JPH04314757A - Polyimide resin for laser processing - Google Patents

Polyimide resin for laser processing

Info

Publication number
JPH04314757A
JPH04314757A JP3066409A JP6640991A JPH04314757A JP H04314757 A JPH04314757 A JP H04314757A JP 3066409 A JP3066409 A JP 3066409A JP 6640991 A JP6640991 A JP 6640991A JP H04314757 A JPH04314757 A JP H04314757A
Authority
JP
Japan
Prior art keywords
polyimide resin
laser
processing
laser processing
aromatic polycyclic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3066409A
Other languages
Japanese (ja)
Other versions
JP2919106B2 (en
Inventor
Keiko Ito
伊藤 慶子
Masami Inoue
井上 正巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3066409A priority Critical patent/JP2919106B2/en
Publication of JPH04314757A publication Critical patent/JPH04314757A/en
Application granted granted Critical
Publication of JP2919106B2 publication Critical patent/JP2919106B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain a polyimide resin for laser processing which is relatively inexpensive and is capable of fine, high aspect ratio and low-damage processing even by use of a long-wavelength laser by dispersing an aromatic polycyclic compound into the polyimide resin. CONSTITUTION:A polyimide resin is produced from an acid anhydride such as pyromellitic dianhydride and a diamine such as diaminodiphenyl ether. During or after producing the resin, an aromatic polycyclic compound is added and dispersed to produce a polyimide resin for laser processing. The aromatic polycyclic compound includes, for example, naphthalene, anthracene, pyrene and phthalocyanine and its effect generally increases as the number of the rings increases. By using the obtained polyimide resin, finer, higher aspect ratio and higher-quality processing than the conventional one can be performed even when using a short-wavelength laser, while fine processing can be performed even when using a long wavelength laser.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明はレーザ加工用のポリイ
ミド樹脂に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a polyimide resin for laser processing.

【0002】0002

【従来の技術】図4(a)〜(b)は例えば刊行物{J
.Electrochem.Soc.,Oct.(19
90) p2522−2527}に示されている従来の
ポリイミド樹脂の除去加工方法を工程順に示す工程図で
あり、各々光照射{図4(a)}、現像{図4(b)}
、パターニングまたは穴形成{図4(c)}および加熱
{図4(d)}工程を示す。図において、2は下地材料
、5はマスク、7は加工穴、11はポリイミド樹脂、1
2は感光性ポリイミド前駆体、13は架橋部、14は光
源、15は光、16は現像液である。
[Prior Art] FIGS. 4(a) and 4(b) are shown, for example, in the publication {J
.. Electrochem. Soc. , Oct. (19
90) This is a process diagram showing the conventional polyimide resin removal processing method shown in pages 2522-2527 in the order of steps, including light irradiation {Figure 4(a)} and development {Figure 4(b)}.
, shows the patterning or hole formation {FIG. 4(c)} and heating {FIG. 4(d)} steps. In the figure, 2 is the base material, 5 is the mask, 7 is the processed hole, 11 is the polyimide resin, 1
2 is a photosensitive polyimide precursor, 13 is a crosslinking part, 14 is a light source, 15 is light, and 16 is a developer.

【0003】即ち、感光性が付与されたポリイミド前駆
体12に水銀ランプなどの光源14から光15を照射し
、照射部13のみを架橋させることにより、現像液16
に対する溶解速度を低下させ、光がマスク5により遮蔽
された部分を選択的に除去する。しかる後に感光性が付
与されたポリイミド前駆体12は、加熱処理により通常
のポリイミド樹脂11の構成をなす。
That is, a polyimide precursor 12 imparted with photosensitivity is irradiated with light 15 from a light source 14 such as a mercury lamp, and only the irradiated portion 13 is crosslinked, thereby forming a developer 16.
The dissolution rate of the mask 5 is reduced, and the light is selectively removed from the portions blocked by the mask 5. Thereafter, the polyimide precursor 12 imparted with photosensitivity forms the structure of a normal polyimide resin 11 by heat treatment.

【0004】また図5(a)、(b)は例えば刊行物{
Proceedings  of  LAMP  ’8
7  Osaka(May  1987) p581−
584}などに示された従来のポリイミド樹脂の除去加
工方法を工程順に示す工程図であり、各々レーザ照射{
図5(a)}およびパターニングまたは穴形成{図5(
b)}工程を示す。図において3はレーザ、4はレーザ
光、6はレンズである。
Furthermore, FIGS. 5(a) and 5(b) are, for example, publications {
Proceedings of LAMP '8
7 Osaka (May 1987) p581-
584} is a process diagram showing the conventional polyimide resin removal processing method shown in the process order, and each laser irradiation {
Figure 5(a)} and patterning or hole formation {Figure 5(a)} and patterning or hole formation {Figure 5(a)
b)} Shows the process. In the figure, 3 is a laser, 4 is a laser beam, and 6 is a lens.

【0005】即ち、レーザ3から照射されたレーザ光4
はマスク5とレンズ6を用いてポリイミド樹脂11に縮
小転写され、レーザのエネルギー密度がポリイミド樹脂
11を除去するのに十分であればパターニングや穴形成
などの除去加工が達成される。また図5におけるポリイ
ミド樹脂11は、例えば刊行物{POLYIMIDES
Blackie(1990)p2−8}などに示された
従来のポリイミド樹脂の構成からなり、下記の化学式1
によって合成される。
That is, the laser beam 4 irradiated from the laser 3
is reduced and transferred onto the polyimide resin 11 using a mask 5 and a lens 6, and if the energy density of the laser is sufficient to remove the polyimide resin 11, removal processing such as patterning and hole formation is achieved. Moreover, the polyimide resin 11 in FIG.
Blackie (1990) p2-8}, etc., and has the following chemical formula 1.
is synthesized by

【0006】[0006]

【化1】[Chemical formula 1]

【0007】即ち、例えば酸無水物とジアミンからNメ
チルピロリドンなどの溶媒中で重合されたポリイミド前
駆体溶液を流延後、脱水、脱溶媒処理を行なうことによ
り従来の構成のポリイミド樹脂を得る。ここで酸無水物
としては図6に示すもの、ジアミンとしては図7に示す
ものが使用される。
That is, a polyimide resin having a conventional structure is obtained by casting a polyimide precursor solution polymerized from an acid anhydride and a diamine in a solvent such as N-methylpyrrolidone, followed by dehydration and solvent removal treatment. Here, as the acid anhydride, those shown in FIG. 6 are used, and as the diamine, those shown in FIG. 7 are used.

【0008】[0008]

【発明が解決しようとする課題】図4に示した従来のポ
リイミド樹脂及びその加工方法は、感光性が付与された
ポリイミド樹脂を用いた場合は熱損傷などの影響はない
が、膜厚が大きいと光照射により奥深くまで架橋するこ
とができず、現像時に架橋部分及び架橋部分の下層も除
去され、かつ等方的に除去加工が進むため、パターン幅
あるいは穴径が大きくなったり、膜べりが起こり、微細
、高アスペクト比、高品質穴を形成するのが困難である
という問題点があった。またこの方法ではポリイミド前
駆体に加工を行なった後に加熱処理などによりポリイミ
ド樹脂となすため、加熱時に収縮や変形が起こるという
問題があり、感光性を付与したポリイミド前駆体の価格
が高く、通常のポリイミドに比べ特性が落ちるなどの問
題もあった。また図5に示した従来のポリイミド樹脂及
びその加工方法は、感光性の付与の必要がなく、加熱処
理後のポリイミド樹脂を用いることができるレーザ加工
である。従来のポリイミド樹脂は長波長(500nm〜
10μm)における吸収は、短波長(200〜300n
m)における吸収に比べて小さい。微細、高アスペクト
比、高品質穴を形成する場合には長波長レーザを用いる
と、材料の光吸収が小さいため大きなエネルギーを与え
る必要があり、このため熱損傷を生じたり、下地材料に
損傷を与えるなど種々の問題があり、また短波長レーザ
を用いると比較的吸収が大きくなるため小さなエネルギ
ーで熱損傷の小さい、下地材料の損傷の小さい加工が可
能であるが、加工の要求仕様によっては十分でなかった
り、レーザのコストが高くなったり、光学系などの付属
部品の開発が追いつかないなど種々の問題点があった。
[Problems to be Solved by the Invention] The conventional polyimide resin and its processing method shown in FIG. 4 do not cause any effects such as heat damage when photosensitive polyimide resin is used, but the film thickness is large. It is not possible to cross-link deeply by light irradiation, and the cross-linked part and the layer beneath the cross-linked part are also removed during development, and the removal process proceeds isotropically, resulting in an increase in pattern width or hole diameter, and film loss. However, there is a problem in that it is difficult to form fine, high aspect ratio, and high quality holes. In addition, in this method, the polyimide precursor is processed and then heated to form a polyimide resin, so there is a problem that shrinkage and deformation occur during heating, and the price of the photosensitive polyimide precursor is high. There were also problems such as poorer properties compared to polyimide. Further, the conventional polyimide resin and its processing method shown in FIG. 5 are laser processing which does not require imparting photosensitivity and can use the polyimide resin after heat treatment. Conventional polyimide resin has long wavelength (500 nm ~
Absorption at short wavelengths (200-300 nm)
It is small compared to the absorption in m). When creating small, high aspect ratio, high-quality holes, long wavelength lasers require more energy to be applied due to the low optical absorption of the material, which can cause thermal damage or damage the underlying material. Furthermore, using a short wavelength laser has relatively large absorption, so it is possible to process with small energy and minimal damage to the underlying material, but depending on the required specifications of the process, There were a variety of problems, such as the lack of performance, the increased cost of lasers, and the inability to keep up with the development of accessory parts such as optical systems.

【0009】この発明は上記のような課題を解消するた
めになされたもので、比較的安価な長波長レーザを用い
ても微細、高アスペクト比、低損傷の加工ができるとと
もに、短波長のレーザを用いた場合も従来以上の微細、
高アスペクト比、高品質加工をすることができるレーザ
加工用ポリイミド樹脂を得ることを目的とする。
The present invention was made to solve the above-mentioned problems, and it is possible to perform fine processing, high aspect ratio, and low damage even by using a relatively inexpensive long wavelength laser, and it is also possible to perform processing using a short wavelength laser. Even when using
The purpose is to obtain a polyimide resin for laser processing that has a high aspect ratio and can be processed with high quality.

【0010】0010

【課題を解決するための手段】この発明のレーザ加工用
ポリイミド樹脂は、芳香族多環物を分散したポリイミド
樹脂から成るものである。
[Means for Solving the Problems] The polyimide resin for laser processing of the present invention is made of a polyimide resin in which an aromatic polycyclic substance is dispersed.

【0011】[0011]

【作用】一般にレーザ加工において、レーザは材料の吸
収係数(単位長さ当りの吸光度)に応じて材料に吸収さ
れ、この吸収されたエネルギーが加工に用いられる。ま
た芳香族多環物は一般に広い波長範囲で大きな吸収係数
を持つ。この発明におけるポリイミド樹脂は芳香族多環
物を分散しているため、各波長における吸収係数が大き
く、このため深さ方向の吸収が大きくなり、レーザエネ
ルギーが極表層に集中する。このエネルギーは瞬時に樹
脂を昇華させる、または分解物を遠くに飛散させる運動
エネルギーに変換されるため、ポリイミド樹脂に残留す
る熱エネルギーが非常に小さく、周辺に熱損傷を与え難
い。このため微細、高品質穴形成が可能となり、また異
方性のある加工が可能なため、この作用の繰り返しによ
り高アスペクト比化が可能となる。
[Operation] Generally, in laser processing, the laser beam is absorbed by the material according to the material's absorption coefficient (absorbance per unit length), and this absorbed energy is used for processing. Furthermore, aromatic polycyclics generally have large absorption coefficients over a wide wavelength range. Since the polyimide resin in this invention has aromatic polycyclic substances dispersed therein, the absorption coefficient at each wavelength is large, and therefore absorption in the depth direction becomes large, and laser energy is concentrated in the extreme surface layer. This energy is converted into kinetic energy that instantaneously sublimates the resin or scatters decomposition products far away, so the thermal energy remaining in the polyimide resin is extremely small, making it difficult to cause thermal damage to the surrounding area. This makes it possible to form fine, high-quality holes, and to perform anisotropic processing, making it possible to achieve a high aspect ratio by repeating this process.

【0012】0012

【実施例】図1はこの発明の実施例のレーザ加工用ポリ
イミド樹脂を用いた加工方法を工程順に示す工程図であ
る。図において、1はこの発明の実施例のレーザ加工用
ポリイミド樹脂である高光吸収型ポリイミド樹脂である
。レーザ3から照射されたレーザ光4はマスク5とレン
ズ6を用いて高光吸収型ポリイミド樹脂1に縮小転写さ
れ、レーザのエネルギー密度が高光吸収型ポリイミド樹
脂1を除去するのに十分であればパターニングや穴形成
などの除去加工が達成される。以下この発明における高
光吸収型ポリイミド樹脂1の構成について具体的な実施
例を示すが、この発明はこれらの実施例に限定されるも
のではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a process diagram showing a processing method using a polyimide resin for laser processing according to an embodiment of the present invention in order of steps. In the figure, numeral 1 indicates a high light absorption type polyimide resin which is a polyimide resin for laser processing according to an embodiment of the present invention. The laser beam 4 irradiated from the laser 3 is reduced and transferred onto the high light absorption type polyimide resin 1 using a mask 5 and lens 6, and patterning is performed if the energy density of the laser is sufficient to remove the high light absorption type polyimide resin 1. Removal processes such as hole formation and hole formation are accomplished. Specific examples of the structure of the high light absorption type polyimide resin 1 in this invention will be shown below, but the invention is not limited to these examples.

【0013】実施例1. この発明の実施例のレーザ加工用ポリイミド樹脂1は、
下記に示す化学式2により得ることができる。
Example 1. The polyimide resin 1 for laser processing according to the embodiment of the present invention is as follows:
It can be obtained by the chemical formula 2 shown below.

【0014】[0014]

【化2】[Case 2]

【0015】即ち、ポリイミド前駆体の重量に対して1
0%程度の芳香族多環物であるアントラセンを、予め8
0℃程度に加熱した溶媒のN−メチルピロリドンに混入
し、十分攪拌した後に予め80℃程度に加熱したポリイ
ミド前駆体に混合する。ポリイミド前駆体としては、R
1が図6中のNo.1に示した酸無水物の骨格、R2が
図7中のNo.1に示したジアミンの骨格であるポリア
ミック酸溶液である。しかる後にこの混合物を80℃程
度に保ったままスピンコータなどで基板に塗布し、均一
な膜となし、150℃程度で約30分間プリベーク、3
00℃程度で約90分間のポストベークを行なうことに
よって、膜中に残留するN−メチルピロリドンを蒸発さ
せ、ポリアミック酸の分子鎖中に含まれる水素基と水酸
基を反応させて水となし、分子鎖から脱離させることに
よってこの発明の一実施例のレーザ加工用ポリイミド樹
脂を得る。この時かかるポリイミド樹脂にはアントラセ
ンが細かく分散されているため、各波長に対する吸収係
数は著しく増大するため高光吸収型のポリイミド樹脂と
なる。このようにして作製した高光吸収型ポリイミド樹
脂の波長530nmにおける吸収係数は、約2000c
m−1で、従来のポリイミド樹脂10の約500cmー
1に比し4倍となった。これによりレーザ加工に必要な
レーザエネルギー密度は小さくなるため、例えばYAG
第2高調波により数J/cm2必要だった加工が、数百
mJ/cm2程度で可能となり、深さ方向に制御性のあ
る周辺に熱損傷のない加工が可能となった。また波長2
48nmの例えばKrFエキシマレーザによる径10〜
20μm程度の穴明け加工において、従来先細の穴しか
得られなかったものが非常に異方性を持つものとなり、
高アスペクト比化が可能となった。この発明の実施例に
おいてアントラセンはポリアミック酸の重量に対して1
0%程度で十分効果は期待できるが、分散可能であれば
増大させてもよく、仕様によっては減少させてもよく、
3〜30%程度が好ましい。3%未満では効果が得難く
、30%を越えると分散が困難になる。
That is, 1 for the weight of the polyimide precursor.
Approximately 0% of anthracene, an aromatic polycyclic compound, was prepared in advance by 8
The mixture is mixed into N-methylpyrrolidone, a solvent heated to about 0°C, stirred thoroughly, and then mixed into the polyimide precursor, which has been heated to about 80°C. As a polyimide precursor, R
1 is No. 1 in FIG. The skeleton of the acid anhydride shown in No. 1, R2 is No. 1 in FIG. This is a polyamic acid solution which is the skeleton of the diamine shown in 1. Thereafter, this mixture was applied to the substrate using a spin coater while keeping it at about 80°C to form a uniform film, and prebaked at about 150°C for about 30 minutes.
By post-baking at approximately 00°C for approximately 90 minutes, the N-methylpyrrolidone remaining in the film is evaporated, hydrogen groups and hydroxyl groups contained in the molecular chain of polyamic acid are reacted to form water, and molecules By detaching from the chains, a polyimide resin for laser processing according to an embodiment of the present invention is obtained. At this time, since anthracene is finely dispersed in such a polyimide resin, the absorption coefficient for each wavelength increases significantly, resulting in a highly light-absorbing polyimide resin. The absorption coefficient of the highly light-absorbing polyimide resin produced in this way at a wavelength of 530 nm is approximately 2000c.
m-1, which is 4 times greater than the approximately 500 cm-1 of conventional polyimide resin 10. This reduces the laser energy density required for laser processing, so for example, YAG
Machining that used to require several J/cm2 due to the second harmonic is now possible at around several hundred mJ/cm2, making it possible to perform processing with controllability in the depth direction and without heat damage in the periphery. Also wavelength 2
A diameter of 10 to 48 nm using a KrF excimer laser, for example.
When drilling a hole of about 20 μm, the hole that previously could only be tapered has become extremely anisotropic.
A high aspect ratio is now possible. In the embodiment of this invention, anthracene is added at 1% by weight based on the weight of polyamic acid.
A sufficient effect can be expected at around 0%, but it may be increased if it can be distributed, or it may be decreased depending on the specifications.
It is preferably about 3 to 30%. If it is less than 3%, it is difficult to obtain an effect, and if it exceeds 30%, dispersion becomes difficult.

【0016】図2(a)および(b)は各々上記この発
明の実施例のレーザ加工用ポリイミド樹脂を用いたレー
ザ加工の際の加工穴の断面図および加工穴の深さ方向の
レーザエネルギー密度分布を示す特性図であり、図3(
a)および(b)は各々従来のポリイミド樹脂を用いて
レーザ加工した際の加工穴の断面図および加工穴の深さ
方向のレーザエネルギー密度分布を示す特性図である。 図中Erは加工に最低必要なレーザエネルギー密度、E
iは与えたレーザエネルギー密度である。上記のように
して作製したこの発明の実施例のレーザ加工用ポリイミ
ド樹脂1にレーザを照射すると、著しく吸収が増大する
ため、図3に示す従来のポリイミド樹脂11に比べ、レ
ーザエネルギーは極表層で吸収される。このため加工単
位の小さな制御性の良い加工が可能となる。したがって
高アスペクト比化が可能になるとともに、レーザエネル
ギーに空間分布がある場合においても加工穴7が先細に
なる影響が小さい。またこのときポリイミド樹脂に残留
する熱量が小さくなるとともに、繰り返し照射による蓄
熱などの影響も小さくなるため、穴径が周辺に広がり大
きくなることもない。
FIGS. 2(a) and 2(b) are a cross-sectional view of a machined hole and a laser energy density in the depth direction of the machined hole during laser processing using the polyimide resin for laser processing according to the embodiment of the present invention, respectively. It is a characteristic diagram showing the distribution, and Fig. 3 (
(a) and (b) are a cross-sectional view of a machined hole and a characteristic diagram showing the laser energy density distribution in the depth direction of the machined hole, respectively, when laser processing is performed using a conventional polyimide resin. In the figure, Er is the minimum laser energy density required for processing, and E
i is the applied laser energy density. When the polyimide resin 1 for laser processing according to the embodiment of the present invention produced as described above is irradiated with a laser, absorption increases significantly, so that compared to the conventional polyimide resin 11 shown in FIG. Absorbed. Therefore, it is possible to perform processing with small processing units and good controllability. Therefore, it is possible to achieve a high aspect ratio, and even when the laser energy has a spatial distribution, the effect of tapering the machined hole 7 is small. Further, at this time, the amount of heat remaining in the polyimide resin is reduced, and the effects of heat accumulation due to repeated irradiation are also reduced, so the hole diameter does not spread to the surrounding area and become larger.

【0017】この発明に係わるポリイミド樹脂に分散さ
せる芳香族多環物としては、ポリイミド樹脂の他の特性
を損なわず目的の波長の光吸収を増大させるものであれ
ばよく、例えば図8に示すような芳香族多環物があり、
一般に環数が大きい程効果は大きい。また図8以外の例
としてフタロシアニン、ペナントレン、デカシクレン、
フェナントロリン、ペリレン、ポルフィリン、カルバゾ
ールなどの化合物であってもよい。また、例えばクマリ
ン系色素などの色素であってもよい。これらの置換基の
一部を反応基で置換し、分子に極性をもたせたものは溶
媒に溶け易いためさらに好ましい。
The aromatic polycyclic substance to be dispersed in the polyimide resin according to the present invention may be any substance as long as it increases light absorption of the desired wavelength without impairing other properties of the polyimide resin. For example, as shown in FIG. There are aromatic polycyclic compounds,
Generally, the larger the ring number, the greater the effect. Examples other than those shown in Figure 8 include phthalocyanine, penanthrene, decacyclene,
Compounds such as phenanthroline, perylene, porphyrin, and carbazole may also be used. Further, for example, a dye such as a coumarin-based dye may be used. Parts of these substituents are substituted with reactive groups to impart polarity to the molecule, which is more preferable because it is easily soluble in solvents.

【0018】上記実施例ではポリイミド前駆体溶液に芳
香族多環物を分散した後、加熱して固化してこの発明の
実施例のレーザ加工用ポリイミド樹脂を得たが、溶媒は
芳香族多環物を混入させる際に特に必要でない場合は用
いなくてもよい。また直接ポリイミド溶液を得ることが
できる系については、これに芳香族多環物を混入し分散
すればよい。溶媒を用いる場合も溶媒は特に限定するも
のでなく、例えば従来から使用されているN−メチルピ
ロリドンなどを用いればよい。加工穴は図に示した下地
材料まで達する穴に限定するものではなく、途中で止め
られたものであってもよい。さらにポリイミド樹脂以外
の高分子材料にこの発明を利用することもできる。
In the above example, an aromatic polycyclic substance was dispersed in a polyimide precursor solution, and then heated and solidified to obtain a polyimide resin for laser processing according to an example of the present invention. It does not need to be used if it is not particularly necessary when mixing substances. In addition, for a system in which a polyimide solution can be obtained directly, an aromatic polycyclic substance may be mixed therein and dispersed. When using a solvent, the solvent is not particularly limited, and for example, conventionally used N-methylpyrrolidone or the like may be used. The machined hole is not limited to a hole that reaches the base material shown in the figure, but may be a hole that is stopped midway. Furthermore, the present invention can also be applied to polymer materials other than polyimide resins.

【0019】[0019]

【発明の効果】以上のように、この発明は芳香族多環物
を分散したポリイミド樹脂から成るものを用いることに
より、比較的安価な長波長レーザを用いても微細、高ア
スペクト比、低損傷の加工ができるとともに、短波長の
レーザを用いた場合も従来以上の微細、高アスペクト比
、高品質加工をすることができるレーザ加工用ポリイミ
ド樹脂を得ることができる。
[Effects of the Invention] As described above, by using a polyimide resin in which an aromatic polycyclic substance is dispersed, the present invention achieves fineness, high aspect ratio, and low damage even when using a relatively inexpensive long wavelength laser. It is possible to obtain a polyimide resin for laser processing that can be processed with finer details, higher aspect ratio, and higher quality than conventional ones even when a short wavelength laser is used.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の一実施例のレーザ加工用ポリイミド
樹脂を用いた工程図である。
FIG. 1 is a process diagram using a polyimide resin for laser processing according to an embodiment of the present invention.

【図2】この発明の実施例のレーザ加工用ポリイミド樹
脂を用いたレーザ加工の際の加工穴の断面図および加工
穴の深さ方向のレーザエネルギー密度分布を示す特性図
図である。
FIG. 2 is a cross-sectional view of a machined hole and a characteristic diagram showing the laser energy density distribution in the depth direction of the machined hole during laser processing using a polyimide resin for laser processing according to an embodiment of the present invention.

【図3】従来のポリイミド樹脂を用いてレーザ加工した
際の加工穴の断面図および加工穴の深さ方向のレーザエ
ネルギー密度分布を示す特性図である。
FIG. 3 is a cross-sectional view of a processed hole when laser processing is performed using a conventional polyimide resin, and a characteristic diagram showing the laser energy density distribution in the depth direction of the processed hole.

【図4】従来のポリイミド樹脂の除去加工方法を工程順
に示す工程図である。
FIG. 4 is a process diagram showing a conventional polyimide resin removal processing method in order of steps.

【図5】従来のポリイミド樹脂の除去加工方法を工程順
に示す工程図である
FIG. 5 is a process diagram showing the conventional polyimide resin removal processing method in order of steps.

【図6】ポリイミド樹脂を合成するのに用いる酸無水物
の例を示す図である。
FIG. 6 is a diagram showing examples of acid anhydrides used to synthesize polyimide resins.

【図7】ポリイミド樹脂を合成するのに用いるジアミン
の例を示す図である。
FIG. 7 is a diagram showing examples of diamines used to synthesize polyimide resins.

【図8】この発明に係わる芳香族多環物の例を示す図で
ある。
FIG. 8 is a diagram showing an example of an aromatic polycyclic product according to the present invention.

【符号の説明】[Explanation of symbols]

1  この発明の実施例のレーザ加工用ポリイミド樹脂
4  レーザ光 7  加工穴
1 Polyimide resin for laser processing according to the embodiment of this invention 4 Laser light 7 Processed hole

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  芳香族多環物を分散したポリイミド樹
脂から成るレーザ加工用ポリイミド樹脂。
1. A polyimide resin for laser processing comprising a polyimide resin in which an aromatic polycyclic substance is dispersed.
JP3066409A 1991-03-29 1991-03-29 Polyimide resin composition for laser processing Expired - Fee Related JP2919106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3066409A JP2919106B2 (en) 1991-03-29 1991-03-29 Polyimide resin composition for laser processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3066409A JP2919106B2 (en) 1991-03-29 1991-03-29 Polyimide resin composition for laser processing

Publications (2)

Publication Number Publication Date
JPH04314757A true JPH04314757A (en) 1992-11-05
JP2919106B2 JP2919106B2 (en) 1999-07-12

Family

ID=13314970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3066409A Expired - Fee Related JP2919106B2 (en) 1991-03-29 1991-03-29 Polyimide resin composition for laser processing

Country Status (1)

Country Link
JP (1) JP2919106B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7057687B2 (en) 2001-03-30 2006-06-06 Dai Nippon Printing Co., Ltd. Method of patterning cholesteric film using a laser and optical element having the cholesteric film patterned by the method
JP2011084637A (en) * 2009-10-15 2011-04-28 Asahi Kasei E-Materials Corp Polyimide resin composition and polyimide-metal laminated sheet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61192737A (en) * 1985-02-05 1986-08-27 チバ・ガイギー・アクチエンゲゼルシヤフト Marking method for pigment system by laser
JPS6247045A (en) * 1985-08-20 1987-02-28 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Polyimide composition and formation of film having pattern
JPS63142030A (en) * 1986-12-05 1988-06-14 Toray Ind Inc Polyimide precursor composition and use thereof
JPH0463870A (en) * 1990-07-03 1992-02-28 Ube Ind Ltd Black photosensitive polymer composition and photosetting thereof
JPH04189865A (en) * 1990-11-22 1992-07-08 Toho Rayon Co Ltd Functional composite material and production thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61192737A (en) * 1985-02-05 1986-08-27 チバ・ガイギー・アクチエンゲゼルシヤフト Marking method for pigment system by laser
JPS6247045A (en) * 1985-08-20 1987-02-28 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Polyimide composition and formation of film having pattern
JPS63142030A (en) * 1986-12-05 1988-06-14 Toray Ind Inc Polyimide precursor composition and use thereof
JPH0463870A (en) * 1990-07-03 1992-02-28 Ube Ind Ltd Black photosensitive polymer composition and photosetting thereof
JPH04189865A (en) * 1990-11-22 1992-07-08 Toho Rayon Co Ltd Functional composite material and production thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7057687B2 (en) 2001-03-30 2006-06-06 Dai Nippon Printing Co., Ltd. Method of patterning cholesteric film using a laser and optical element having the cholesteric film patterned by the method
JP2011084637A (en) * 2009-10-15 2011-04-28 Asahi Kasei E-Materials Corp Polyimide resin composition and polyimide-metal laminated sheet

Also Published As

Publication number Publication date
JP2919106B2 (en) 1999-07-12

Similar Documents

Publication Publication Date Title
EP1326138B1 (en) Negative photosensitive polyimide composition and method of forming image from the same
EP0119162B1 (en) Photopolymerisable composition, material coated therewith, and process for obtaining relief images
US4547455A (en) Process of forming polyimide pattern and developer therefor
DE69730273T2 (en) Photosensitive polyimide precursor and its use for producing an image
EP0159428A1 (en) Anti-reflective coating
DE4406284A1 (en) Polyamidic acid composition
DE60032943T2 (en) IMID-BENZOXAZOLPOLYKONDENSAT AND METHOD FOR THE PRODUCTION
JPH02639A (en) Polymer obtained from 4,4'-bis(2-(3,4- dicarboxyphenyl)hexafluoroisopropyl)diphenyl ether dianhydride
CN86102891A (en) Curable compositions
US5399460A (en) Negative photoresists containing aminoacrylate salts
JPH02135449A (en) Formation of pattern and generation of positive type polyimide
US4242437A (en) Photosensitized polyamic acids curable by exposure to actinic radiation
US5756648A (en) Photosensitive polymide materials for electronic packaging applications
JPH04314757A (en) Polyimide resin for laser processing
DE69827429T2 (en) Radiation sensitive polymer composition
KR100422971B1 (en) Ion-type Photoacid Generator Having Naphtol Structure and the Photosensitive Polyimide Composition Prepared by Using the Same
US4539288A (en) Process for the development of relief structures based on radiation-crosslinked polymeric precursors of polymers which are resistant to high temperature
JP2575366B2 (en) Polyimide precursor composition and method of using the same
Omote et al. Soluble and optically transparent fluorine‐containing photoreactive polyimide precursors: Spectral sensitization by organic peroxide and organic dye combination
DE10003011A1 (en) Negative-type light-sensitive resin composition for manufacture of circuit boards, semiconductor chip carriers and semiconductor devices, contains cis-diene substituted polyamic acid or polyimide and oxygen sensitizer
JPH0344107B2 (en)
KR100261653B1 (en) A polymer orientation film including photoreaction promoter
Yamashita Intrinsically photosensitive polyimides
McKean et al. Base-catalyzed photosensitive polyimide
DE19717152C2 (en) Process for producing a polyimide pattern on a support

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees