JPH04315120A - Light source for microscope - Google Patents

Light source for microscope

Info

Publication number
JPH04315120A
JPH04315120A JP8227391A JP8227391A JPH04315120A JP H04315120 A JPH04315120 A JP H04315120A JP 8227391 A JP8227391 A JP 8227391A JP 8227391 A JP8227391 A JP 8227391A JP H04315120 A JPH04315120 A JP H04315120A
Authority
JP
Japan
Prior art keywords
laser
semiconductor laser
light
disk
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8227391A
Other languages
Japanese (ja)
Inventor
Yoshiaki Mizoo
溝尾 嘉章
Yoichi Sasai
佐々井 洋一
Hiroshi Yoda
養田 広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8227391A priority Critical patent/JPH04315120A/en
Publication of JPH04315120A publication Critical patent/JPH04315120A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a sharp image having no speckle noise by using laser light whose interference is reduced by superposing a sine wave, etc., of high frequency on a DC input to a laser. CONSTITUTION:For the measurement of a fine shape on a disk 9 which is rotated by a motor 8 at a high speed, a semiconductor laser 1 emits light, which is reflected by a half-mirror 4 and focused on the disk 9 through an objective 5. Its image is photographed by a video camera 6 and observed on a monitor 7. A synchronizing circuit 10 extracts a synchronizing signal from the rotation of the motor 8 so as to obtain a still image on the disk 9. A delay circuit 11 obtains signal which is a constant time delayed behind the synchronizing signal so as to observe an optional point on the disk 9. Then an RF superposing circuit 2 obtains an RF output which is inputted as an input signal to the semiconductor laser 1. Further, the RF-superposed light from the semiconductor laser 1 is passed through an optical fiber or aspherical lens, etc., to disorder the phase of the laser light.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、顕微鏡に用いる光源に
関するものであり、特に高速に移動する被写体を撮影す
るのに適した光源に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light source used in a microscope, and particularly to a light source suitable for photographing a subject moving at high speed.

【0002】0002

【従来の技術】従来、高速に移動する被写体を顕微鏡で
撮影するには、ストロボが用いられていた。特に周期的
運動を行なっている物体に、ストロボ光を当て、物体の
運動周期とパルス光の周期が一致すると、物体は静止し
ているように見える。また、両者に差があると、実際の
動きよりおそいスローモーション像として観察される。 このストロボ光を、顕微鏡用光源に用いるとモータの回
転、磁壁の移動といった微少な物体の高速な変化が観察
できる。
2. Description of the Related Art Conventionally, a strobe light has been used to photograph a subject moving at high speed using a microscope. In particular, when a strobe light is applied to an object that is moving periodically, and the period of the object's movement matches the period of the pulsed light, the object appears to be at rest. Furthermore, if there is a difference between the two, the image will be observed as a slow motion image that is slower than the actual movement. When this strobe light is used as a light source for a microscope, it is possible to observe high-speed changes in minute objects such as the rotation of a motor or the movement of a domain wall.

【0003】0003

【発明が解決しようとする課題】近年の電子機器の進歩
に伴い数MHzから数GHzといった非常に高速に変化
する物体を観察したいというニーズが増えてきた。しか
し、ストロボはコンデンサに電荷をためて、発光させる
ため1μs以下の周期的な発光が難しい。すなわち発光
周期が早くなると、電荷が十分たまらないため光量が落
ち、光量をおおきくするため大電力の光源を用いると、
大きなスパークノイズが発生し、周辺の回路系に重大な
悪影響をもたらすといった問題が発生していた。
[Problems to be Solved by the Invention] With the recent progress in electronic equipment, there has been an increasing need to observe objects that change at extremely high speeds, such as from several MHz to several GHz. However, strobes store electric charge in a capacitor and emit light, so it is difficult to emit light periodically for less than 1 μs. In other words, when the light emission period becomes faster, the amount of light decreases because the charge cannot be accumulated sufficiently, and if a high-power light source is used to increase the amount of light,
The problem was that large spark noise was generated, which had a serious negative effect on the surrounding circuitry.

【0004】また、光源にレーザを用いたレーザ顕微鏡
は、レーザ光の干渉によるスペックルノイズを避けるた
め、共焦点光学を用いている。この方式だと、スペック
ルノイズは減るが、光を音響光学素子等を用いて走査す
るため高速の面測定ができない。レーザ光源の中でも、
半導体レーザは、1MHz以上の高周波の矩形波駆動に
対応でき、高速に変化する物体を静止画像として観察す
るのに適した光源であるが単にレーザ光を光源として用
いて白色光に置き換え、面状態の観察を行うと上述した
ように、レーザ光の時間的、空間的コヒーレンスのため
、白黒のまだら模様であるスペックルノイズが発生し、
対象物の測定ができない。これは、光学系間の干渉、ゴ
ミ、あるいは測定物体の持つ表面粗度によって起こる、
レーザ光特有の本質的な問題である。
Further, a laser microscope using a laser as a light source uses confocal optics to avoid speckle noise caused by interference of laser light. Although this method reduces speckle noise, it cannot perform high-speed surface measurements because the light is scanned using an acousto-optic device or the like. Among laser light sources,
Semiconductor lasers are compatible with high-frequency rectangular wave drive of 1 MHz or higher, and are suitable light sources for observing rapidly changing objects as still images. As mentioned above, speckle noise, which is a mottled black and white pattern, occurs due to the temporal and spatial coherence of the laser light.
Unable to measure object. This is caused by interference between optical systems, dust, or surface roughness of the measurement object.
This is an essential problem unique to laser light.

【0005】[0005]

【課題を解決するための手段】上記問題点を解決するた
め本発明の顕微鏡用光源は、レーザへのDC入力に高い
周波数のサイン波等を重畳して干渉性を低減したレーザ
光を用いることを特徴とするものである。
[Means for Solving the Problems] In order to solve the above problems, the light source for a microscope of the present invention uses a laser beam whose coherence is reduced by superimposing a high frequency sine wave or the like on the DC input to the laser. It is characterized by:

【0006】[0006]

【作用】本発明は上記した構成によりスペクトルがサイ
ドバンドをもつために、レーザー光のコヒーレンスが著
しく低下し、スペックルノイズのない鮮明な画像が得ら
れる。
[Operation] In the present invention, since the spectrum has sidebands due to the above-described configuration, the coherence of the laser beam is significantly reduced, and a clear image without speckle noise can be obtained.

【0007】[0007]

【実施例】以下本発明の一実施例の顕微鏡用光源につい
て、図面を参照しながら説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A light source for a microscope according to an embodiment of the present invention will be described below with reference to the drawings.

【0008】(図1)は、本発明の一実施例の顕微鏡用
光源を用いた測定装置の構成例である。(図2)は、(
図1)の要部の信号波形を示す図である。(図1)にお
いて1は半導体レーザ、2はRF重畳回路、3はパルス
ジェネレータ、4はハーフミラー、5は対物レンズ、6
はビデオカメラ、7はモニター、8はモータ、9はモー
タによって回転される円盤、10は同期回路、11は遅
延回路である。(図2)において、(a)はモータの同
期信号出力、(b)は遅延回路出力、(c)はパルスジ
ェネレータ出力、(d)はRF重畳回路出力である。
FIG. 1 shows an example of the configuration of a measuring device using a light source for a microscope according to an embodiment of the present invention. (Figure 2) is (
FIG. 2 is a diagram showing signal waveforms of main parts of FIG. 1). (Fig. 1), 1 is a semiconductor laser, 2 is an RF superimposition circuit, 3 is a pulse generator, 4 is a half mirror, 5 is an objective lens, 6
1 is a video camera, 7 is a monitor, 8 is a motor, 9 is a disk rotated by the motor, 10 is a synchronization circuit, and 11 is a delay circuit. In FIG. 2, (a) is the motor synchronization signal output, (b) is the delay circuit output, (c) is the pulse generator output, and (d) is the RF superimposition circuit output.

【0009】半導体レーザー1としては波長780nm
、出力40mWのものを用いた。用いる半導体レーザは
、用いるビデオカメラの持つ波長特性、観察したい対象
物が何かによって青色レーザから赤外レーザまで適当な
波長と出力の半導体レーザを選べば良い。ガスレーザ等
はRF重畳することによりスペクトルが広がらない、発
信が安定しない等の理由で適当でない。RF重畳回路は
矩形波パルスに800MHzのサイン波が重畳できる回
路である。RF周波数は矩形波の周波数より高周波であ
れば良く、100MHzから10GHzが適当である。 ビデオカメラ6を用いたのは、肉眼で半導体レーザ光の
測定を行うのは危険なためである。モータ8は毎分45
00回転で回転しているものに直径12.5cmの円盤
9を取り付けた。
The semiconductor laser 1 has a wavelength of 780 nm.
, with an output of 40 mW was used. The semiconductor laser to be used may be selected from a blue laser to an infrared laser with an appropriate wavelength and output depending on the wavelength characteristics of the video camera used and the object to be observed. Gas lasers and the like are not suitable because the spectrum does not expand due to RF superimposition and the transmission is unstable. The RF superimposition circuit is a circuit that can superimpose an 800 MHz sine wave on a rectangular wave pulse. The RF frequency may be higher than the frequency of the rectangular wave, and 100 MHz to 10 GHz is suitable. The video camera 6 was used because it is dangerous to measure semiconductor laser light with the naked eye. Motor 8 is 45 per minute
A disk 9 with a diameter of 12.5 cm was attached to the device rotating at 00 rpm.

【0010】モータ8によって高速に回転する円盤9上
の微少な形状を測定するため、半導体レーザ1を発光さ
せハーフミラー4で反射させ、対物レンズ5で円盤上に
焦点を合わせる。その像をビデオカメラ6で撮影し、モ
ニター7で観察する。円盤上の静止画像を得るため、モ
ータの回転から同期回路10で同期信号(図2a)を取
り出す。そして遅延回路11で円盤9の任意の点を観察
するため、モータの同期信号よりΔtだけ時間を遅らし
た遅延信号(図2b)を得る。そして、パルスジェネレ
ータ3で静止画像を得るための発光時間であるパルス幅
t1を決め、整形した出力信号(図2c)を得る。出力
にDCバイアスをかけてもよい。本実施例では100n
sの発光時間とした。そしてRF重畳回路2により、半
導体レーザの入力信号となるRF出力(図2d)を得る
。本発明ではRF周波数を800MHzとした。これに
よりサイドバンドの広がったレーザ発光が得られる。 通常半導体レーザの半値幅は0.5nm以下であるがR
F重畳をかけることにより5nm程度に広げることがで
きる。これにより、周波数的にコヒーレンスが落ち、ス
ペックルノイズの少ない面画像を得ることができた。従
来のストロボ法ではこのような、短時間のパルス幅の設
定はできず、パルス幅が長いと画像が流れて不鮮明にな
る。
In order to measure minute shapes on a disk 9 that is rotated at high speed by a motor 8, a semiconductor laser 1 emits light, is reflected by a half mirror 4, and is focused onto the disk by an objective lens 5. The image is photographed with a video camera 6 and observed on a monitor 7. In order to obtain a still image on the disk, a synchronization signal (FIG. 2a) is extracted from the rotation of the motor using a synchronization circuit 10. Then, in order to observe an arbitrary point on the disk 9 using the delay circuit 11, a delayed signal (FIG. 2b) which is delayed by Δt from the motor synchronization signal is obtained. Then, the pulse width t1, which is the light emission time for obtaining a still image, is determined by the pulse generator 3, and a shaped output signal (FIG. 2c) is obtained. A DC bias may be applied to the output. In this example, 100n
The luminescence time was set to s. Then, the RF superimposition circuit 2 obtains an RF output (FIG. 2d) which becomes an input signal to the semiconductor laser. In the present invention, the RF frequency is 800 MHz. As a result, laser emission with widened sidebands can be obtained. Normally, the half-width of a semiconductor laser is less than 0.5 nm, but R
By applying F superimposition, it can be expanded to about 5 nm. This reduced coherence in terms of frequency, making it possible to obtain a surface image with less speckle noise. With conventional strobe methods, it is not possible to set such short pulse widths; if the pulse width is long, the image will blur and become unclear.

【0011】さらに、コヒーレンスを落とすためには、
半導体レーザから出たRF重畳されて出た光を音響光学
素子(A0素子)、回転式ハーフミラー、回転式プリズ
ム等を用いて光軸を走査することにより、さらに空間変
調をかけることができる。これにより、さらにスペック
ルノイズを低減させることができる。
Furthermore, in order to reduce coherence,
Spatial modulation can be further applied by scanning the optical axis of the RF-superimposed light emitted from the semiconductor laser using an acousto-optic element (A0 element), a rotating half mirror, a rotating prism, or the like. Thereby, speckle noise can be further reduced.

【0012】また、半導体レーザから出たRF重畳され
た光を光ファイバーあるいは非球面レンズ等を通過させ
ることによりレーザ光の位相を乱すことができる。すな
わち、レーザ光に位相変調をかけることができる。この
方法によっても、さらにスペックルノイズを低減するこ
とが可能である。
Furthermore, the phase of the laser beam can be disturbed by passing the RF-superimposed light emitted from the semiconductor laser through an optical fiber or an aspherical lens. That is, phase modulation can be applied to laser light. This method also makes it possible to further reduce speckle noise.

【0013】さらに、音響光学素子等による空間変調と
光ファイバー等による位相変調を併用しても良い。
Furthermore, spatial modulation using an acousto-optic element or the like and phase modulation using an optical fiber or the like may be used together.

【0014】半導体レーザのパルス幅は狭い程、画像が
鮮明になるが、あまり狭いと十分な光量が得られない。 物体の変化速度にもよるがパルス幅は10μs以下が良
く、望ましくは1μs以下である。これより長くなると
、画像がぼけてくる。また多重するRF周波数は、その
逆数が半導体レーザの半値幅を決める。あまり低いと十
分コヒーレンスを落とすことができないため100MH
z以上が良く、望ましくは800MHz以上である。
The narrower the pulse width of the semiconductor laser, the clearer the image, but if it is too narrow, a sufficient amount of light cannot be obtained. Although it depends on the rate of change of the object, the pulse width is preferably 10 μs or less, preferably 1 μs or less. If it is longer than this, the image will become blurred. Further, the reciprocal of the multiplexed RF frequency determines the half-width of the semiconductor laser. If it is too low, the coherence cannot be reduced sufficiently, so 100MH
z or higher, preferably 800 MHz or higher.

【0015】矩形波パルスにサイン波を重畳する例につ
いて説明したが、レーザ光のコヒーレンスを落とすため
三角波、サイン2乗波等が用いられても有効なことは言
うまでもない。
Although an example in which a sine wave is superimposed on a rectangular wave pulse has been described, it goes without saying that it is also effective to use a triangular wave, a sine square wave, etc. to reduce the coherence of the laser beam.

【0016】以上、半導体レーザを用いてRF重畳する
事により、高速に回転する物体の顕微鏡画像を得る方法
に付いて述べたが、磁壁の移動といった微小で高速な現
象の観測に、本発明が用いられることは言うまでもない
[0016] Above, a method for obtaining a microscopic image of a rapidly rotating object by RF superimposition using a semiconductor laser has been described, but the present invention is also useful for observing minute and high-speed phenomena such as movement of domain walls. Needless to say, it is used.

【0017】[0017]

【発明の効果】以上詳述したように、本発明の顕微鏡光
源を用いることにより、微少な物体の高速な運動が観察
できるようになり、極めて産業上の利用価値が高いもの
である。
As described in detail above, by using the microscope light source of the present invention, it becomes possible to observe the high-speed motion of minute objects, and the microscope light source has extremely high industrial utility value.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】レーザ光による顕微鏡用光源を用いた測定装置
の構成図
[Figure 1] Configuration diagram of a measuring device using a laser light source for a microscope

【図2】信号波形を示す図 (a)  モータの同期信号出力 (b)  遅延回路出力 (c)  パルスジェネレータ出力 (d)  RF重畳回路出力[Figure 2] Diagram showing signal waveforms (a) Motor synchronous signal output (b) Delay circuit output (c) Pulse generator output (d) RF superimposition circuit output

【符号の説明】[Explanation of symbols]

1  半導体レーザ 2  RF重畳回路 3  パルスジェネレータ 4  ハーフミラー 5  対物レンズ 6  ビデオカメラ 7  モニター 8  モータ 9  モータによって回転される円盤 10  同期回路 11  遅延回路 1 Semiconductor laser 2 RF superimposition circuit 3 Pulse generator 4 Half mirror 5 Objective lens 6 Video camera 7 Monitor 8 Motor 9 Disc rotated by a motor 10 Synchronous circuit 11 Delay circuit

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】  干渉性を低減したレーザ光を用いるこ
とを特徴とする顕微鏡用光源。
1. A light source for a microscope, characterized in that it uses a laser beam with reduced coherence.
【請求項2】  半導体レーザーへの入力電圧を周波数
多重することによってレーザーの干渉性を低減すること
を特徴とする請求項1記載の顕微鏡用光源。
2. The light source for a microscope according to claim 1, wherein the laser coherence is reduced by frequency multiplexing the input voltage to the semiconductor laser.
【請求項3】  半導体レーザから出た光を音響光学素
子によって空間変調することを特徴とする請求項2記載
の顕微鏡用光源。
3. The light source for a microscope according to claim 2, wherein the light emitted from the semiconductor laser is spatially modulated by an acousto-optic element.
【請求項4】  半導体レーザから出た光を光ファイバ
ー、非球面レンズ等透過能を有する光学素子を通過させ
ることにより位相変調することを特徴とする請求項2記
載の顕微鏡用光源。
4. The light source for a microscope according to claim 2, wherein the light emitted from the semiconductor laser is phase-modulated by passing through an optical element having a transmittance such as an optical fiber or an aspherical lens.
【請求項5】  半導体レーザのパルス幅が10μs以
下であり、多重させる高周波が、100MHz以上であ
ることを特徴とする請求項2記載の顕微鏡用光源。
5. The light source for a microscope according to claim 2, wherein the pulse width of the semiconductor laser is 10 μs or less, and the high frequency to be multiplexed is 100 MHz or more.
JP8227391A 1991-04-15 1991-04-15 Light source for microscope Pending JPH04315120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8227391A JPH04315120A (en) 1991-04-15 1991-04-15 Light source for microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8227391A JPH04315120A (en) 1991-04-15 1991-04-15 Light source for microscope

Publications (1)

Publication Number Publication Date
JPH04315120A true JPH04315120A (en) 1992-11-06

Family

ID=13769882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8227391A Pending JPH04315120A (en) 1991-04-15 1991-04-15 Light source for microscope

Country Status (1)

Country Link
JP (1) JPH04315120A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996038757A1 (en) * 1995-06-02 1996-12-05 Matsushita Electric Industrial Co., Ltd. Optical device, laser beam source, laser apparatus and method of producing optical device
JP2001189520A (en) * 1999-12-28 2001-07-10 Sony Corp Light source device and projection type display using the same
GB2368743A (en) * 2000-08-28 2002-05-08 Leica Microsystems Method for reducing interference by decreasing laser coherence in a confocal scanning microscope.
JP2009511998A (en) * 2005-10-17 2009-03-19 アリックス インク Apparatus and method for detecting cell deformability using spatially modulated optical force microscopy

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7382811B2 (en) 1995-06-02 2008-06-03 Matsushita Electric Industrial Co., Ltd. Optical device, laser beam source, laser apparatus and method of producing optical device
US6333943B1 (en) 1995-06-02 2001-12-25 Matsushita Electric Industrial Co., Ltd. Optical device, laser beam source, laser apparatus and method of producing optical device
US6914918B2 (en) 1995-06-02 2005-07-05 Matsushita Electric Industrial Co., Ltd. Optical device, laser beam source, laser apparatus and method of producing optical device
US7101723B2 (en) 1995-06-02 2006-09-05 Matsushita Electric Industrial Co., Ltd. Optical device, laser beam source, laser apparatus and method of producing optical device
US7295583B2 (en) 1995-06-02 2007-11-13 Matsushita Electric Industrial Co., Ltd. Optical device, laser beam source, laser apparatus and method of producing optical device
US7339960B2 (en) 1995-06-02 2008-03-04 Matsushita Electric Industrial Co., Ltd. Optical device, laser beam source, laser apparatus and method of producing optical device
WO1996038757A1 (en) * 1995-06-02 1996-12-05 Matsushita Electric Industrial Co., Ltd. Optical device, laser beam source, laser apparatus and method of producing optical device
US7570677B2 (en) 1995-06-02 2009-08-04 Panasonic Corporation Optical device, laser beam source, laser apparatus and method of producing optical device
US7623559B2 (en) 1995-06-02 2009-11-24 Panasonic Corporation Optical device, laser beam source, laser apparatus and method of producing optical device
JP2001189520A (en) * 1999-12-28 2001-07-10 Sony Corp Light source device and projection type display using the same
GB2368743A (en) * 2000-08-28 2002-05-08 Leica Microsystems Method for reducing interference by decreasing laser coherence in a confocal scanning microscope.
GB2368743B (en) * 2000-08-28 2003-03-26 Leica Microsystems Method of illuminating an object with laser light
JP2009511998A (en) * 2005-10-17 2009-03-19 アリックス インク Apparatus and method for detecting cell deformability using spatially modulated optical force microscopy

Similar Documents

Publication Publication Date Title
US4136950A (en) Microscope system for observing moving particles
Sato et al. Study of intrinsic localized vibrational modes in micromechanical oscillator arrays
Wang et al. Speckle reduction in laser projections with ultrasonic waves
JP2003021800A (en) Projection type display device
JPWO2005083492A1 (en) Illumination light source and two-dimensional image display apparatus using the same
JP2004528586A (en) Method and apparatus for high-speed image formation of an object using an interference microscope
JP2001159510A (en) Three-dimensional shape measuring method and its device
JPH04315120A (en) Light source for microscope
Anderson et al. Electronic speckle pattern interferometry using diode lase stroboscopic illumination
Tyrer Critical review of recent developments in electronic speckle pattern interferometry
US4913550A (en) Interferometric measurement method and apparatus
JP2004177225A (en) Device and method for measuring dynamic shape and dynamic position simultaneously
JP2001004338A (en) Real time shape deformation measuring method
Moore et al. Fringe visibility enhancement and phase calculation in double-pulsed addition ESPI
JPH11271626A (en) Scanning type laser microscope
JP3113364B2 (en) Scanning optical inspection equipment
Doval et al. Contrast enhanced and phase controlled stroboscopic additive fibre optic TV-holography for whole field out-of-plane vibration analysis
JPS62298707A (en) Optical inspection method
JP2001117010A (en) Optical device
US4934815A (en) Aperture sampling coherence sensor and method
JPH01100491A (en) Laser radar image former
CA1153818A (en) Versatile microsecond multiple framing camera
JP3693767B2 (en) Shape measuring instrument
JPS63307374A (en) Laser visual sensor
JPH0527178A (en) Microscope observation device