JP3093299B2 - Linear drive - Google Patents

Linear drive

Info

Publication number
JP3093299B2
JP3093299B2 JP03064634A JP6463491A JP3093299B2 JP 3093299 B2 JP3093299 B2 JP 3093299B2 JP 03064634 A JP03064634 A JP 03064634A JP 6463491 A JP6463491 A JP 6463491A JP 3093299 B2 JP3093299 B2 JP 3093299B2
Authority
JP
Japan
Prior art keywords
workpiece
drive shaft
tool
processing tool
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03064634A
Other languages
Japanese (ja)
Other versions
JPH04315543A (en
Inventor
彰 佐竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP03064634A priority Critical patent/JP3093299B2/en
Publication of JPH04315543A publication Critical patent/JPH04315543A/en
Application granted granted Critical
Publication of JP3093299B2 publication Critical patent/JP3093299B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/26Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members
    • B23Q1/34Relative movement obtained by use of deformable elements, e.g. piezoelectric, magnetostrictive, elastic or thermally-dilatable elements
    • B23Q1/36Springs

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Turning (AREA)
  • Linear Motors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は直動駆動装置に関する
もので、特に、工作機械の刃物台送り装置に適するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a linear drive device, and more particularly, to a tool post feeder of a machine tool.

【0002】[0002]

【従来の技術】円筒状や球面状をした回転体で、かつそ
の断面が完全な回転体から少しずれた形状をしている部
品、例えばレシプロエンジンの楕円ピストンや非球面レ
ンズ用の金型等は、刃物台が主軸回転に同期して移動す
る旋盤などにより加工される。このような分野では、以
前は予め作ったカム板を主軸と同期回転させ、そのカム
板により刃物台を移動させて加工するならい旋盤が用い
られてきたが、近年、制御のNC化や加工の高速化に対
応するため刃物台の駆動をアクチュエータによって行う
装置に関する研究が進んでいる。
2. Description of the Related Art Parts having a cylindrical or spherical rotating body and a cross section slightly deviated from a perfect rotating body, such as an elliptical piston of a reciprocating engine and a mold for an aspheric lens. Is processed by a lathe or the like in which a tool rest moves in synchronization with the rotation of a main shaft. In such a field, a lathe has been used in which a previously prepared cam plate is rotated synchronously with the main shaft, and the tool post is moved by the cam plate to perform processing. In order to cope with higher speeds, research on a device for driving a tool post by an actuator is in progress.

【0003】図3はシステム制御情報学会主催により1
989年7月に行われた第2回インテリジェントFAシ
ンポジウム講演会の論文集p101に記載された、従来
の高速非円形輪郭切削NC旋盤用のバイト位置決め用直
動駆動装置の構成を示す模式斜視図であり、図に於て1
1a,11b,11c,11dは電磁石、5はバイト駆
動軸、6a,6b,6cは板バネ、3はバイト駆動軸5
に固定されて電磁石11a,11b,11c,11dに
より吸引駆動されるアマチュアである。
[0003] FIG.
Schematic perspective view showing the structure of a conventional linear drive for positioning a cutting tool for a high-speed non-circular contour cutting NC lathe, which is described in the paper collection p101 of the 2nd Intelligent FA Symposium Lecture Meeting held in July 989. And 1 in the figure
1a, 11b, 11c and 11d are electromagnets, 5 is a bite drive shaft, 6a, 6b and 6c are leaf springs, and 3 is a bite drive shaft 5.
And is attracted and driven by the electromagnets 11a, 11b, 11c, 11d.

【0004】次に動作について説明する。バイト駆動軸
5は板バネ6a,6b,6cにより支持されており、そ
の先端にバイトが設けられている。電磁石11a,11
bと11c,11dはアマチュア3を挟んで対向して設
けられており、11aと11bあるいは11cと11d
を励磁することによりアマチュア3は吸引され、アマチ
ュア3に固定されたバイト駆動軸5は矢印の方向に移動
する。電磁石11aと11bあるいは11cと11dに
流す電流を操作することにより、バイト駆動軸5を所望
の位置に制御することができる。
Next, the operation will be described. The cutting tool drive shaft 5 is supported by leaf springs 6a, 6b, 6c, and a cutting tool is provided at its tip. Electromagnets 11a, 11
b, 11c, and 11d are provided to face each other across the amateur 3, and 11a and 11b or 11c and 11d are provided.
When the armature is excited, the armature 3 is attracted, and the bite drive shaft 5 fixed to the armature 3 moves in the direction of the arrow. By manipulating the current flowing through the electromagnets 11a and 11b or 11c and 11d, the bite drive shaft 5 can be controlled to a desired position.

【0005】[0005]

【発明が解決しようとする課題】電磁石は片方向の力し
か発生することができないため、従来の電磁石を用いた
バイト位置決め用直動駆動装置では上記のように電磁石
に対向して使用する方法がとられていた。一方、バイト
位置決め装置の駆動に必要な力を考えてみれば、バイト
が行う切削加工に伴って発生する切削背力は片方向のみ
に発生するため、大きな駆動力を必要とするのは切削加
工対象物にバイトを導く方向のみで、反対の方向には装
置可動部を移動するのに足る発生力があれば十分である
ことが分かる。
Since the electromagnet can only generate a force in one direction, a conventional linear drive device for bite positioning using an electromagnet uses the method of using the electromagnet facing the electromagnet as described above. Had been taken. On the other hand, if you think the force required to drive the byte positioning device, for cutting back force generated along with the cutting of bytes do is to occur only in one direction, to require a large driving force is cutting pressure
It can be seen that only the direction in which the cutting tool is guided to the work object, and the generated force in the opposite direction is sufficient to move the apparatus movable section.

【0006】このように従来のバイト位置決め用直動駆
動装置では、本来必要な駆動力特性と現状の発生力特性
が一致しておらず、無駄が多いという問題点があった。
As described above, the conventional linear driving device for positioning the cutting tool has a problem that the originally required driving force characteristics do not coincide with the current generated force characteristics, and there is much waste.

【0007】この発明は上記のような問題点を解消する
ためになされたもので、加工具を装着した軸端を加工対
象物から後退させる方向に駆動軸を駆動させる電磁石を
省略し、加工具を装着した軸端を加工対象物に導く方向
に、駆動軸の位置調整ができ、さらに、大きな駆動力を
与えることができる、小型、軽量、低消費電力の直動駆
動装置を得ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems .
An electromagnet that drives the drive shaft in a direction to retract from the elephant
Omitted, direction in which the shaft end with the processing tool is guided to the workpiece
In addition, the position of the drive shaft can be adjusted ,
It is an object of the present invention to provide a small-sized, light-weight, low-power-consumption linear drive device that can be provided.

【0008】[0008]

【課題を解決するための手段】この発明の直動駆動装置
は、加工具を直動させて加工対象物に導く直動駆動装置
であって、加工時に加工対象物から加工具に対する強い
反力が生じ、この反力に対抗するとともに加工対象物を
加工するために、加工具を加工対象物に導く方向に大き
な駆動力を必要とする加工条件で使用される直動駆動装
置において、可動鉄心に固定され、少なくとも一方の軸
端に加工具を装着する駆動軸と、可動鉄心を駆動して、
駆動軸の加工具を装着した軸端が加工対象物側に突出す
る方向に附勢する電磁石と、電磁石の磁路中に配設さ
れ、駆動軸の加工具を装着した軸端が加工対象物側に突
出する方向に附勢する永久磁石と、駆動軸を保持して、
永久磁石の附勢力を打ち消すように駆動軸の加工具を装
着した軸端が加工対象物側から後退する方向に附勢する
弾性体と、加工時における駆動軸の位置を連続して検出
する位置センサとを備えたものである。
A linear drive device according to the present invention is a linear drive device for linearly moving a processing tool and guiding the processing tool to a workpiece.
It is strong against the processing tool from the workpiece during processing.
A reaction force is generated.
In order to process, the tool is large in the direction to guide the processing tool to the workpiece.
Linear drive used in machining conditions that require
At least one axis fixed to the armature core
Drive the drive shaft to attach the processing tool to the end and the movable iron core,
The end of the drive shaft with the tool attached protrudes toward the workpiece
And a magnet arranged in the magnetic path of the electromagnet.
The shaft end of the drive shaft with the tool attached protrudes toward the workpiece.
Holding the permanent magnet and the drive shaft that urges the
Equip the drive shaft processing tool to cancel the biasing force of the permanent magnet.
The attached shaft end urges in the direction to retract from the workpiece
Continuous detection of the elastic body and the position of the drive shaft during machining
And a position sensor.

【0009】[0009]

【作用】この発明の直動駆動装置においては、片方向の
駆動力の発生を弾性体によって行っているので、従来対
向する1組の電磁石によって行っていた駆動力の発生
、一方の電磁石のみで行うことができ、他方の電磁石
及びそれに付随する装置を省略することができる。ま
た、例えば電磁石に通電していない状態で弾性体と釣り
合うような吸引力を発生する永久磁石を電磁石の磁気回
路に挿入して弾性体の発生力に対抗させることにより、
装置の可動部が静止している際には電磁石に電流を流す
必要がなくなる。さらに、位置センサにより可動鉄心の
位置を連続して検出して電磁石のコイルに流す電流を操
作することにより、所望の位置に容易に制御することが
できる。
In the linear drive device of the present invention , the one-way
Since the generation of driving force by performing an elastic body, the occurrence of a set of driving force which has been performed by the electromagnet to conventional facing, can only be done by hand of an electromagnet, the other electromagnet and devices associated therewith Can be omitted. Also, for example, by inserting a permanent magnet that generates an attractive force that balances with the elastic body in a state in which the electromagnet is not energized, by inserting it into the magnetic circuit of the electromagnet to counter the generated force of the elastic body ,
When the movable part of the apparatus is stationary, there is no need to supply current to the electromagnet . In addition, the position sensor
The position is detected continuously and the current flowing through the coil of the electromagnet is controlled.
By doing so, it can be easily controlled to the desired position
it can.

【0010】[0010]

【実施例】実施例1 以下、この発明の実施例を図について説明する。図1は
この発明の直動駆動装置を用いた高速非円形輪郭切削N
C旋盤用のバイト位置決め用直動駆動装置の構成を示す
一部破断正面図であり、図に於て、1はコイル(電磁
石)、2aおよび2bは磁気回路を構成する円筒状の鉄
(可動鉄心)、3はコイル1への通電により吸引され
る可動鉄心のアマチュア、4は磁気回路に挿入された永
久磁石、5はアマチュア3に固定されたバイト駆動軸
(駆動軸)、6a,6bは弾性体、この場合は板バネ、
7はバイト駆動軸5の移動量を検出する、即ちアマチュ
アの位置を連続して検出する位置センサ、8はバイト
(加工具)、9a,9bは固定部である基台である。
Embodiment 1 An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a high-speed non-circular contour cutting N using the linear drive device of the present invention.
FIG. 2 is a partially cutaway front view showing a configuration of a linear driving device for positioning a cutting tool for a C lathe, where 1 is a coil (electromagnetic);
Stone) , 2a and 2b are cylindrical iron cores (movable iron cores) constituting a magnetic circuit, 3 is an armature of a movable iron core attracted by energizing the coil 1, 4 is a permanent magnet inserted into the magnetic circuit, 5 is Byte drive axis fixed to amateur 3
(Drive shaft) , 6a and 6b are elastic bodies, in this case leaf springs,
Numeral 7 denotes a position sensor for detecting the amount of movement of the bite driving shaft 5, that is, a position sensor for continuously detecting the position of the amateur.
(Processing tool) Reference numerals 9a and 9b denote bases serving as fixing portions.

【0011】次に動作について説明する。バイト駆動軸
5は板バネ6a、6bにより支持されており、その先端
にバイト8が設けられている。電磁石を構成する磁気回
路である鉄心2a,2b、アマチュア3及び永久磁石4
には、コイル1に電流を流していない状態でも、永久磁
石4によって発生する磁束が作用しており、バイト駆動
軸5はこの磁束によりアマチュア3に作用する吸引力
と、板ばね6a,6bによる反力が釣りあった位置で静
止している。この永久磁石4による磁束を強める方向に
コイル1に電流を流せばアマチュア3はさらに吸引され
て、バイト駆動軸5にはバイトを突き出す方向に駆動力
が発生し、この駆動力はコイル1に流す電流につれて大
きくなる。また、電流を逆方向に流して永久磁石4によ
る磁束を弱めれば、バイト駆動軸5には板バネ6a,6
bの反力によりバイト8を引っ込める方向に駆動力が発
生し、この反対方向の駆動力は、永久磁石4により発生
される磁束が完全に打ち消されるまで、即ち磁気回路に
作用する磁束が無くなるまでは、逆方向の電流の大きさ
につれて大きくなる。バイト駆動軸5の移動を位置セン
サ7により連続して検出し、その検出値に基づいてコイ
ル1に流す電流を操作することにより、バイト駆動軸5
を所望の位置に制御することができる。
Next, the operation will be described. The cutting tool drive shaft 5 is supported by leaf springs 6a and 6b, and a cutting tool 8 is provided at the tip. Iron cores 2a and 2b, an armature 3 and a permanent magnet 4, which are magnetic circuits constituting an electromagnet
, The magnetic flux generated by the permanent magnet 4 is acting even when no current is flowing through the coil 1, and the bite drive shaft 5 is caused by the attractive force acting on the armature 3 by the magnetic flux and the leaf springs 6 a and 6 b. It is stationary at the position where the reaction force was caught. If an electric current is applied to the coil 1 in a direction in which the magnetic flux by the permanent magnet 4 is strengthened, the armature 3 is further attracted, and a driving force is generated in the tool driving shaft 5 in a direction in which the tool is protruded. Increases with current. If the current is caused to flow in the reverse direction to weaken the magnetic flux generated by the permanent magnet 4, the cutting tool drive shaft 5 has leaf springs 6a, 6a.
A driving force is generated in the direction of retracting the cutting tool 8 by the reaction force of b, and the driving force in the opposite direction is maintained until the magnetic flux generated by the permanent magnet 4 is completely canceled, that is, until the magnetic flux acting on the magnetic circuit is eliminated. Increases with the magnitude of the current in the reverse direction. The movement of the bite drive shaft 5 is continuously detected by the position sensor 7 , and the current flowing through the coil 1 is controlled based on the detected value, whereby the bite drive shaft 5 is moved.
Can be controlled to a desired position.

【0012】以上の説明から、この実施例による直動駆
動装置は、バイト8を切削対象物に突き出す方向には電
磁石のコイル1に流せる最大電流による吸引力まで、ま
たバイト8を引っ込める方向には、永久磁石4の磁束が
打ち消された状態での板バネ6a,6bの反力の大きさ
までの駆動力を発生させることが出来ることがわかる。
この駆動力の発生範囲をバイト8の突き出し量と併せて
示したのが図2の特性図であり、図に於て縦軸は駆動力
の発生範囲、横軸は突き出し量であり、突き出し量は電
流を流していないときの板バネ6a,6bの自由位置を
0位置とし、アマチュア3の動作限界をSで表わしてい
る。上記の最大電流値はi+maxで表わされ、永久磁石と
釣り合う逆方向の電流値はi-maxで表わされている。駆
動力の発生範囲は突き出し量と電流によって変化し、突
き出し量0の時はF0+からF0-まで、突き出し量Sの時
はFS+からFS-までになる。バイト8、バイト駆動軸5
およびアマチュア3を高速で移動させるのに必要な駆動
力は正負の両方向に同じ大きさの力になるが、切削加工
を行いながら上記の移動を行う場合、加工を行う方向す
なわち加工対象物に対してバイト8を突き出す方向とは
逆方向にに加工反力が作用するため、これを補う必要が
ある。図2に示したように、この発明の直動駆動装置で
は、バイトの可動範囲すなわち突き出し量が0〜Sにお
いて、正方向すなわち切削加工対象物にバイト突き出
方向には可動部を移動するのに必要な力に加えて加工
反力を合わせた駆動力が、負方向即ちバイトを引っ込め
る方向には可動部の移動に必要な駆動力が発生できるよ
う、永久磁石4が発生する磁束による吸引力の大きさを
調整して、発生力範囲を設定してある。このように、こ
の実施例では片方向の駆動力の発生を板バネ6a,6b
によって行うことにより、バイト位置決め用直動駆動装
置に適した発生力特性を得ることができ、従来対向する
1組の電磁石によって行っていた駆動力の発生を、一方
の電磁石のみで行うことができ、もう一方の電磁石及び
それに付随する装置を省略することができる。従って装
置の小型、軽量化が図れる。
From the above description, it is clear that the linear drive device according to the present embodiment has a configuration in which the cutting tool 8 protrudes from the object to be cut up to the attraction force by the maximum current that can flow through the coil 1 of the electromagnet, and the cutting tool 8 in the direction in which the cutting tool 8 is retracted. It can be seen that a driving force up to the magnitude of the reaction force of the leaf springs 6a and 6b in a state where the magnetic flux of the permanent magnet 4 is canceled can be generated.
FIG. 2 is a characteristic diagram showing the generation range of the driving force together with the protrusion amount of the cutting tool 8, in which the vertical axis indicates the generation range of the driving force, the horizontal axis indicates the protrusion amount, and the protrusion amount. Denotes the free position of the leaf springs 6a and 6b when no current is flowing, and the operating limit of the armature 3 is represented by S. The maximum current value described above is represented by i + max , and the current value in the opposite direction that balances with the permanent magnet is represented by i -max . The range of generation of the driving force varies depending on the amount of protrusion and the current. When the amount of protrusion is 0, the driving force ranges from F 0+ to F 0− , and when the amount of protrusion S is from F S + to F S− . Tool 8 and tool drive shaft 5
And the driving force required for the armature 3 to move at high speed becomes the force of the same magnitude in both positive and negative, when performing movement of the while cutting, with respect to the direction i.e. workpiece for machining Is the direction of sticking out byte 8
Since the processing reaction force acts in the opposite direction, it is necessary to compensate for this. As shown in FIG. 2, the linear motion drive system of the present invention, in the movable range i.e. projecting amount of the cutting tool is 0~S, protrudes bytes in the forward direction, that is cutting the object
In the moving direction, in addition to the force required to move the movable part, a driving force that combines the processing reaction force is generated, and in the negative direction, that is, the driving force required to move the movable part in the direction of retracting the cutting tool, The magnitude of the attractive force by the magnetic flux generated by the permanent magnet 4 is adjusted to set the range of the generated force. As described above, in this embodiment, the generation of the driving force in one direction is controlled by the leaf springs 6a, 6b.
By doing so, it is possible to obtain a generated force characteristic suitable for a linear drive device for positioning a cutting tool, and it is possible to generate a driving force, which was conventionally performed by a pair of electromagnets facing each other, with only one electromagnet. The other electromagnet and its associated devices can be omitted. Therefore, the size and weight of the device can be reduced.

【0013】また図2に示すように、この発明の直動駆
動装置では板バネ6a,6bのバネ定数を適切に選ぶこ
とにより、電流0の時に永久磁石が発生する吸引力を極
力板バネで打ち消すようにして、切削加工を行わないと
きのバイト8先端の位置決めを行うときにコイル1に流
れる電流を小さくすることができ、消費電力を小さくす
ることが出来る。
As shown in FIG. 2, in the linear drive device of the present invention, by appropriately selecting the spring constants of the leaf springs 6a and 6b, the attractive force generated by the permanent magnet when the current is 0 is minimized by the leaf spring. The current flowing through the coil 1 can be reduced when the tip of the cutting tool 8 is positioned when cutting is not performed, so that the power consumption can be reduced.

【0014】[0014]

【発明の効果】以上のように、この発明によれば、加工
具を直動させて加工対象物に導く直動駆動装置であっ
て、加工時に加工対象物から加工具に対する強い反力が
生じ、この反力に対抗するとともに加工対象物を加工す
るために、加工具を加工対象物に導く方向に大きな駆動
力を必要とする加工条件で使用される直動駆動装置にお
いて、可動鉄心に固定され、少なくとも一方の軸端に加
工具を装着する駆動軸と、可動鉄心を駆動して、駆動軸
の加工具を装着した軸端が加工対象物側に突出する方向
に附勢する電磁石と、電磁石の磁路中に配設され、駆動
軸の加工具を装着した軸端が加工対象物側に突出する方
向に附勢する永久磁石と、駆動軸を保持して、永久磁石
の附勢力を打ち消すように駆動軸の加工具を装着した軸
端が加工対象物側から後退する方向に附勢する弾性体
と、加工時における駆動軸の位置を連続して検出する位
置センサとを備えたので、加工具を装着した軸端を加工
対象物から後退させる方向に駆動軸を駆動させる電磁石
を省略し、駆動軸を位置センサで連続して位置検出する
ことで加工具を装着した軸端を加工対象物に導く方向に
駆動軸の位置調整ができ、さらに、この方向に大きな駆
動力を与えることができる、小型、軽量、低消費電力の
直動駆動装置を得ることができる。
As described above, according to the present invention, the processing
Linear drive device that moves the tool linearly and guides it to the workpiece.
When processing, a strong reaction force from the workpiece to the processing tool
And counteract this reaction force and process the workpiece.
Large drive in the direction to guide the processing tool to the workpiece
For linear motion drives used under processing conditions that require force
And is fixed to the movable iron core, and is attached to at least one shaft end.
Drive shaft for mounting the tool and drive shaft for driving the movable iron core
Direction in which the shaft end with the processing tool attached protrudes toward the workpiece
An electromagnet that energizes the
When the shaft end with the shaft processing tool protrudes toward the workpiece
And a permanent magnet holding the drive shaft.
Shaft equipped with a drive shaft processing tool to cancel the biasing force of
Elastic body whose end is biased in the direction of retreating from the workpiece
And the position to continuously detect the position of the drive shaft during machining.
With a position sensor, the shaft end with the processing tool can be machined.
An electromagnet that drives the drive shaft in a direction to retract from the target
Is omitted, and the position of the drive shaft is detected continuously by the position sensor.
In the direction that guides the shaft end with the processing tool to the workpiece
The position of the drive shaft can be adjusted.
Powerful, small, lightweight, low power consumption
A linear drive can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施例のバイト位置決め用直動駆
動装置の構成を示す一部破断正面図である。
FIG. 1 is a partially cutaway front view showing a configuration of a bite positioning linear drive device according to an embodiment of the present invention.

【図2】この発明の一実施例の直動駆動装置の駆動力発
生範囲を示す特性図である。
FIG. 2 is a characteristic diagram showing a driving force generation range of the linear drive device according to one embodiment of the present invention.

【図3】従来の直動駆動装置の構成を示す概略斜視図で
ある。
FIG. 3 is a schematic perspective view showing a configuration of a conventional linear drive device.

【符号の説明】[Explanation of symbols]

1 コイル(電磁石) 2a 円筒状の鉄心 2b 円筒状の鉄心 3 可動鉄心のアマチュア 4 永久磁石 6a 弾性体の板バネ(弾性体) 6b 弾性体の板バネ(弾性体)  1 coil(electromagnet)  2a cylindrical iron core 2b cylindrical iron core 3 armature armature 4 permanent magnet 6a elastic leaf spring(Elastic body)  6b Elastic leaf spring(Elastic body)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 加工具を直動させて加工対象物に導く直
動駆動装置であって、加工時に上記加工対象物から上記
加工具に対する強い反力が生じ、この反力に対抗すると
ともに上記加工対象物を加工するために、上記加工具を
上記加工対象物に導く方向に大きな駆動力を必要とする
加工条件で使用される直動駆動装置において、 可動鉄心に固定され、少なくとも一方の軸端に上記加工
具を装着する駆動軸と、上記可動鉄心を駆動して上記駆
動軸の上記加工具を装着した軸端が上記加工対象物側に
突出する方向に附勢する電磁石と、上記電磁石の磁路中
に配設され上記駆動軸の上記加工具を装着した軸端が
上記加工対象物側に突出する方向に附勢する永久磁石
と、上記駆動軸を保持して上記永久磁石の附勢力を打
ち消すように上記駆動軸の上記加工具を装着した軸端が
上記加工対象物側から後退する方向に附勢する弾性体
と、加工時における上記駆動軸の位置を連続して検出す
る位置センサとを備えたことを特徴とする直動駆動装
置。
(1)Directly moving the processing tool to guide it to the workpiece
A dynamic drive device, which is configured to perform the
When a strong reaction force is generated against the processing tool,
In order to process the above workpiece together,
Requires a large driving force in the direction leading to the workpiece
In a linear drive used under processing conditions,  Fixed to the armature core, The above processing on at least one shaft end
Attach the toolDrive the drive shaft and the movable iron core to
Moving axisThe above processing tool was attachedShaft endOn the above workpiece
An electromagnet biasing in a protruding direction, and
Located in,Drive shaft aboveThe above processing tool was attachedShaft end
On the above workpiecePermanent magnet that urges in the projecting direction
And holding the drive shaft,Hit the urging force of the permanent magnet
ExtinguishlikeDrive shaft aboveThe above processing tool was attachedShaft end
From the above workpieceEnergize in the retreat directionDoElastic body
When,During processingThe position of the drive shaftContinuouslyDetect
Linear drive device, comprising:
Place.
JP03064634A 1991-03-28 1991-03-28 Linear drive Expired - Fee Related JP3093299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03064634A JP3093299B2 (en) 1991-03-28 1991-03-28 Linear drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03064634A JP3093299B2 (en) 1991-03-28 1991-03-28 Linear drive

Publications (2)

Publication Number Publication Date
JPH04315543A JPH04315543A (en) 1992-11-06
JP3093299B2 true JP3093299B2 (en) 2000-10-03

Family

ID=13263899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03064634A Expired - Fee Related JP3093299B2 (en) 1991-03-28 1991-03-28 Linear drive

Country Status (1)

Country Link
JP (1) JP3093299B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6121081A (en) * 1994-11-15 2000-09-19 Micron Technology, Inc. Method to form hemi-spherical grain (HSG) silicon
IT249658Y1 (en) * 2000-01-31 2003-05-28 Balance Systems Spa SUPPORT AND GUIDE DEVICE FOR SMALL MACHINE TOOLS, IN PARTICULAR FOR ROTATING MASS BALANCING MACHINES
JP2011045960A (en) * 2009-08-27 2011-03-10 Ntn Corp Spindle device with chuck and method for gripping object to be gripped
JP5899537B2 (en) * 2011-07-19 2016-04-06 株式会社 神崎高級工機製作所 Linear actuator and boring machine

Also Published As

Publication number Publication date
JPH04315543A (en) 1992-11-06

Similar Documents

Publication Publication Date Title
US7901167B2 (en) Machining apparatus with mechanism for retaining axial position of guide member
EP1785217B1 (en) Machining apparatus
EP1548819A4 (en) Precision processing stage apparatus
CN113814431B (en) Steel wire driving type variable-rigidity damping boring rod
JP3765316B2 (en) Stud welding equipment
JP3093299B2 (en) Linear drive
CN111181344B (en) Swing type surface micro cold forging device
EP0792005A1 (en) Linear motor driving type feeding device
US6215085B1 (en) Stud welding device
US5816385A (en) Magnetic conveying device with non-magnetic guide rails
JPH01306660A (en) Method and apparatus for operating needle selection latch of knitting machine
US4847726A (en) Magnetic actuator
CN113794347B (en) Linear oscillating motor
CN101386142A (en) Double freedom degree high-frequency ultra precision cutting tool servo device based on changed magnetic flux
JP4126861B2 (en) Cutout material takeout device for wire electric discharge machine
JP3542508B2 (en) Feed mechanism for electric discharge machining
JP3318701B2 (en) Spindle tool clamping device for machine tools
JPS63164135A (en) Driver for working piece
JP3361984B2 (en) Protection device for linear motor drive
CN201333635Y (en) Two-freedom-degree ultrahigh frequency response ultra-precision cutting tool servo device based on variable flux
JP2004066416A (en) Tool driving device and machining device
SU1704929A1 (en) Device for turning of end surfaces of non-rigid hollow articles
JP2635378B2 (en) Non-circular cutting equipment
JPH07156091A (en) Linear actuator
JPS62102475A (en) Card reciprocating drive device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees