanthanum chromate thin film can be formed on a lanthanum manganate sintered body by a wet process. Therefore, equipment costs can be kept low.

【0018】また、CaO相の移動によりLaMnOx
の焼結が妨げられるということも生じない。
Furthermore, due to the movement of the CaO phase, LaMnOx
The sintering of the material is not hindered.

【0019】さらに、ランタンクロメートのスラリーを
真空吸引法により塗布すれば、非平面のインターコネク
ターが容易に得られる。
Furthermore, a non-planar interconnector can be easily obtained by applying a slurry of lanthanum chromate by a vacuum suction method.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】Aサイト欠陥を有するアルカリ土類金属ド
ープランタンマンガネートからなる多孔質体上に、Aサ
イト過剰のカルシウムドープランタンクロメートのスラ
リーを薄膜状に塗布し、これを焼結させる固体電解質燃
料電池用インターコネクターの製造方法。
Claim 1: A solid electrolyte in which a slurry of calcium-doped lanthanum chromate with an excess of A sites is applied in a thin film form on a porous body made of alkaline earth metal-doped lanthanum manganate having A-site defects, and the slurry is sintered. A method for manufacturing a fuel cell interconnector.
【請求項2】ランタンクロメートのスラリーを真空吸引
法により塗布することを特徴とする請求項1記載の方法
2. The method according to claim 1, wherein the lanthanum chromate slurry is applied by vacuum suction.
【請求項3】ランタンマンガネート多孔質体におけるラ
ンタンクロメートスラリーを塗布すべき面が平面でない
ことを特徴とする請求項2記載の方法。
3. The method according to claim 2, wherein the surface of the lanthanum manganate porous body to which the lanthanum chromate slurry is applied is not flat.
JP03003107A 1991-01-16 1991-01-16 Method for manufacturing interconnector for solid oxide fuel cell Expired - Fee Related JP3101720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03003107A JP3101720B2 (en) 1991-01-16 1991-01-16 Method for manufacturing interconnector for solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03003107A JP3101720B2 (en) 1991-01-16 1991-01-16 Method for manufacturing interconnector for solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JPH04315772A true JPH04315772A (en) 1992-11-06
JP3101720B2 JP3101720B2 (en) 2000-10-23

Family

ID=11548126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03003107A Expired - Fee Related JP3101720B2 (en) 1991-01-16 1991-01-16 Method for manufacturing interconnector for solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP3101720B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997004494A1 (en) * 1995-07-21 1997-02-06 Siemens Aktiengesellschaft High-temperature fuel cell and high-temperature fuel cell stack with interconnecting conducting plates provided with a chromium spinel contact layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997004494A1 (en) * 1995-07-21 1997-02-06 Siemens Aktiengesellschaft High-temperature fuel cell and high-temperature fuel cell stack with interconnecting conducting plates provided with a chromium spinel contact layer
AU695778B2 (en) * 1995-07-21 1998-08-20 Siemens Aktiengesellschaft High temperature fuel cell, high temperature fuel cell stack and method for producing a high temperature fuel cell

Also Published As

Publication number Publication date
JP3101720B2 (en) 2000-10-23

Similar Documents

Publication Publication Date Title
AU2008291251B2 (en) Removal of impurity phases from electrochemical devices
Chen et al. Direct application of cobaltite-based perovskite cathodes on the yttria-stabilized zirconia electrolyte for intermediate temperature solid oxide fuel cells
Shang et al. A promising cathode for intermediate temperature protonic ceramic fuel cells: BaCo 0.4 Fe 0.4 Zr 0.2 O 3− δ
Wang et al. Liquid-phase synthesis of SrCo0. 9Nb0. 1O3-δ cathode material for proton-conducting solid oxide fuel cells
JP5465240B2 (en) Sol-gel derived high performance catalytic thin films for sensors, oxygen separators, and solid oxide fuel cells
JPH05135787A (en) Manufacture of solid electrolyte film and manufacture of solid electrolyte fuel cell
KR101978952B1 (en) High temperature solid oxide cell comprising barrier layer, method for manufacturing the same
WO1992010862A1 (en) Method for manufacturing solid-state electrolytic fuel cell
US8337939B2 (en) Method of processing a ceramic layer and related articles
CN110797542A (en) Symmetric solid oxide fuel cell electrode material and preparation method thereof
CN107017423A (en) A kind of low-temperature solid oxide fuel cell and preparation method thereof
Zhou et al. Novel metal-supported solid oxide fuel cells with impregnated symmetric La0. 6Sr0. 4Fe0. 9Sc0. 1O3− δ electrodes
Sun et al. Fabrication of BaZr0. 1Ce0. 7Y0. 2O3–δ‐Based Proton‐Conducting Solid Oxide Fuel Cells Co‐Fired at 1,150° C
US20080299436A1 (en) Composite ceramic electrolyte structure and method of forming; and related articles
JP3565696B2 (en) Method for manufacturing electrode of solid oxide fuel cell
EP0478185A2 (en) Fuel electrodes for solid oxide fuel cells and production thereof
JP2008047445A (en) Method of manufacturing solid electrolytic ceramic membrane, and electrochemical device
JP3661676B2 (en) Solid oxide fuel cell
CN113991122A (en) Electrode material with core-shell structure for symmetric solid oxide fuel cell and preparation method and application thereof
Xin et al. Fabrication of dense YSZ electrolyte membranes by a modified dry-pressing using nanocrystalline powders
Yamamoto et al. Anomalous low-temperature sintering of a solid electrolyte thin film of tailor-made nanocrystals on a porous cathode support for low-temperature solid oxide fuel cells
JP2014159642A (en) Method for fabricating nickel-cermet electrode
JPH04315772A (en) Manufacture of interconnector for solid electrolyte fuel cell
JP4889166B2 (en) Low-temperature sinterable solid electrolyte material, electrolyte electrode assembly and solid oxide fuel cell using the same
JP5550223B2 (en) Ceramic electrolyte processing method and related products

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees