JP2919106B2 - Polyimide resin composition for laser processing - Google Patents

Polyimide resin composition for laser processing

Info

Publication number
JP2919106B2
JP2919106B2 JP3066409A JP6640991A JP2919106B2 JP 2919106 B2 JP2919106 B2 JP 2919106B2 JP 3066409 A JP3066409 A JP 3066409A JP 6640991 A JP6640991 A JP 6640991A JP 2919106 B2 JP2919106 B2 JP 2919106B2
Authority
JP
Japan
Prior art keywords
polyimide resin
laser
resin composition
laser processing
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3066409A
Other languages
Japanese (ja)
Other versions
JPH04314757A (en
Inventor
慶子 伊藤
正巳 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3066409A priority Critical patent/JP2919106B2/en
Publication of JPH04314757A publication Critical patent/JPH04314757A/en
Application granted granted Critical
Publication of JP2919106B2 publication Critical patent/JP2919106B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明はレーザ加工用のポリイ
ミド樹脂に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polyimide resin for laser processing.

【0002】[0002]

【従来の技術】図4(a)〜(b)は例えば刊行物{J.
Electrochem.Soc.,Oct.(1990) p2522-2527}に示されて
いる従来のポリイミド樹脂の除去加工方法を工程順に示
す工程図であり、各々光照射{図4(a)}、現像{図
4(b)}、パターニングまたは穴形成{図4(c)}
および加熱{図4(d)}工程を示す。図において、2
は下地材料、5はマスク、7は加工穴、11はポリイミ
ド樹脂、12は感光性ポリイミド前駆体、13は架橋
部、14は光源、15は光、16は現像液である。
2. Description of the Related Art FIGS. 4 (a) and 4 (b) show, for example, a publication {J.
Electrochem. Soc., Oct. (1990) p2522-2527} is a process diagram showing a conventional polyimide resin removal processing method in the order of processes, and is a light irradiation {Fig. 4 (a)} and a development diagram, respectively. 4 (b)}, patterning or hole formation {FIG. 4 (c)}
And heating {FIG. 4 (d)} step. In the figure, 2
Is a base material, 5 is a mask, 7 is a processed hole, 11 is a polyimide resin, 12 is a photosensitive polyimide precursor, 13 is a crosslinked portion, 14 is a light source, 15 is light, and 16 is a developer.

【0003】即ち、感光性が付与されたポリイミド前駆
体12に水銀ランプなどの光源14から光15を照射
し、照射部13のみを架橋させることにより、現像液1
6に対する溶解速度を低下させ、光がマスク5により遮
蔽された部分を選択的に除去する。しかる後に感光性が
付与されたポリイミド前駆体12は、加熱処理により通
常のポリイミド樹脂11の構成をなす。
That is, by irradiating the photosensitive polyimide precursor 12 with light 15 from a light source 14 such as a mercury lamp to crosslink only the irradiated portion 13, the developer 1
6, the dissolving speed is reduced, and the light is selectively removed at the portion shielded by the mask 5. Thereafter, the polyimide precursor 12 to which the photosensitivity has been imparted has the structure of a normal polyimide resin 11 by heat treatment.

【0004】また図5(a)、(b)は例えば刊行物
{Proceedings of LAMP ’87 Osaka(May 1987) p5
81-584}などに示された従来のポリイミド樹脂の除去加
工方法を工程順に示す工程図であり、各々レーザ照射
{図5(a)}およびパターニングまたは穴形成{図5
(b)}工程を示す。図において3はレーザ、4はレー
ザ光、6はレンズである。
FIGS. 5A and 5B show, for example, a publication “Proceedings of LAMP '87 Osaka (May 1987) p5”.
81-584} are process diagrams showing a conventional processing method for removing a polyimide resin shown in FIG. 5 in order of steps, respectively, by laser irradiation {FIG. 5 (a)} and patterning or hole formation {FIG.
(B) Step (1) is shown. In the figure, 3 is a laser, 4 is a laser beam, and 6 is a lens.

【0005】即ち、レーザ3から照射されたレーザ光4
はマスク5とレンズ6を用いてポリイミド樹脂11に縮
小転写され、レーザのエネルギー密度がポリイミド樹脂
11を除去するのに十分であればパターニングや穴形成
などの除去加工が達成される。また図5におけるポリイ
ミド樹脂11は、例えば刊行物{POLYIMIDESBlackie(19
90)p2-8}などに示された従来のポリイミド樹脂の構成
からなり、下記の化学式1によって合成される。
That is, the laser beam 4 emitted from the laser 3
Is reduced and transferred to the polyimide resin 11 using the mask 5 and the lens 6. If the energy density of the laser is sufficient to remove the polyimide resin 11, removal processing such as patterning and hole formation is achieved. Further, the polyimide resin 11 in FIG. 5 is, for example, a publication “POLYIMIDES Blackie (19)
90) It is composed of a conventional polyimide resin shown in p2-8} and the like, and is synthesized by the following chemical formula 1.

【0006】[0006]

【化1】 Embedded image

【0007】即ち、例えば酸無水物とジアミンからNメ
チルピロリドンなどの溶媒中で重合されたポリイミド前
駆体溶液を流延後、脱水、脱溶媒処理を行なうことによ
り従来の構成のポリイミド樹脂を得る。ここで酸無水物
としては図6に示すもの、ジアミンとしては図7に示す
ものが使用される。
That is, for example, a polyimide resin having a conventional structure is obtained by casting a polyimide precursor solution obtained by polymerizing an acid anhydride and a diamine in a solvent such as N-methylpyrrolidone, followed by dehydration and solvent removal. Here, the acid anhydride shown in FIG. 6 and the diamine shown in FIG. 7 are used.

【0008】[0008]

【発明が解決しようとする課題】図4に示した従来のポ
リイミド樹脂及びその加工方法は、感光性が付与された
ポリイミド樹脂を用いた場合は熱損傷などの影響はない
が、膜厚が大きいと光照射により奥深くまで架橋するこ
とができず、現像時に架橋部分及び架橋部分の下層も除
去され、かつ等方的に除去加工が進むため、パターン幅
あるいは穴径が大きくなったり、膜べりが起こり、微
細、高アスペクト比、高品質穴を形成するのが困難であ
るという問題点があった。またこの方法ではポリイミド
前駆体に加工を行なった後に加熱処理などによりポリイ
ミド樹脂となすため、加熱時に収縮や変形が起こるとい
う問題があり、感光性を付与したポリイミド前駆体の価
格が高く、通常のポリイミドに比べ特性が落ちるなどの
問題もあった。また図5に示した従来のポリイミド樹脂
及びその加工方法は、感光性の付与の必要がなく、加熱
処理後のポリイミド樹脂を用いることができるレーザ加
工である。従来のポリイミド樹脂は長波長(500nm
〜10μm)における吸収は、短波長(200〜300
nm)における吸収に比べて小さい。微細、高アスペク
ト比、高品質穴を形成する場合には長波長レーザを用い
ると、材料の光吸収が小さいため大きなエネルギーを与
える必要があり、このため熱損傷を生じたり、下地材料
に損傷を与えるなど種々の問題があり、また短波長レー
ザを用いると比較的吸収が大きくなるため小さなエネル
ギーで熱損傷の小さい、下地材料の損傷の小さい加工が
可能であるが、加工の要求仕様によっては十分でなかっ
たり、レーザのコストが高くなったり、光学系などの付
属部品の開発が追いつかないなど種々の問題点があっ
た。
The conventional polyimide resin and its processing method shown in FIG. 4 have no effect of heat damage when a polyimide resin having photosensitivity is used, but have a large film thickness. In addition, it is not possible to crosslink deeply by light irradiation, and the crosslinked portion and the lower layer of the crosslinked portion are also removed at the time of development, and the removal process proceeds isotropically, so that the pattern width or the hole diameter becomes large, and film thinning occurs. As a result, it is difficult to form fine holes having a high aspect ratio and high quality. In addition, in this method, since the polyimide precursor is formed into a polyimide resin by heat treatment or the like after processing the polyimide precursor, there is a problem that shrinkage or deformation occurs during heating, and the price of the polyimide precursor to which photosensitivity has been imparted is high. There were also problems such as lower characteristics than polyimide. In addition, the conventional polyimide resin and its processing method shown in FIG. 5 are laser processing that does not require photosensitivity and can use the polyimide resin after the heat treatment. Conventional polyimide resins have long wavelengths (500 nm
Absorption at short wavelengths (200-300 μm).
nm). In the case of forming fine, high aspect ratio, high quality holes, using a long wavelength laser requires a large amount of energy due to the low light absorption of the material, which may cause thermal damage or damage to the underlying material. There is a variety of problems, such as in the case of using a short wavelength laser.Because the absorption is relatively large when using a short wavelength laser, it is possible to process with small energy and small heat damage and small damage to the underlying material. However, there have been various problems such as an increase in the cost of the laser, and the inability to keep up with the development of accessories such as an optical system.

【0009】この発明は上記のような課題を解消するた
めになされたもので、比較的安価な長波長レーザを用い
ても微細、高アスペクト比、低損傷の加工ができるとと
もに、短波長のレーザを用いた場合も従来以上の微細、
高アスペクト比、高品質加工をすることができるレーザ
加工用ポリイミド樹脂組成物を得ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and enables a fine, high aspect ratio, low damage processing and a short wavelength laser using a relatively inexpensive long wavelength laser. When using is finer than before,
An object is to obtain a polyimide resin composition for laser processing capable of performing high aspect ratio and high quality processing.

【0010】[0010]

【課題を解決するための手段】この発明に係る第1のレ
ーザ加工用ポリイミド樹脂組成物は、連続した炭素6員
環のみを骨格とする非色素系芳香族多環式化合物を混合
したポリイミド前駆体を脱水縮合して得たものである。
この発明に係る第2のレーザ加工用ポリイミド樹脂組成
物は、上記第1のレーザ加工用ポリイミド樹脂組成物に
おいて、非色素系芳香族多環式化合物の環数が2〜6の
ものである。
The first polyimide resin composition for laser processing according to the present invention comprises a continuous carbon 6 member.
It is obtained by dehydrating and condensing a polyimide precursor mixed with a non-dye type aromatic polycyclic compound having only a ring as a skeleton .
In the second polyimide resin composition for laser processing according to the present invention, the non-dye aromatic polycyclic compound has 2 to 6 rings in the first polyimide resin composition for laser processing.

【0011】[0011]

【作用】一般にレーザ加工において、レーザは材料の吸
収係数(単位長さ当りの吸光度)に応じて材料に吸収さ
れ、この吸収されたエネルギーが加工に用いられる。ま
た芳香族多環式化合物をポリイミド樹脂に分散させた場
合、一般に広い波長範囲で大きな吸収係数を持つ。この
発明におけるポリイミド樹脂は芳香族多環式化合物を分
散しているため、各波長における吸収係数が大きく、こ
のため深さ方向の吸収が大きくなり、レーザエネルギー
が極表層に集中する。なお、上記芳香族多環式化合物は
連続した炭素6員環のみを骨格とするが、ここで、「連
続」とは隣合う炭素6員環が炭素を共有し合う構造のも
のをいう。このエネルギーは瞬時に樹脂を昇華させる、
または分解物を遠くに飛散させる運動エネルギーに変換
されるため、ポリイミド樹脂に残留する熱エネルギーが
非常に小さく、周辺に熱損傷を与え難い。このため微
細、高品質穴形成が可能となり、また異方性のある加工
が可能なため、この作用の繰り返しにより高アスペクト
比化が可能となる。
Generally, in laser processing, a laser is absorbed by a material in accordance with the absorption coefficient (absorbance per unit length) of the material, and the absorbed energy is used for the processing. Also, when an aromatic polycyclic compound is dispersed in a polyimide resin, it generally has a large absorption coefficient over a wide wavelength range. In the polyimide resin of the present invention, since the aromatic polycyclic compound is dispersed, the absorption coefficient at each wavelength is large, so that the absorption in the depth direction is large, and the laser energy is concentrated on the extreme surface layer. Incidentally, the aromatic polycyclic compound is
Only the continuous 6-membered carbon ring is used as the skeleton.
"Continuation" means that adjacent 6-membered carbon rings share carbon.
I mean This energy instantly sublimates the resin,
Alternatively, the thermal energy is converted into kinetic energy that scatters the decomposed product far away, so that the thermal energy remaining in the polyimide resin is extremely small, and it is difficult to cause thermal damage to the periphery. For this reason, fine and high quality holes can be formed, and anisotropic processing can be performed, so that a high aspect ratio can be achieved by repeating this operation.

【0012】[0012]

【実施例】図1はこの発明の実施例のレーザ加工用ポリ
イミド樹脂組成物を用いた加工方法を工程順に示す工程
図である。図において、1はこの発明の実施例のレーザ
加工用ポリイミド樹脂組成物である高光吸収型ポリイミ
ド樹脂組成物である。レーザ3から照射されたレーザ光
4はマスク5とレンズ6を用いて高光吸収型ポリイミド
樹脂組成物1に縮小転写され、レーザのエネルギー密度
が高光吸収型ポリイミド樹脂組成物1を除去するのに十
分であればパターニングや穴形成などの除去加工が達成
される。以下この発明における高光吸収型ポリイミド樹
組成物1の構成について具体的な実施例を示すが、こ
の発明はこれらの実施例に限定されるものではない。
FIG. 1 is a process chart showing a processing method using a polyimide resin composition for laser processing according to an embodiment of the present invention in the order of steps. In the figure, reference numeral 1 denotes a high light absorption type polyimide resin composition which is a polyimide resin composition for laser processing according to an embodiment of the present invention. The laser beam 4 emitted from the laser 3 is reduced and transferred to the high light-absorbing polyimide resin composition 1 using the mask 5 and the lens 6, and the energy density of the laser is sufficient to remove the high light-absorbing polyimide resin composition 1. If so, removal processing such as patterning and hole formation is achieved. Hereinafter, specific examples of the structure of the high light-absorbing polyimide resin composition 1 according to the present invention will be described, but the present invention is not limited to these examples.

【0013】 実施例1. この発明の実施例のレーザ加工用ポリイミド樹脂組成物
は、下記に示す化学式2により得ることができる。
Embodiment 1 Polyimide resin composition for laser processing according to an embodiment of the present invention
1 can be obtained by the following chemical formula 2.

【0014】[0014]

【化2】 Embedded image

【0015】即ち、ポリイミド前駆体の重量に対して1
0%程度の芳香族多環式化合物であるアントラセンを、
予め80℃程度に加熱した溶媒のN―メチルピロリドン
に混入し、十分撹拌した後に予め80℃程度に加熱した
ポリイミド前駆体に混合する。ポリイミド前駆体として
は、R1が図6中のNo.1に示した酸無水物の骨格、
2が図7中のNo.1に示したジアミンの骨格である
ポリアミック酸溶液である。しかる後にこの混合物を8
0℃程度に保ったままスピンコータなどで基板に塗布
し、均一な膜となし、150℃程度で約30分間プリベ
ーク、300℃程度で約90分間のポストベークを行な
うことによって、膜中に残留するN―メチルピロリドン
を蒸発させ、ポリアミック酸の分子鎖中に含まれる水素
基と水酸基を反応させて水となし、分子鎖から脱離させ
ることによってこの発明の一実施例のレーザ加工用ポリ
イミド樹脂組成物を得る。この時かかるポリイミド樹脂
組成物にはアントラセンが細かく分散されているため、
各波長に対する吸収係数は著しく増大するため高光吸収
型のポリイミド樹脂組成物となる。このようにして作製
した高光吸収型ポリイミド樹脂組成物の波長530nm
における吸収係数は、約2000cm-1で、従来のポリ
イミド樹脂の約500cm-1に比し4倍となった。これ
によりレーザ加工に必要なレーザエネルギー密度は小さ
くなるため、例えばYAG第2高調波により数J/cm
2 必要だった加工が、数百mJ/cm2程度で可能とな
り、深さ方向に制御性のある周辺に熱損傷のない加工が
可能となった。また波長248nmの例えばKrFエキ
シマレーザによる径10〜20μm程度の穴明け加工に
おいて、従来先細の穴しか得られなかったものが非常に
異方性を持つものとなり、高アスペクト比化が可能とな
った。この発明の実施例においてアントラセンはポリア
ミック酸の重量に対して10%程度で十分効果は期待で
きるが、分散可能であれば増大させてもよく、仕様によ
っては減少させてもよく、3〜30%程度が好ましい。
3%未満では効果が得難く、30%を超えると分散が困
難になる。
That is, 1 to the weight of the polyimide precursor
About 0% of an aromatic polycyclic compound , anthracene,
It is mixed with N-methylpyrrolidone as a solvent which has been heated to about 80 ° C. in advance, sufficiently stirred, and then mixed with a polyimide precursor which has been heated to about 80 ° C. in advance. As the polyimide precursor, R 1 was No. 1 in FIG. The skeleton of the acid anhydride shown in 1,
R 2 is No. in FIG. 1 is a polyamic acid solution which is a skeleton of the diamine shown in FIG. Then, add this mixture to 8
The coating is applied to the substrate with a spin coater or the like while maintaining the temperature at about 0 ° C. to form a uniform film. The film is prebaked at about 150 ° C. for about 30 minutes, and post-baked at about 300 ° C. for about 90 minutes, and remains in the film. By evaporating N-methylpyrrolidone and reacting a hydrogen group and a hydroxyl group contained in the molecular chain of the polyamic acid with water to form water and desorbing from the molecular chain, a polyimide resin composition for laser processing according to one embodiment of the present invention. Get things . At this time polyimide resin
Because the composition has finely dispersed anthracene,
Since the absorption coefficient for each wavelength is significantly increased, a high light absorption type polyimide resin composition is obtained. The wavelength of the high light-absorbing polyimide resin composition thus prepared was 530 nm.
Was about 2000 cm -1 , which was four times that of the conventional polyimide resin of about 500 cm -1 . As a result, the laser energy density required for laser processing is reduced, and for example, several J / cm
(2) Necessary processing became possible at about several hundred mJ / cm 2 , and processing without thermal damage to the periphery with controllability in the depth direction became possible. Further, in drilling with a wavelength of 248 nm, for example, using a KrF excimer laser with a diameter of about 10 to 20 μm, the conventional one that could only obtain a tapered hole became highly anisotropic, and a high aspect ratio became possible. . In the embodiment of the present invention, the effect of anthracene can be expected to be sufficient when the amount of anthracene is about 10% with respect to the weight of the polyamic acid. The degree is preferred.
If it is less than 3%, the effect is difficult to obtain, and if it exceeds 30%, dispersion becomes difficult.

【0016】図2(a)および(b)は各々上記この発
明の実施例のレーザ加工用ポリイミド樹脂組成物を用い
たレーザ加工の際の加工穴の断面図および加工穴の深さ
方向のレーザエネルギー密度分布を示す特性図であり、
図3(a)および(b)は各々従来のポリイミド樹脂を
用いてレーザ加工した際の加工穴の断面図および加工穴
の深さ方向のレーザエネルギー密度分布を示す特性図で
ある。図中Erは加工に最低必要なレーザエネルギー密
度、Eiは与えたレーザエネルギー密度である。上記の
ようにして作製したこの発明の実施例のレーザ加工用ポ
リイミド樹脂組成物1にレーザを照射すると、著しく吸
収が増大するため、図3に示す従来のポリイミド樹脂1
1に比べ、レーザエネルギーは極表層で吸収される。こ
のため加工単位の小さな制御性の良い加工が可能とな
る。したがって高アスペクト比化が可能になるととも
に、レーザエネルギーに空間分布がある場合においても
加工穴7が先細になる影響が小さい。またこのときポリ
イミド樹脂に残留する熱量が小さくなるとともに、繰り
返し照射による蓄熱などの影響も小さくなるため、穴径
が周辺に広がり大きくなることもない。
FIGS. 2 (a) and 2 (b) are a sectional view of a processing hole and a laser beam in a depth direction of the processing hole during laser processing using the polyimide resin composition for laser processing according to the embodiment of the present invention. It is a characteristic diagram showing an energy density distribution,
FIGS. 3A and 3B are a cross-sectional view of a processed hole and a characteristic diagram showing a laser energy density distribution in a depth direction of the processed hole when laser processing is performed using a conventional polyimide resin, respectively. Figure E r is minimum required laser energy density in machining, E i is a laser energy density given. When the laser is applied to the laser processing polyimide resin composition 1 according to the embodiment of the present invention produced as described above, the absorption significantly increases. Therefore, the conventional polyimide resin 1 shown in FIG.
Compared to 1, the laser energy is absorbed at the extreme surface layer. For this reason, processing with good controllability in small processing units can be performed. Therefore, the aspect ratio can be increased, and even when the laser energy has a spatial distribution, the influence of the tapered processing hole 7 is small. At this time, the amount of heat remaining in the polyimide resin is reduced, and the influence of heat storage due to repeated irradiation is also reduced.

【0017】この発明に係わるポリイミド前駆体に混合
する芳香族多環式化合物としては、ポリイミドの他の特
性を損なわず目的の波長の光吸収を増大させるものであ
ればよく、例えば図8に示すような芳香族多環式化合物
があり、一般に環数が大きい程効果は大きい。また、こ
れらの化合物に極性をもたせるように、上記化合物の骨
格を保ったまま反応基で置換した上記芳香族多環式化合
物の誘導体は、溶媒に溶け易いためさらに好ましい。
The aromatic polycyclic compound to be mixed with the polyimide precursor according to the present invention may be any as long as it can increase light absorption at a desired wavelength without impairing other characteristics of the polyimide. There is such an aromatic polycyclic compound, and the effect is generally larger as the number of rings is larger. In order to make these compounds more polar,
The aromatic polycyclic compound substituted with a reactive group while maintaining the case
The derivative of the product is more preferable because it is easily soluble in a solvent.

【0018】上記実施例ではポリイミド前駆体溶液に芳
香族多環式化合物を混合した後、加熱して固化してこの
発明の実施例のレーザ加工用ポリイミド樹脂組成物を得
たが、溶媒は芳香族多環式化合物を混入させる際に特に
必要でない場合は用いなくてもよい。また直接ポリイミ
ド溶液を得ることができる系については、これに芳香族
多環式化合物を混入し分散すればよい。溶媒を用いる場
合も溶媒は特に限定するものでなく、例えば従来から使
用されているN―メチルピロリドンなどを用いればよ
い。加工穴は図に示した下地材料まで達する穴に限定す
るものではなく、途中で止められたものであってもよ
い。さらにポリイミド樹脂以外の高分子材料にこの発明
を利用することもできる。
In the above example, the polyimide precursor solution was mixed with the aromatic polycyclic compound, and then heated and solidified to obtain the polyimide resin composition for laser processing according to the example of the present invention. When it is not particularly necessary to mix a group polycyclic compound , it may not be used. For systems where polyimide solutions can be directly obtained,
What is necessary is just to mix and disperse a polycyclic compound . When a solvent is used, the solvent is not particularly limited. For example, N-methylpyrrolidone, which is conventionally used, may be used. The processing hole is not limited to the hole reaching the base material shown in the figure, and may be a hole stopped halfway. Further, the present invention can be applied to a polymer material other than a polyimide resin.

【0019】[0019]

【発明の効果】以上のように、この発明は連続した炭素
6員環のみを骨格とする非色素系芳香族多環式化合物を
混合したポリイミド前駆体を脱水縮合して得たもの、例
えば非色素系芳香族多環式化合物の環数が2〜6のもの
を用いることにより、比較的安価な長波長レーザを用い
ても微細、高アスペクト比、低損傷の加工ができるとと
もに、短波長のレーザを用いた場合も従来以上の微細、
高アスペクト比、高品質加工をすることができるレーザ
加工用ポリイミド樹脂組成物を得ることができる。
As described above, the present invention provides continuous carbon
What was obtained by dehydrating and condensing a polyimide precursor obtained by mixing a non-dye aromatic polycyclic compound having only a six-membered ring as a skeleton , for example, a non-dye aromatic polycyclic compound having 2 to 6 rings By using a laser, it is possible to process fine, high aspect ratio, and low damage even with a relatively inexpensive long wavelength laser.
A polyimide resin composition for laser processing that can perform high aspect ratio and high quality processing can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の一実施例のレーザ加工用ポリイミ
ド樹脂組成物を用いた工程図である。
FIG. 1 is a process chart using a polyimide resin composition for laser processing according to one embodiment of the present invention.

【図2】 この発明の実施例のレーザ加工用ポリイミド
樹脂組成物を用いたレーザ加工の際の加工穴の断面図お
よび加工穴の深さ方向のレーザエネルギー密度分布を示
す特性図である。
FIG. 2 is a cross-sectional view of a processed hole and a characteristic diagram showing a laser energy density distribution in a depth direction of the processed hole at the time of laser processing using the polyimide resin composition for laser processing according to an example of the present invention.

【図3】従来のポリイミド樹脂を用いてレーザ加工した
際の加工穴の断面図および加工穴の深さ方向のレーザエ
ネルギー密度分布を示す特性図である。
FIG. 3 is a cross-sectional view of a processed hole when laser processing is performed using a conventional polyimide resin, and a characteristic diagram illustrating a laser energy density distribution in a depth direction of the processed hole.

【図4】従来のポリイミド樹脂の除去加工方法を工程順
に示す工程図である。
FIG. 4 is a process chart showing a conventional polyimide resin removal processing method in the order of steps.

【図5】従来のポリイミド樹脂の除去加工方法を工程順
に示す工程図である
FIG. 5 is a process chart showing a conventional polyimide resin removal processing method in the order of steps.

【図6】ポリイミド樹脂を合成するのに用いる酸無水物
の例を示す図である。
FIG. 6 is a diagram showing an example of an acid anhydride used for synthesizing a polyimide resin.

【図7】ポリイミド樹脂を合成するのに用いるジアミン
の例を示す図である。
FIG. 7 is a diagram showing an example of a diamine used for synthesizing a polyimide resin.

【図8】 この発明に係わる芳香族多環式化合物の例を
示す図である。
FIG. 8 is a diagram showing an example of an aromatic polycyclic compound according to the present invention.

【符号の説明】[Explanation of symbols]

1 この発明の実施例のレーザ加工用ポリイミド樹脂
成物 4 レーザ光 7 加工穴
1 Laser processing polyimide resin set according to an embodiment of the present invention
Product 4 Laser beam 7 Processing hole

フロントページの続き (56)参考文献 特開 昭61−192737(JP,A) 特開 昭62−47045(JP,A) 特開 昭63−142030(JP,A) 特開 平4−189865(JP,A) 特開 平4−63870(JP,A)Continuation of front page (56) References JP-A-61-192737 (JP, A) JP-A-62-47045 (JP, A) JP-A-63-142030 (JP, A) JP-A-4-189865 (JP) , A) JP-A-4-63870 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 連続した炭素6員環のみを骨格とする
色素系芳香族多環式化合物を混合したポリイミド前駆体
を脱水縮合して得たレーザ加工用ポリイミド樹脂組成
物。
1. A laser processing polyimide resin composition obtained by dehydrating and condensing a polyimide precursor mixed with a non-dyeous aromatic polycyclic compound having only a continuous 6-membered carbon ring as a skeleton .
【請求項2】 非色素系芳香族多環式化合物の環数が2
〜6であることを特徴とする請求項1記載のレーザ加工
用ポリイミド樹脂組成物。
2. The non-dye type aromatic polycyclic compound having a ring number of 2
The polyimide resin composition for laser processing according to claim 1, wherein
JP3066409A 1991-03-29 1991-03-29 Polyimide resin composition for laser processing Expired - Fee Related JP2919106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3066409A JP2919106B2 (en) 1991-03-29 1991-03-29 Polyimide resin composition for laser processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3066409A JP2919106B2 (en) 1991-03-29 1991-03-29 Polyimide resin composition for laser processing

Publications (2)

Publication Number Publication Date
JPH04314757A JPH04314757A (en) 1992-11-05
JP2919106B2 true JP2919106B2 (en) 1999-07-12

Family

ID=13314970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3066409A Expired - Fee Related JP2919106B2 (en) 1991-03-29 1991-03-29 Polyimide resin composition for laser processing

Country Status (1)

Country Link
JP (1) JP2919106B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7057687B2 (en) 2001-03-30 2006-06-06 Dai Nippon Printing Co., Ltd. Method of patterning cholesteric film using a laser and optical element having the cholesteric film patterned by the method
JP2011084637A (en) * 2009-10-15 2011-04-28 Asahi Kasei E-Materials Corp Polyimide resin composition and polyimide-metal laminated sheet

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU597240B2 (en) * 1985-02-05 1990-05-31 Ciba-Geigy Ag Laser marking of pigmented systems
JPS6247045A (en) * 1985-08-20 1987-02-28 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Polyimide composition and formation of film having pattern
JP2575366B2 (en) * 1986-12-05 1997-01-22 東レ株式会社 Polyimide precursor composition and method of using the same
JPH07100764B2 (en) * 1990-07-03 1995-11-01 宇部興産株式会社 Black photocurable polymer composition and method for forming black photocurable film
JP3023486B2 (en) * 1990-11-22 2000-03-21 東邦レーヨン株式会社 Functional composite and method for producing the same

Also Published As

Publication number Publication date
JPH04314757A (en) 1992-11-05

Similar Documents

Publication Publication Date Title
US4910122A (en) Anti-reflective coating
EP0159428A1 (en) Anti-reflective coating
US5962192A (en) Photoresists and method for making printing plates
WO2001042860A1 (en) Creation of resist structures
US4789622A (en) Production of resist images, and a suitable dry film resist
CN1790161A (en) Polymeric tetrahedral carbon films, methods of forming the same and methods of forming fine patterns using the same
US5928841A (en) Method of photoetching at 180 to 220
US6037085A (en) Photoresists and method for making printing plates
CA1272059A (en) Negative photoresist systems
US5230985A (en) Negative-working radiation-sensitive mixtures, and radiation-sensitive recording material produced with these mixtures
JPH0943847A (en) Resist material and pattern forming method
JP2919106B2 (en) Polyimide resin composition for laser processing
US4590149A (en) Method for fine pattern formation on a photoresist
JP3249598B2 (en) Manufacturing method of bottom resist
US5139927A (en) Permanent yellow imaged light modulating film
JP4499471B2 (en) Photosensitive resin composition
US5215870A (en) Process of forming a permanent yellow imaged light modulating film
US5370974A (en) Laser exposure of photosensitive polyimide for pattern formation
JPH0786127A (en) Formation of resist pattern
JPH032869A (en) Manufacture of high heat-resistant relief structure
US5139926A (en) Permanent yellow imaged light modulating film
JPH10171120A (en) Transparent resin, photosensitive composition and pattern forming method
US4588675A (en) Method for fine pattern formation on a photoresist
US5158862A (en) Processless imaging to maximize blue light absorption of an image
US5149616A (en) Processless imaging to maximize blue light absorption of an image

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees