JPH04314374A - Narrow band laser device - Google Patents

Narrow band laser device

Info

Publication number
JPH04314374A
JPH04314374A JP10845491A JP10845491A JPH04314374A JP H04314374 A JPH04314374 A JP H04314374A JP 10845491 A JP10845491 A JP 10845491A JP 10845491 A JP10845491 A JP 10845491A JP H04314374 A JPH04314374 A JP H04314374A
Authority
JP
Japan
Prior art keywords
diffraction grating
gas
laser device
laser
beam profile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10845491A
Other languages
Japanese (ja)
Inventor
Osamu Wakabayashi
理 若林
Masahiko Kowaka
雅彦 小若
Yukio Kobayashi
小林 諭樹夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP10845491A priority Critical patent/JPH04314374A/en
Publication of JPH04314374A publication Critical patent/JPH04314374A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PURPOSE:To reduce fluctuation of beam profile and to acquire laser light of stable output by providing an air flow generating means which makes gas flow to a reflection surface of a diffraction grating. CONSTITUTION:Air flow is made to occur in a reflection surface of a diffraction grating 30 by blowing gas against the diffraction grating 30 by a fan 40. Thereby, a surface of the diffraction grating 30 is cooled and gas in an area near a surface of the diffraction grating 30 is forcibly moved to prevent gas in an area near a surface of the diffraction grating 30 from being heated by the diffraction grating 30. Since air flow is generated forcibly in a surface of the diffraction grating 30, gas is not heated by heat of the diffraction grating 30 and does not generate natural convection. Thereby, it is possible to prevent beam profile from fluctuating.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、スペクトル幅の狭いレ
ーザ光を出力するレーザ装置に係り、特に縮小投影露光
装置用の光源として好適な狭帯域レーザ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser device that outputs laser light with a narrow spectral width, and more particularly to a narrow band laser device suitable as a light source for a reduction projection exposure apparatus.

【0002】0002

【従来の技術】半導体集積回路の高密度化に伴い、パタ
ーンの微細化が著しく、微細なパターンを形成するため
に、スペクトル幅の狭い、いわゆる狭帯域レーザ光を出
力するレーザ光源が求められている。そして、現在、エ
ネルギー変換効率が高く、大出力が得られるところから
、縮小投影露光装置用の光源としてエキシマレーザ装置
が注目されている。しかし、エキシマレーザ装置は、ス
ペクトル幅が広く、発振した光をそのまま縮小投影露光
装置の光源として使用することができない。そこで、発
振されたレーザ光を、エタロンや回折格子等の波長選択
素子(狭帯域化素子)を使用してスペクトル幅を狭くす
ることが行われている。
[Background Art] With the increasing density of semiconductor integrated circuits, patterns have become significantly finer, and in order to form fine patterns, a laser light source that outputs so-called narrowband laser light with a narrow spectral width is required. There is. Currently, excimer laser devices are attracting attention as light sources for reduction projection exposure devices because they have high energy conversion efficiency and can provide large output. However, the excimer laser device has a wide spectrum width, and the oscillated light cannot be used as it is as a light source for a reduction projection exposure device. Therefore, the spectral width of the oscillated laser beam is narrowed using a wavelength selection element (band narrowing element) such as an etalon or a diffraction grating.

【0003】図7は、従来の狭帯域レーザ装置の一例を
示したものである。本レーザ装置は、KrF等のレーザ
媒質が封入してあるレーザチャンバ10の両端部に窓1
2、14が設けてあり、レーザチャンバ10内で発生し
たレーザ光16をレーザチャンバ10の外部に出射でき
るようにしてある。そして、出力側となる窓12の前方
には、共振器を構成しているフロントミラー18が設け
てある。
FIG. 7 shows an example of a conventional narrow band laser device. This laser device has windows 1 at both ends of a laser chamber 10 in which a laser medium such as KrF is sealed.
2 and 14 are provided so that the laser beam 16 generated within the laser chamber 10 can be emitted to the outside of the laser chamber 10. A front mirror 18 constituting a resonator is provided in front of the window 12 on the output side.

【0004】また、他方の窓14の後方(図の右側)に
は、波長選択素子としてのエタロン20、22が配置し
てあり、エタロン22の後方に共振器を構成しているリ
アミラー24が設けてある。
Further, etalons 20 and 22 as wavelength selection elements are arranged behind the other window 14 (on the right side in the figure), and a rear mirror 24 forming a resonator is arranged behind the etalon 22. There is.

【0005】このように構成した図7の狭帯域レーザ装
置は、一対のエタロン20、22によってレーザ光16
の狭帯域化を図っているため、放電幅を制限する必要が
なく、狭帯域化の効率が高い利点がある。しかし、エタ
ロン20、22には、レーザチャンバ10から出射され
レーザ光16が直接入射するため、入射光のエネルギー
密度が高く、エタロン20、22がレーザ光16によっ
て加熱され、波長選択特性の熱的安定性が著しく悪く、
しかもエタロン20、22の寿命が短くなる。また、2
つのエタロン20、22の選択波長を一致させる複雑な
波長制御が必要で、波長および出力の制御速度が遅くな
る。
The narrow band laser device shown in FIG.
Since it aims to narrow the band, there is no need to limit the discharge width, and there is an advantage that the band narrowing efficiency is high. However, since the laser light 16 emitted from the laser chamber 10 directly enters the etalons 20 and 22, the energy density of the incident light is high, and the etalons 20 and 22 are heated by the laser light 16, resulting in thermal changes in wavelength selection characteristics. Stability is extremely poor,
Moreover, the life of the etalons 20 and 22 is shortened. Also, 2
Complex wavelength control is required to match the selected wavelengths of the two etalons 20 and 22, which slows down the wavelength and output control speed.

【0006】そこで、熱的に安定な回折格子を用い、図
8に示したように、窓14の後方にプリズム26、28
と回折格子30とをリトロー配置するとともに、窓12
、14に隣接してアパーチャ32、34を配設した装置
がある。この狭帯域レーザ装置は、回折格子30が熱的
に安定であって、しかも波長の制御には、回折格子30
の角度だけを調節すればよいため、波長制御および出力
制御が非常に速く行える。
Therefore, a thermally stable diffraction grating is used, and prisms 26 and 28 are placed behind the window 14, as shown in FIG.
and the diffraction grating 30 are arranged in Littrow, and the window 12
, 14 are provided with apertures 32, 34 adjacent to each other. In this narrow band laser device, the diffraction grating 30 is thermally stable, and the wavelength can be controlled using the diffraction grating 30.
Since only the angle of the wavelength needs to be adjusted, wavelength control and output control can be performed very quickly.

【0007】また、図9に示したように、リトロー配置
したプリズム28と回折格子30との間にエタロン36
を配置した装置もある。この装置は、プリズム26、2
8とエタロン36とによって波長スペクトル幅を狭くす
ることができるため、図8の装置のようにアパーチャ3
2、34を必要としない。そして、図9の装置は、レー
ザ光16がプリズム26、28によって分散(拡大)さ
れ、その後エタロン36と回折格子30とに入射するよ
うになっているため、エタロン36と回折格子30とに
入射するレーザ光のエネルギー密度が小さく、また波長
のシフト量が少なくて、波長制御はエタロン36のみを
制御すればよいため、波長および出力の制御を速く行う
ことができる。
Furthermore, as shown in FIG. 9, an etalon 36 is provided between the prism 28 arranged in Littrow and the diffraction grating 30.
There are also devices equipped with This device consists of prisms 26, 2
8 and the etalon 36, the wavelength spectrum width can be narrowed.
2.34 is not required. In the apparatus shown in FIG. 9, the laser beam 16 is dispersed (expanded) by the prisms 26 and 28, and then enters the etalon 36 and the diffraction grating 30. Since the energy density of the laser beam is small and the amount of wavelength shift is small, only the etalon 36 needs to be controlled for wavelength control, so the wavelength and output can be controlled quickly.

【0008】さらに、波長選択素子にエタロンと回折格
子とを用いた狭帯域レーザ装置として、回折格子を斜入
射配置とするとともに、エタロンと回折格子とを気密室
内に配置し、その気密室の圧力を介してエタロンのギャ
ップを制御し、選択波長の変動の吸収を図るものもある
(特開昭64−84766号公報)。
Furthermore, as a narrowband laser device using an etalon and a diffraction grating as a wavelength selection element, the diffraction grating is arranged at an oblique incidence, and the etalon and the diffraction grating are arranged in an airtight chamber, so that the pressure in the airtight chamber is reduced. There is also a method for absorbing fluctuations in the selected wavelength by controlling the gap of the etalon through the method (Japanese Patent Application Laid-open No. 84766/1983).

【0009】[0009]

【発明が解決しようとする課題】しかし、上記の回折格
子30を用いた狭帯域レーザ装置は、回折格子30が入
射するレーザ光16のために加熱されて高温となり、こ
の熱によって回折格子30の反射面(表面)近傍の気体
が温められて揺らぎ、レーザ光16のビームプロフィル
が揺らぐ。
However, in a narrowband laser device using the above-mentioned diffraction grating 30, the diffraction grating 30 is heated to a high temperature due to the incident laser beam 16, and this heat causes the diffraction grating 30 to become heated. The gas near the reflecting surface (surface) is warmed and fluctuates, causing the beam profile of the laser beam 16 to fluctuate.

【0010】すなわち、発明者等は、図9の共振器内に
エタロンと回折格子とを配置した装置のビームプロフィ
ルを、一次元のフォトダイオードアレイセンサにレーザ
光16を入射させて測定したところ、図10に示したよ
うな結果を得た。図から明らかなように、ビームの中心
からの各点における光強度が異なっていて、ビームプロ
フィルが波を打ったような状態となっている。しかも、
ビームプロフィルの波は、回折格子30の表面近傍の気
体の揺らぎの影響により、時間の経過とともに同図(A
)〜(C)のように移動することが観測された。
That is, the inventors measured the beam profile of a device in which an etalon and a diffraction grating are arranged in a resonator as shown in FIG. 9 by making laser light 16 incident on a one-dimensional photodiode array sensor. The results shown in FIG. 10 were obtained. As is clear from the figure, the light intensity at each point from the center of the beam is different, resulting in a wavy beam profile. Moreover,
The waves in the beam profile change over time due to the fluctuation of the gas near the surface of the diffraction grating 30 (A).
) to (C) were observed.

【0011】そこで、その波の周期を測定するために、
レーザ光16の中央部(0.025×0.5mm2 )
の光の強度の経時変化を測定したところ、図11に示し
たような結果が得られ、変動の周期が約1秒であった。 このビームプロフィルの揺らぎは、狭帯域レーザ装置を
縮小投影露光装置の光源とした場合に、微細なパターン
の結像に影響を与えるため、大きな問題となっている。
[0011] Therefore, in order to measure the period of the wave,
Center part of laser beam 16 (0.025 x 0.5 mm2)
When the temporal change in the light intensity was measured, the results shown in FIG. 11 were obtained, and the period of fluctuation was about 1 second. This beam profile fluctuation is a big problem when a narrow band laser device is used as a light source for a reduction projection exposure device because it affects the imaging of a fine pattern.

【0012】本発明は、前記従来技術の欠点を解消する
ためになされたもので、ビームプロフィルの揺らぎを小
さくし、安定した出力のレーザ光を得ることができる狭
帯域レーザ装置を提供することを目的としている。
The present invention has been made in order to eliminate the drawbacks of the prior art, and aims to provide a narrow band laser device that can reduce fluctuations in the beam profile and obtain a laser beam with stable output. The purpose is

【0013】[0013]

【課題を解決するための手段】発明者等は、上記のビー
ムプロフィルのゆらぎの原因を究明するために種々の実
験を行った。そして、各光学素子に気体を吹きつけたと
ころ、プリズムとエタロンに気体を吹きつけても、ビー
ムプロフィルの揺らぎに変化は見られなかったが、回折
格子の表面に気体を吹きつけると、ビームプロフィルの
揺らぎが小さくなった。
[Means for Solving the Problems] The inventors conducted various experiments in order to investigate the cause of the above-mentioned beam profile fluctuation. When gas was blown onto each optical element, there was no change in the beam profile fluctuations even when the gas was blown onto the prism and etalon, but when the gas was blown onto the surface of the diffraction grating, the beam profile The fluctuation has become smaller.

【0014】これは、回折格子の表面がレーザ光を吸収
して熱を発生し、表面近傍の気体の温度が上昇して気体
の屈折率が変化するため、回折格子による選択波長が気
体の温度の高いところだけ変化し、エタロンの選択波長
と一致しなくなって、ビームプロフィルが波を打つ現象
が現れると考えられる。そして、回折格子に発生した熱
により、回折格子近傍の気体に自然対流が起こり、ビー
ムプロフィルが揺らぐものと考えられる。
[0014] This is because the surface of the diffraction grating absorbs the laser beam and generates heat, increasing the temperature of the gas near the surface and changing the refractive index of the gas. It is thought that the beam profile changes only at high points and no longer matches the selected wavelength of the etalon, causing the beam profile to wave. It is thought that the heat generated in the diffraction grating causes natural convection in the gas near the diffraction grating, causing the beam profile to fluctuate.

【0015】本発明は、上記の知見に基づいてなされた
もので、波長選択素子として回折格子を有する狭帯域レ
ーザ装置において、前記回折格子の反射面に気体を流す
気流発生手段を設けたことを特徴としている。
The present invention has been made based on the above findings, and provides a narrowband laser device having a diffraction grating as a wavelength selection element, including providing an airflow generating means for causing gas to flow on the reflective surface of the diffraction grating. It is a feature.

【0016】気流発生手段は、送風機であってもよいし
、装置内に供給するパージガスのガス源と、このガス源
に接続され、回折格子の近傍に配置したガス吐出口とか
ら構成してもよい。
The airflow generating means may be a blower, or may be composed of a gas source of purge gas supplied into the apparatus and a gas discharge port connected to this gas source and disposed near the diffraction grating. good.

【0017】[0017]

【作用】上記の如く構成した本発明は、気流発生手段に
よって回折格子の反射面(表面)に、強制的に気体の流
れを生じさせる。これにより、回折格子が冷却されると
ともに、回折格子の表面付近の気体を強制的に移動させ
、回折格子近傍の気体の温度上昇を防止する。従って、
回折格子の反射面近傍の気体の熱分布の発生と自然対流
による影響とが除去され、ビームプロフィルの揺らぎが
小さくなって、安定したビームプロフィルを得られる。
[Operation] In the present invention constructed as described above, a gas flow is forcibly generated on the reflecting surface (surface) of a diffraction grating by means of an air flow generating means. As a result, the diffraction grating is cooled, and the gas near the surface of the diffraction grating is forcibly moved to prevent the temperature of the gas near the diffraction grating from rising. Therefore,
The generation of heat distribution in the gas near the reflection surface of the diffraction grating and the influence of natural convection are eliminated, and the fluctuations in the beam profile are reduced, making it possible to obtain a stable beam profile.

【0018】[0018]

【実施例】本発明に係る狭帯域レーザ装置の好ましい実
施例を、添付面に従って詳説する。なお、前記従来技術
において説明した部分に対応する部分については、同一
の符号を付し、その説明を省略する。図1は、本発明の
実施例に係る狭帯域レーザ装置の説明図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the narrowband laser device according to the present invention will be described in detail in accordance with the attached figures. Note that the same reference numerals are given to the parts corresponding to the parts explained in the prior art, and the explanation thereof will be omitted. FIG. 1 is an explanatory diagram of a narrowband laser device according to an embodiment of the present invention.

【0019】図1において、狭帯域レーザ装置は、プリ
ズム26、28とエタロン36と回折格子30とがリト
ロー配置とされており、回折格子30の近くに気流発生
手段として、送風機であるファン40が配置してある。 ファン40は、回折格子30の微細な溝が形成してある
反射面に、斜め上方から装置内の気体(例えば窒素)4
2を吹きつけ、回折格子30の表面に気流を生じさせる
In FIG. 1, the narrowband laser device has prisms 26, 28, an etalon 36, and a diffraction grating 30 arranged in a Littrow arrangement, and a fan 40, which is a blower, is installed near the diffraction grating 30 as an airflow generating means. It has been placed. The fan 40 blows gas (for example, nitrogen) 4 inside the device from diagonally above onto the reflective surface of the diffraction grating 30 in which fine grooves are formed.
2 to generate an airflow on the surface of the diffraction grating 30.

【0020】このように、ファン40によって回折格子
30に気体を吹きつけて、回折格子30の反射面に気流
を生じさせることにより、回折格子30の表面を冷却す
るとともに、回折格子30の表面付近の気体を強制的に
移動させ、回折格子30の表面近傍の気体が回折格子3
0によって加熱されるのを防止する。従って、実施例は
、回折格子30の表面付近の気体の温度が部分的に上昇
し、その部分の屈折率が変化し、回折格子30の選択波
長が変化してビームプロフィルが波を打ったような状態
になることを避けることができる。
In this way, by blowing gas onto the diffraction grating 30 using the fan 40 and creating an air flow on the reflective surface of the diffraction grating 30, the surface of the diffraction grating 30 is cooled and the vicinity of the surface of the diffraction grating 30 is cooled. The gas near the surface of the diffraction grating 30 is forced to move, and the gas near the surface of the diffraction grating 30
0 to prevent heating. Therefore, in the embodiment, the temperature of the gas near the surface of the diffraction grating 30 rises partially, the refractive index of that part changes, the selected wavelength of the diffraction grating 30 changes, and the beam profile appears to be wavy. This situation can be avoided.

【0021】また、回折格子30の表面に強制的な気流
を生じさせているため、気体が回折格子30の熱によっ
て温められて自然対流を生ずることがなく、ビームプロ
フィルがゆらぐのを防止することができる。特に、回折
格子30の表面付近での気流の風速が2m/s以上にす
ると、図2に示したように、ビームの揺らぎを非常に小
さくすることができ、出力の安定したレーザ光16が得
られる。
Furthermore, since a forced airflow is generated on the surface of the diffraction grating 30, the gas is not heated by the heat of the diffraction grating 30 and natural convection is not generated, and the beam profile is prevented from fluctuating. Can be done. In particular, when the wind speed of the airflow near the surface of the diffraction grating 30 is set to 2 m/s or more, as shown in FIG. It will be done.

【0022】図3は、他の実施例を示したもので、気流
発生手段としてのシロッコファン44が回折格子30の
溝のピッチ方向の一側に配置してあり、回折格子30の
反射面と平行に気体42を吹き出すようになっている。 本実施例においても、前記実施例と同様の効果が得られ
る。
FIG. 3 shows another embodiment, in which a sirocco fan 44 as an airflow generating means is arranged on one side in the pitch direction of the grooves of the diffraction grating 30, and is connected to the reflecting surface of the diffraction grating 30. Gas 42 is blown out in parallel. In this embodiment as well, the same effects as in the previous embodiment can be obtained.

【0023】図4、図5は、さらに他の実施例を示した
もので、それぞれ気流発生手段としてクロスフローファ
ン46と軸流ファン48を用い、回折格子30の溝に沿
って気体42を吹きつけるようにしたものである。
FIGS. 4 and 5 show still other embodiments, in which a cross flow fan 46 and an axial fan 48 are used as airflow generating means to blow gas 42 along the grooves of the diffraction grating 30. It was designed to be attached.

【0024】図6は、窒素ガスなどのパージガスを利用
して回折格子の表面に気流を発生させるようにしたもの
である。すなわち、図6において、窒素ガス源である窒
素ガスボンベ50は、気流発生手段を構成しており、バ
ルブ52が設けてあって、このバルブ52に流量計54
を有する管56が接続してある。そして、管56の先端
吐出口58は、回折格子30の反射面の近くに配置され
、回折格子30に形成した溝のピッチ方向に沿って、回
折格子30の面とほぼ平行に窒素ガス60を吹き出すよ
うになっている。
In FIG. 6, a purge gas such as nitrogen gas is used to generate an air flow on the surface of the diffraction grating. That is, in FIG. 6, a nitrogen gas cylinder 50 serving as a nitrogen gas source constitutes an airflow generating means, and a valve 52 is provided to which a flowmeter 54 is connected.
A tube 56 having a diameter is connected thereto. The distal end discharge port 58 of the tube 56 is arranged near the reflective surface of the diffraction grating 30, and discharges the nitrogen gas 60 along the pitch direction of the grooves formed in the diffraction grating 30, almost parallel to the surface of the diffraction grating 30. It seems to be gushing out.

【0025】本実施例においても、前記各実施例と同様
の効果が得られる。なお、窒素ガス60は、回折格子3
0の溝に沿って吹き出すようにしてもよし、回折格子3
0の反射面と斜交するように吹き出させてもよい。
[0025] In this embodiment as well, the same effects as in each of the above embodiments can be obtained. Note that the nitrogen gas 60 is
You can also make it blow out along the groove of the diffraction grating 3.
The light may be blown out obliquely to the 0 reflecting surface.

【0026】前記実施例においては、波長選択素子とし
てプリズム26、28とエタロン30と回折格子30と
を用いた狭帯域レーザ装置について説明したが、波長選
択素子がプリズムと回折格子とからなる狭帯域レーザ装
置であってもよい。また、前記実施例においては、回折
格子30をリトロー配置した装置について説明したが、
回折格子30はグレース型にしたものであってもよい。 そして、前記実施例においては、エキシマレーザ装置に
ついて説明したが、He−Neレーザ等の他のガスレー
ザや色素レーザ等の他のレーザ装置であってもよい。
In the above embodiments, a narrowband laser device using prisms 26, 28, an etalon 30, and a diffraction grating 30 as wavelength selection elements has been described. It may also be a laser device. In addition, in the embodiment described above, the apparatus in which the diffraction grating 30 is arranged in Littrow was explained.
The diffraction grating 30 may be of a Grace type. In the above embodiments, an excimer laser device has been described, but other laser devices such as a gas laser such as a He-Ne laser or a dye laser may also be used.

【0027】[0027]

【発明の効果】以上に説明したように、本発明によれば
、回折格子の反射面に気体を吹きつけ、気流を生じさせ
るようにしたことにより、回折格子が冷却されるととも
に、回折格子の表面近傍の気体が加熱されるのを防止で
き、レーザ光の出力とビームプロフィルの安定とを図る
ことができる。
As explained above, according to the present invention, by blowing gas onto the reflective surface of the diffraction grating to generate an airflow, the diffraction grating is cooled and It is possible to prevent the gas near the surface from being heated, and it is possible to stabilize the output of the laser light and the beam profile.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明に係る実施例の説明図である。FIG. 1 is an explanatory diagram of an embodiment according to the present invention.

【図2】実施例の光強度の時間の経過に対する変化を示
す図である。
FIG. 2 is a diagram showing changes in light intensity over time in an example.

【図3】気流発生手段としてシロッコファンを回折格子
の溝のピッチ方向の一端に配置した実施例の一部斜視図
である。
FIG. 3 is a partial perspective view of an embodiment in which a sirocco fan is disposed as an airflow generating means at one end in the pitch direction of the grooves of the diffraction grating.

【図4】気流発生手段としてクロスフローファンを用い
た実施例の一部斜視図である。
FIG. 4 is a partial perspective view of an embodiment using a crossflow fan as an airflow generating means.

【図5】気流発生手段として軸流ファンを用いた実施例
の一部斜視図である。
FIG. 5 is a partial perspective view of an embodiment using an axial fan as the airflow generating means.

【図6】パージガスによって気流を発生させる実施例の
説明図である。
FIG. 6 is an explanatory diagram of an embodiment in which airflow is generated by purge gas.

【図7】波長選択素子がエタロンである従来の狭帯域レ
ーザ装置の説明図である。
FIG. 7 is an explanatory diagram of a conventional narrow band laser device in which the wavelength selection element is an etalon.

【図8】波長選択素子としてプリズムとエタロンとを用
いた従来の狭帯域レーザ装置の説明図である。
FIG. 8 is an explanatory diagram of a conventional narrowband laser device using a prism and an etalon as a wavelength selection element.

【図9】波長選択素子としてプリズムとエタロンと回折
格子を用いた従来の狭帯域レーザ装置の説明図である。
FIG. 9 is an explanatory diagram of a conventional narrowband laser device using a prism, an etalon, and a diffraction grating as wavelength selection elements.

【図10】従来の狭帯域レーザ装置のビームプロフィル
の時間変動の説明図である。
FIG. 10 is an explanatory diagram of temporal variations in the beam profile of a conventional narrowband laser device.

【図11】従来の狭帯域レーザ装置のビーム中心におけ
る光強度の時間変動の説明図である。
FIG. 11 is an explanatory diagram of temporal fluctuations in light intensity at the beam center of a conventional narrowband laser device.

【符号の説明】[Explanation of symbols]

10        レーザチャンバ 16        レーザ光 26、28  プリズム 36        エタロン 30        回折格子 40        気流発生手段(ファン)42  
      気体
10 Laser chamber 16 Laser beams 26, 28 Prism 36 Etalon 30 Diffraction grating 40 Air flow generating means (fan) 42
gas

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  波長選択素子として回折格子を有する
狭帯域レーザ装置において、前記回折格子の反射面に気
体を流す気流発生手段を設けたことを特徴とする狭帯域
レーザ装置。
1. A narrowband laser device having a diffraction grating as a wavelength selection element, characterized in that the narrowband laser device is provided with airflow generating means for causing gas to flow through a reflective surface of the diffraction grating.
【請求項2】  前記気流発生手段は、送風機であるこ
とを特徴とする請求項1に記載の狭帯域レーザ装置。
2. The narrowband laser device according to claim 1, wherein the airflow generating means is a blower.
【請求項3】  前記気流発生手段は、装置内に供給す
るパージガスのガス源と、このガス源に接続され、前記
回折格子の近傍に配置したガス吐出口とからなることを
特徴とする請求項1に記載の狭帯域レーザ装置。
3. The airflow generating means comprises a gas source of purge gas supplied into the apparatus, and a gas discharge port connected to the gas source and disposed near the diffraction grating. 1. The narrowband laser device according to 1.
JP10845491A 1991-04-12 1991-04-12 Narrow band laser device Pending JPH04314374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10845491A JPH04314374A (en) 1991-04-12 1991-04-12 Narrow band laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10845491A JPH04314374A (en) 1991-04-12 1991-04-12 Narrow band laser device

Publications (1)

Publication Number Publication Date
JPH04314374A true JPH04314374A (en) 1992-11-05

Family

ID=14485189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10845491A Pending JPH04314374A (en) 1991-04-12 1991-04-12 Narrow band laser device

Country Status (1)

Country Link
JP (1) JPH04314374A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001018923A1 (en) * 1999-09-03 2001-03-15 Cymer, Inc. High power gas discharge laser with line narrowing unit
WO2001041268A1 (en) 1999-11-30 2001-06-07 Cymer, Inc. High power gas discharge laser with helium purged line narrowing unit
US6496528B2 (en) 1999-09-03 2002-12-17 Cymer, Inc. Line narrowing unit with flexural grating mount
US6504860B2 (en) 2001-01-29 2003-01-07 Cymer, Inc. Purge monitoring system for gas discharge laser
US6539042B2 (en) 1999-11-30 2003-03-25 Cymer, Inc. Ultra pure component purge system for gas discharge laser
US6738410B2 (en) 1999-12-22 2004-05-18 Cymer, Inc. Line narrowed laser with bidirection beam expansion
US6785319B1 (en) 1999-01-06 2004-08-31 Komatsu Ltd. Ultraviolet laser device
US6795474B2 (en) 2000-11-17 2004-09-21 Cymer, Inc. Gas discharge laser with improved beam path
US6839372B2 (en) 2000-11-17 2005-01-04 Cymer, Inc. Gas discharge ultraviolet laser with enclosed beam path with added oxidizer
JP2007067123A (en) * 2005-08-31 2007-03-15 National Institute Of Advanced Industrial & Technology Laser pulse compressor
US7321607B2 (en) 2005-11-01 2008-01-22 Cymer, Inc. External optics and chamber support system
US8379687B2 (en) 2005-06-30 2013-02-19 Cymer, Inc. Gas discharge laser line narrowing module

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6785319B1 (en) 1999-01-06 2004-08-31 Komatsu Ltd. Ultraviolet laser device
US6735236B2 (en) * 1999-09-03 2004-05-11 Cymer, Inc. High power gas discharge laser with line narrowing unit
US6496528B2 (en) 1999-09-03 2002-12-17 Cymer, Inc. Line narrowing unit with flexural grating mount
WO2001018923A1 (en) * 1999-09-03 2001-03-15 Cymer, Inc. High power gas discharge laser with line narrowing unit
US6778584B1 (en) 1999-11-30 2004-08-17 Cymer, Inc. High power gas discharge laser with helium purged line narrowing unit
US7277466B2 (en) 1999-11-30 2007-10-02 Cymer, Inc. High power gas discharge laser with helium purged line narrowing unit
US6539042B2 (en) 1999-11-30 2003-03-25 Cymer, Inc. Ultra pure component purge system for gas discharge laser
KR100767301B1 (en) * 1999-11-30 2007-10-17 사이머 인코포레이티드 High power gas discharge laser with helium purged line narrowing unit
WO2001041268A1 (en) 1999-11-30 2001-06-07 Cymer, Inc. High power gas discharge laser with helium purged line narrowing unit
US6738410B2 (en) 1999-12-22 2004-05-18 Cymer, Inc. Line narrowed laser with bidirection beam expansion
US6839372B2 (en) 2000-11-17 2005-01-04 Cymer, Inc. Gas discharge ultraviolet laser with enclosed beam path with added oxidizer
US6795474B2 (en) 2000-11-17 2004-09-21 Cymer, Inc. Gas discharge laser with improved beam path
US6504860B2 (en) 2001-01-29 2003-01-07 Cymer, Inc. Purge monitoring system for gas discharge laser
EP1407521A1 (en) * 2001-06-29 2004-04-14 Cymer, Inc. Line narrowing unit with flexural grating mount
EP1407521A4 (en) * 2001-06-29 2005-11-23 Cymer Inc Line narrowing unit with flexural grating mount
US8379687B2 (en) 2005-06-30 2013-02-19 Cymer, Inc. Gas discharge laser line narrowing module
JP2007067123A (en) * 2005-08-31 2007-03-15 National Institute Of Advanced Industrial & Technology Laser pulse compressor
US7321607B2 (en) 2005-11-01 2008-01-22 Cymer, Inc. External optics and chamber support system

Similar Documents

Publication Publication Date Title
JP3394176B2 (en) Assembly, excimer laser, method for improving beam profile of light beam in excimer laser and reducing spectral bandwidth variation and method for operating laser
US6240110B1 (en) Line narrowed F2 laser with etalon based output coupler
US6560254B2 (en) Line-narrowing module for high power laser
US20070115535A1 (en) Master-oscillator power-amplifier (MOPA) excimer or molecular fluorine laser system with long optics lifetime
JPH04314374A (en) Narrow band laser device
KR100634114B1 (en) High power gas discharge laser with line narrowing unit
EP1240694B1 (en) Line narrowed laser with bidirection beam expansion
RU2250544C2 (en) High-power gas-discharge lasers with emission-line helium-blast narrowing module
JP2001144355A (en) Narrow-band excimer laser
KR100767301B1 (en) High power gas discharge laser with helium purged line narrowing unit
JP2004140265A (en) Narrow-band laser apparatus
JP7136934B2 (en) An optical assembly for reducing the spectral bandwidth of a laser's output beam
JPH0423480A (en) Narrow band laser device
JP2586656B2 (en) Wavelength stabilized laser device
JP2002335029A (en) Band narrowed laser
JPH02148871A (en) Excimer laser generation apparatus
JP2586655B2 (en) Wavelength stabilized laser device
JPH03190178A (en) Gas laser oscillating device
JPH01164082A (en) Narrow-band laser device
JPH03126276A (en) Laser oscillation device