JPH04315543A - Direct acting drive device - Google Patents

Direct acting drive device

Info

Publication number
JPH04315543A
JPH04315543A JP6463491A JP6463491A JPH04315543A JP H04315543 A JPH04315543 A JP H04315543A JP 6463491 A JP6463491 A JP 6463491A JP 6463491 A JP6463491 A JP 6463491A JP H04315543 A JPH04315543 A JP H04315543A
Authority
JP
Japan
Prior art keywords
electromagnet
permanent magnet
force
drive device
cutting tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6463491A
Other languages
Japanese (ja)
Other versions
JP3093299B2 (en
Inventor
Akira Satake
彰 佐竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP03064634A priority Critical patent/JP3093299B2/en
Publication of JPH04315543A publication Critical patent/JPH04315543A/en
Application granted granted Critical
Publication of JP3093299B2 publication Critical patent/JP3093299B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/26Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members
    • B23Q1/34Relative movement obtained by use of deformable elements, e.g. piezoelectric, magnetostrictive, elastic or thermally-dilatable elements
    • B23Q1/36Springs

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Turning (AREA)
  • Linear Motors (AREA)

Abstract

PURPOSE:To provide a small and light direct acting drive device which provides generating force characteristic suitable for a direct acting drive device for positioning a bite to drive a bite as it overcomes a cutting back force. CONSTITUTION:A drive device comprises an electromagnet, a permanent magnet 4 disposed in the magnetic circuit of the electromagnet, an armature 3 attracted to the electromagnet or the permanent magnet 4, and leaf springs 6a and 6b energizing the armature 3 in a direction opposite to that of the attraction force of the permanent magnet 4. A drive force in a direction in which a bite is retracted is generated through the forces of the leaf springs 6a and 6b. In a state that the electromagnet is not energized, the attraction force of the permanent magnet 4 is balanced with the energizing forces of the leaf springs 6a and 6b, and when the moving part of a device is brought into a static rest state, there is no need for the flow of a current to the electromagnet.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は直動駆動装置に関する
もので、特に、工作機械の刃物台送り装置に適するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a linear drive device, and is particularly suitable for a tool post feed device of a machine tool.

【0002】0002

【従来の技術】円筒状や球面状をした回転体で、かつそ
の断面が完全な回転体から少しずれた形状をしている部
品、例えばレシプロエンジンの楕円ピストンや非球面レ
ンズ用の金型等は、刃物台が主軸回転に同期して移動す
る旋盤などにより加工される。このような分野では、以
前は予め作ったカム板を主軸と同期回転させ、そのカム
板により刃物台を移動させて加工するならい旋盤が用い
られてきたが、近年、制御のNC化や加工の高速化に対
応するため刃物台の駆動をアクチュエータによって行う
装置に関する研究が進んでいる。
[Prior Art] Parts that are cylindrical or spherical rotating bodies whose cross section is slightly deviated from a perfect rotating body, such as elliptical pistons for reciprocating engines and molds for aspherical lenses. is processed using a lathe or the like whose tool rest moves in synchronization with the rotation of the main shaft. In these fields, profiling lathes have been used in the past, in which a pre-made cam plate is rotated in synchronization with the main shaft, and the turret is moved by the cam plate for machining, but in recent years, NC control and machining In order to cope with higher speeds, research is progressing on devices that use actuators to drive the turret.

【0003】図3はシステム制御情報学会主催により1
989年7月に行われた第2回インテリジェントFAシ
ンポジウム講演会の論文集p101に記載された、従来
の高速非円形輪郭切削NC旋盤用のバイト位置決め用直
動駆動装置の構成を示す模式斜視図であり、図に於て1
1a,11b,11c,11dは電磁石、5はバイト駆
動軸、6a,6b,6cは板バネ、3はバイト駆動軸5
に固定されて電磁石11a,11b,11c,11dに
より吸引駆動されるアマチュアである。
[0003] Figure 3 shows 1
A schematic perspective view showing the configuration of a linear drive device for positioning a tool for a conventional high-speed non-circular contour cutting NC lathe, which was described in p101 of the collection of papers from the 2nd Intelligent FA Symposium Lecture held in July 19989. In the figure, 1
1a, 11b, 11c, 11d are electromagnets, 5 is a tool drive shaft, 6a, 6b, 6c are leaf springs, 3 is a tool drive shaft 5
It is an armature that is fixed to and is attracted and driven by electromagnets 11a, 11b, 11c, and 11d.

【0004】次に動作について説明する。バイト駆動軸
5は板バネ6a,6b,6cにより支持されており、そ
の先端にバイトが設けられている。電磁石11a,11
bと11c,11dはアマチュア3を挟んで対向して設
けられており、11aと11bあるいは11cと11d
を励磁することによりアマチュア3は吸引され、アマチ
ュア3に固定されたバイト駆動軸5は矢印の方向に移動
する。電磁石11aと11bあるいは11cと11dに
流す電流を操作することにより、バイト駆動軸5を所望
の位置に制御することができる。
Next, the operation will be explained. The cutting tool drive shaft 5 is supported by plate springs 6a, 6b, and 6c, and a cutting tool is provided at the tip thereof. Electromagnets 11a, 11
b, 11c and 11d are provided facing each other with the armature 3 in between, and 11a and 11b or 11c and 11d
By exciting the armature 3, the armature 3 is attracted, and the cutting tool drive shaft 5 fixed to the armature 3 moves in the direction of the arrow. By manipulating the current flowing through the electromagnets 11a and 11b or 11c and 11d, the cutting tool drive shaft 5 can be controlled to a desired position.

【0005】[0005]

【発明が解決しようとする課題】電磁石は片方向の力し
か発生することができないため、従来の電磁石を用いた
バイト位置決め用直動駆動装置では上記のように電磁石
を対向して使用する方法がとられていた。一方、バイト
位置決め装置の駆動に必要な力を考えてみれば、バイト
が行う切削加工に伴って発生する切削反力は片方向のみ
に発生するため、大きな駆動力を必要とするのは片方向
のみで、反対の方向には装置可動部を移動するのに足る
発生力があれば十分であることが分かる。
[Problem to be solved by the invention] Since electromagnets can only generate force in one direction, in the conventional linear drive device for tool positioning using electromagnets, it is difficult to use the method of using electromagnets facing each other as described above. It had been taken. On the other hand, if we consider the force required to drive the tool positioning device, the cutting reaction force generated by the cutting process performed by the tool only occurs in one direction, so a large driving force is required in only one direction. It can be seen that it is sufficient to generate enough force to move the movable part of the device in the opposite direction.

【0006】このように従来のバイト位置決め用直動駆
動装置では、本来必要な駆動力特性と現状の発生力特性
が一致しておらず、無駄が多いという問題点があった。
[0006] As described above, the conventional linear drive device for positioning the cutting tool has the problem that the originally required driving force characteristics and the current generated force characteristics do not match, resulting in a lot of waste.

【0007】この発明は上記のような問題点を解消する
ためになされたもので、例えばバイト位置決め用直動駆
動装置に適した発生力特性が得られ、小型、軽量化が図
れる直動駆動装置を得ることを目的とする。
The present invention was made in order to solve the above-mentioned problems, and provides a linear drive device that can obtain force generation characteristics suitable for, for example, a linear drive device for positioning a cutting tool, and can be made smaller and lighter. The purpose is to obtain.

【0008】[0008]

【課題を解決するための手段】この発明の直動駆動装置
は、電磁石、この電磁石の磁気回路中に配設した永久磁
石、上記電磁石または永久磁石に吸引される可動鉄心、
及びこの可動鉄心を上記永久磁石の吸引力と反対方向に
付勢する弾性体を備えたものである。
[Means for Solving the Problems] The direct drive device of the present invention includes an electromagnet, a permanent magnet disposed in a magnetic circuit of the electromagnet, a movable iron core attracted to the electromagnet or the permanent magnet,
and an elastic body that urges the movable iron core in a direction opposite to the attractive force of the permanent magnet.

【0009】[0009]

【作用】この発明の直動駆動装置においては、従来対向
する1組の電磁石によって行っていた駆動力の発生を、
片方向の駆動力の発生を弾性体によって行っており、一
方の電磁石のみで行うことができ、他方の電磁石及びそ
れに付随する装置を省略することができる。また、例え
ば電磁石に通電していない状態で弾性体と釣り合うよう
な吸引力を発生する永久磁石を電磁石の磁気回路に挿入
して弾性体の発生力に対抗させているので、装置の可動
部が静止している際には電磁石に電流を流す必要がない
[Operation] In the linear drive device of the present invention, the generation of driving force, which was conventionally performed by a pair of opposing electromagnets, can be
The driving force in one direction is generated by an elastic body, and can be generated using only one electromagnet, so that the other electromagnet and its accompanying device can be omitted. In addition, for example, a permanent magnet that generates an attractive force that balances the elastic body when the electromagnet is not energized is inserted into the electromagnet's magnetic circuit to counteract the force generated by the elastic body, so that the movable parts of the device are When it is stationary, there is no need to pass current through the electromagnet.

【0010】0010

【実施例】【Example】

実施例1 以下、この発明の実施例を図について説明する。図1は
この発明の直動駆動装置を用いた高速非円形輪郭切削N
C旋盤用のバイト位置決め用直動駆動装置の構成を示す
一部破断正面図であり、図に於て、1はコイル、2aお
よび2bは磁気回路を構成する円筒状の鉄心、3はコイ
ル1への通電により吸引される可動鉄心のアマチュア、
4は磁気回路に挿入された永久磁石、5はバイト駆動軸
、6a,6bは弾性体、この場合は板バネ、7はバイト
駆動軸5の移動量を検出する位置センサ、8はバイト、
9a,9bは固定部である基台である。
Example 1 An example of the present invention will be described below with reference to the drawings. Figure 1 shows high-speed non-circular contour cutting N using the linear drive device of this invention.
It is a partially cutaway front view showing the configuration of a linear drive device for positioning a cutting tool for a C lathe, in which 1 is a coil, 2a and 2b are cylindrical iron cores forming a magnetic circuit, and 3 is a coil 1. A armature of a movable iron core that is attracted by energizing the
4 is a permanent magnet inserted in the magnetic circuit, 5 is a cutting tool drive shaft, 6a and 6b are elastic bodies, in this case leaf springs, 7 is a position sensor that detects the amount of movement of the cutting tool driving shaft 5, 8 is a cutting tool,
9a and 9b are bases which are fixed parts.

【0011】次に動作について説明する。バイト駆動軸
5は板バネ6a、6bにより支持されており、その先端
にバイト8が設けられている。電磁石を構成する磁気回
路である鉄心2a,2b、アマチュア3及び永久磁石4
には、コイル1に電流を流していない状態でも、永久磁
石4によって発生する磁束が作用しており、バイト駆動
軸5はこの磁束によりアマチュア3に作用する吸引力と
、板ばね6a,6bによる反力が釣りあった位置で静止
している。この永久磁石4による磁束を強める方向にコ
イル1に電流を流せばアマチュア3はさらに吸引されて
、バイト駆動軸5にはバイトを突き出す方向に駆動力が
発生し、この駆動力はコイル1に流す電流につれて大き
くなる。また、電流を逆方向に流して永久磁石4による
磁束を弱めれば、バイト駆動軸5には板バネ6a,6b
の反力によりバイト8を引っ込める方向に駆動力が発生
し、この反対方向の駆動力は、永久磁石4により発生さ
れる磁束が完全に打ち消されるまで、即ち磁気回路に作
用する磁束が無くなるまでは、逆方向の電流の大きさに
つれて大きくなる。バイト駆動軸5の移動を位置センサ
7により検出してコイル1に流す電流を操作することに
より、バイト駆動軸5を所望の位置に制御することがで
きる。
Next, the operation will be explained. The cutting tool drive shaft 5 is supported by plate springs 6a and 6b, and a cutting tool 8 is provided at the tip thereof. Iron cores 2a, 2b, armature 3 and permanent magnet 4 which are magnetic circuits that constitute an electromagnet
The magnetic flux generated by the permanent magnet 4 acts on the armature even when no current is flowing through the coil 1, and the cutting tool drive shaft 5 receives the attractive force acting on the armature 3 due to this magnetic flux and the force generated by the leaf springs 6a and 6b. It stands still at the position where the reaction force is balanced. If a current is passed through the coil 1 in a direction that strengthens the magnetic flux generated by the permanent magnet 4, the armature 3 will be further attracted, and a driving force will be generated in the cutting tool drive shaft 5 in the direction of protruding the cutting tool, and this driving force will be passed through the coil 1. It increases as the current increases. Also, if the current is passed in the opposite direction to weaken the magnetic flux caused by the permanent magnet 4, the blade springs 6a and 6b will be attached to the cutting tool drive shaft 5.
A driving force is generated in the direction of retracting the cutting tool 8 due to the reaction force, and this driving force in the opposite direction continues until the magnetic flux generated by the permanent magnet 4 is completely canceled out, that is, until the magnetic flux acting on the magnetic circuit disappears. , increases as the magnitude of the current in the opposite direction increases. By detecting the movement of the tool drive shaft 5 with the position sensor 7 and manipulating the current flowing through the coil 1, the tool drive shaft 5 can be controlled to a desired position.

【0012】以上の説明から、この実施例による直動駆
動装置は、バイト8を突き出す方向には電磁石のコイル
1に流せる最大電流による吸引力まで、またバイト8を
引っ込める方向には、永久磁石4の磁束が打ち消された
状態での板バネ6a,6bの反力の大きさまでの駆動力
を発生させることが出来ることがわかる。この駆動力の
発生範囲をバイト8の突き出し量と併せて示したのが図
2の特性図であり、図に於て縦軸は駆動力の発生範囲、
横軸は突き出し量であり、突き出し量は電流を流してい
ないときの板バネ6a,6bの自由位置を0位置とし、
アマチュア3の動作限界をSで表わしている。上記の最
大電流値はi+maxで表わされ、永久磁石と釣り合う
逆方向の電流値はi−maxで表わされている。駆動力
の発生範囲は突き出し量と電流によって変化し、突き出
し量0の時はF0+からF0−まで、突き出し量Sの時
はFS+からFS−までになる。バイト8、バイト駆動
軸5およびアマチュア3を高速で移動させるのに必要な
駆動力は正負の両方向に同じ大きさの力になるが、切削
加工を行いながら上記の移動を行う場合、加工を行う方
向すなわちバイト8を突き出す方向に加工反力が作用す
るため、これを補う必要がある。図2に示したように、
この発明の直動駆動装置では、バイトの可動範囲すなわ
ち突き出し量が0〜Sにおいて、正方向すなわちバイト
突き出し方向には可動部を移動するのに必要な力に加え
て加工反力を合わせた駆動力が、負方向即ちバイトを引
っ込める方向には可動部の移動に必要な駆動力が発生で
きるよう、永久磁石4が発生する磁束による吸引力の大
きさを調整して、発生力範囲を設定してある。このよう
に、この実施例では片方向の駆動力の発生を板バネ6a
,6bによって行うことにより、バイト位置決め用直動
駆動装置に適した発生力特性を得ることができ、従来対
向する1組の電磁石によって行っていた駆動力の発生を
、一方の電磁石のみで行うことができ、もう一方の電磁
石及びそれに付随する装置を省略することができる。従
って装置の小型、軽量化が図れる。
From the above explanation, the linear drive device according to this embodiment has the ability to reach the attraction force due to the maximum current that can be passed through the coil 1 of the electromagnet in the direction in which the cutting tool 8 is pushed out, and the permanent magnet 4 in the direction in which the cutting tool 8 is retracted. It can be seen that it is possible to generate a driving force up to the magnitude of the reaction force of the plate springs 6a, 6b in a state where the magnetic flux is canceled. The characteristic diagram in FIG. 2 shows the range of generation of this driving force together with the amount of protrusion of the cutting tool 8. In the figure, the vertical axis is the range of generation of driving force,
The horizontal axis is the amount of protrusion, and the amount of protrusion is defined as the free position of the leaf springs 6a and 6b when no current is flowing, which is the 0 position.
The operating limit of Amateur 3 is represented by S. The maximum current value mentioned above is expressed as i+max, and the current value in the opposite direction balanced with the permanent magnet is expressed as i-max. The range in which the driving force is generated changes depending on the amount of protrusion and the current, and when the amount of protrusion is 0, it is from F0+ to F0-, and when the amount of protrusion is S, it is from FS+ to FS-. The driving force required to move the cutting tool 8, cutting tool drive shaft 5, and armature 3 at high speed is the same force in both positive and negative directions, but when performing the above movement while cutting, Since processing reaction force acts in the direction, that is, in the direction in which the cutting tool 8 is pushed out, it is necessary to compensate for this. As shown in Figure 2,
In the linear drive device of the present invention, in the movable range of the cutting tool, that is, the amount of protrusion from 0 to S, in the positive direction, that is, in the cutting tool ejection direction, the driving force is a combination of the force necessary to move the movable part and the processing reaction force. The force range is set by adjusting the magnitude of the attractive force due to the magnetic flux generated by the permanent magnet 4 so that the force is generated in the negative direction, that is, in the direction of retracting the cutting tool, so that the driving force necessary to move the movable part is generated. There is. In this way, in this embodiment, the generation of driving force in one direction is performed by the plate spring 6a.
, 6b, it is possible to obtain generation force characteristics suitable for a linear drive device for positioning a cutting tool, and generation of driving force, which was conventionally performed by a pair of opposing electromagnets, can be performed with only one electromagnet. The other electromagnet and its associated equipment can be omitted. Therefore, the device can be made smaller and lighter.

【0013】また図2に示すように、この発明の直動駆
動装置では板バネ6a,6bのバネ定数を適切に選ぶこ
とにより、電流0の時に永久磁石が発生する吸引力を極
力板バネで打ち消すようにして、切削加工を行わないと
きのバイト8先端の位置決めを行うときにコイル1に流
れる電流を小さくすることができ、消費電力を小さくす
ることが出来る。
Furthermore, as shown in FIG. 2, in the direct drive device of the present invention, by appropriately selecting the spring constants of the leaf springs 6a and 6b, the attractive force generated by the permanent magnet when the current is 0 can be suppressed by the leaf springs as much as possible. By canceling them out, the current flowing through the coil 1 can be reduced when positioning the tip of the cutting tool 8 when cutting is not performed, and power consumption can be reduced.

【0014】[0014]

【発明の効果】以上のように、この発明による直動駆動
装置は、電磁石、この電磁石の磁気回路中に配設した永
久磁石、上記電磁石または永久磁石に吸引される可動鉄
心、及びこの可動鉄心を上記永久磁石の吸引力と反対方
向に付勢する弾性体で構成しており、片方向の駆動力の
発生を弾性体で行っており、例えばバイト位置決め用直
動駆動装置に適した効率のよい発生力特性が得られると
ともに、装置の小型、軽量化が図れる。
As described above, the direct drive device according to the present invention includes an electromagnet, a permanent magnet disposed in the magnetic circuit of the electromagnet, a movable core attracted to the electromagnet or the permanent magnet, and the movable core. is composed of an elastic body that biases in the opposite direction to the attractive force of the permanent magnet, and the elastic body generates driving force in one direction. Good force generation characteristics can be obtained, and the device can be made smaller and lighter.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】この発明の一実施例のバイト位置決め用直動駆
動装置の構成を示す一部破断正面図である。
FIG. 1 is a partially cutaway front view showing the configuration of a linear drive device for positioning a cutting tool according to an embodiment of the present invention.

【図2】この発明の一実施例の直動駆動装置の駆動力発
生範囲を示す特性図である。
FIG. 2 is a characteristic diagram showing a driving force generation range of a linear drive device according to an embodiment of the present invention.

【図3】従来の直動駆動装置の構成を示す概略斜視図で
ある。
FIG. 3 is a schematic perspective view showing the configuration of a conventional linear drive device.

【符号の説明】[Explanation of symbols]

1  コイル 2a  円筒状の鉄心 2b  円筒状の鉄心 3  可動鉄心のアマチュア 4  永久磁石 6a  弾性体の板バネ 6b  弾性体の板バネ 1 Coil 2a Cylindrical iron core 2b Cylindrical iron core 3 Amateur moveable iron core 4 Permanent magnet 6a Elastic plate spring 6b Elastic plate spring

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  電磁石、この電磁石の磁気回路中に配
設した永久磁石、上記電磁石または永久磁石に吸引され
る可動鉄心、及びこの可動鉄心を上記永久磁石の吸引力
と反対方向に付勢する弾性体を備えた直動駆動装置。
Claim 1: An electromagnet, a permanent magnet disposed in a magnetic circuit of the electromagnet, a movable core that is attracted to the electromagnet or the permanent magnet, and a movable core that is biased in a direction opposite to the attractive force of the permanent magnet. Direct drive device with elastic body.
JP03064634A 1991-03-28 1991-03-28 Linear drive Expired - Fee Related JP3093299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03064634A JP3093299B2 (en) 1991-03-28 1991-03-28 Linear drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03064634A JP3093299B2 (en) 1991-03-28 1991-03-28 Linear drive

Publications (2)

Publication Number Publication Date
JPH04315543A true JPH04315543A (en) 1992-11-06
JP3093299B2 JP3093299B2 (en) 2000-10-03

Family

ID=13263899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03064634A Expired - Fee Related JP3093299B2 (en) 1991-03-28 1991-03-28 Linear drive

Country Status (1)

Country Link
JP (1) JP3093299B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6121081A (en) * 1994-11-15 2000-09-19 Micron Technology, Inc. Method to form hemi-spherical grain (HSG) silicon
US6579047B2 (en) * 2000-01-31 2003-06-17 Balance Systems S.P.A. Guide and support device for small machine tools, in particular for rotating-mass balancing machines
JP2011045960A (en) * 2009-08-27 2011-03-10 Ntn Corp Spindle device with chuck and method for gripping object to be gripped
JP2013022666A (en) * 2011-07-19 2013-02-04 Kanzaki Kokyukoki Manufacturing Co Ltd Linear actuator, and boring device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6121081A (en) * 1994-11-15 2000-09-19 Micron Technology, Inc. Method to form hemi-spherical grain (HSG) silicon
US6579047B2 (en) * 2000-01-31 2003-06-17 Balance Systems S.P.A. Guide and support device for small machine tools, in particular for rotating-mass balancing machines
JP2011045960A (en) * 2009-08-27 2011-03-10 Ntn Corp Spindle device with chuck and method for gripping object to be gripped
JP2013022666A (en) * 2011-07-19 2013-02-04 Kanzaki Kokyukoki Manufacturing Co Ltd Linear actuator, and boring device

Also Published As

Publication number Publication date
JP3093299B2 (en) 2000-10-03

Similar Documents

Publication Publication Date Title
CN100475438C (en) Machining apparatus
EP1887677A1 (en) Long-proportion stroke force motor
JPS63141305A (en) Bidtrectionally stabilized polarized electromagnet
EP0788418B1 (en) Stud welding device
Kimura et al. Fast tool servos: advances in precision, acceleration, and bandwidth
JPH04315543A (en) Direct acting drive device
He et al. Development of a novel 5-DOF controlled maglev local actuator for high-speed electrical discharge machining
CN111181344B (en) Swing type surface micro cold forging device
KR970705449A (en) CNC MACHINING SYSTEM
US6215085B1 (en) Stud welding device
US6224009B1 (en) Device for modulated braking of a weft yarn for textile machines
US4224589A (en) Low energy magnetic actuator
CN209999691U (en) 3D prints laser engraving CNC carving and mills integration composite apparatus
CN113794347B (en) Linear oscillating motor
JP2004090031A (en) Driving device for working device, and working device utilizing the driving device
JPS63164135A (en) Driver for working piece
SU1704929A1 (en) Device for turning of end surfaces of non-rigid hollow articles
JPS5827922A (en) Working end positioning method of work surface working device
CN201333635Y (en) Two-freedom-degree ultrahigh frequency response ultra-precision cutting tool servo device based on variable flux
CN1048099C (en) Numerically controlled tool carriage for machining piston and its control method
JP2601767Y2 (en) Target electric switching device
JPS5716563A (en) Electromagnetic actuator
JP2002103144A (en) Cutting remover for wire electric discharge machine
JP2562343Y2 (en) Chucking actuator
RU2261495C1 (en) Turnable-armature high-speed two-position electromagnet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees