JPH0431339B2 - - Google Patents

Info

Publication number
JPH0431339B2
JPH0431339B2 JP60148804A JP14880485A JPH0431339B2 JP H0431339 B2 JPH0431339 B2 JP H0431339B2 JP 60148804 A JP60148804 A JP 60148804A JP 14880485 A JP14880485 A JP 14880485A JP H0431339 B2 JPH0431339 B2 JP H0431339B2
Authority
JP
Japan
Prior art keywords
liquefied gas
liquid level
heating
low
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60148804A
Other languages
Japanese (ja)
Other versions
JPS628019A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP14880485A priority Critical patent/JPS628019A/en
Publication of JPS628019A publication Critical patent/JPS628019A/en
Publication of JPH0431339B2 publication Critical patent/JPH0431339B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、例えば液体ヘリウム、液体窒素な
どの低温液化ガスの液面を検知する液面検出セン
サに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a liquid level detection sensor that detects the liquid level of a low-temperature liquefied gas such as liquid helium or liquid nitrogen.

〔従来の技術〕[Conventional technology]

第3図は例えば特開昭59−46515号公報に示さ
れた従来の低温液化ガス液面検出センサを示す構
成図であり、第4図は第3図の低温液化ガス液面
検出センサを低温液化ガス貯槽に取り付けた状
態、また第5図は熱電対の液面高さに対する発生
電圧特性を示すものである。図において、1は加
熱源で例えば電源、2は低温液化ガスの液面を検
出するための発熱体、例えば発熱抵抗体で、電源
1により発熱する。3は発熱抵抗体2の温度を測
定する温度センサとしての熱電対測温接点、4は
熱電対測温接点3に接続された電圧計、5は低温
液化ガス貯槽、6は支持材、7は低温液化ガスの
気相、8は低温液化ガスの液面の状態、9は低
温液化ガスの液面の状態、11は熱電対の基準
接点、12は低温液化ガスの液相部、13は低温
液化ガスの気相部、14は熱電対の発生電圧特性
曲線、発生電圧特性曲線上の点cは丁度発熱抵抗
体2の位置に液面がある場合である。
FIG. 3 is a configuration diagram showing a conventional low-temperature liquefied gas level detection sensor disclosed in, for example, Japanese Unexamined Patent Publication No. 59-46515, and FIG. 4 is a block diagram showing the low-temperature liquefied gas level detection sensor of FIG. FIG. 5 shows the thermocouple when it is attached to a liquefied gas storage tank, and shows the generated voltage characteristics with respect to the liquid level height of the thermocouple. In the figure, 1 is a heating source, such as a power supply, and 2 is a heating element, such as a heating resistor, for detecting the liquid level of low-temperature liquefied gas, and the power supply 1 generates heat. 3 is a thermocouple temperature measuring junction as a temperature sensor for measuring the temperature of the heating resistor 2; 4 is a voltmeter connected to the thermocouple temperature measuring junction 3; 5 is a low temperature liquefied gas storage tank; 6 is a support material; 7 is a 8 is the liquid level state of the low temperature liquefied gas, 9 is the liquid level state of the low temperature liquefied gas, 11 is the reference junction of the thermocouple, 12 is the liquid phase part of the low temperature liquefied gas, 13 is the low temperature The gas phase portion of the liquefied gas, 14, is a generated voltage characteristic curve of a thermocouple, and point c on the generated voltage characteristic curve is when the liquid level is exactly at the position of the heating resistor 2.

次に動作について説明する。発熱抵抗体2は外
部の電源1により電流が供給されジユール発熱に
より温度が上昇している。測温接点3は発熱抵抗
体2と熱的に接触しており、温度変化つまり低温
液化ガス液相部高さの変化によつて第5図の14
のような発生電圧曲線を持つている。このような
装置を例えば低温液化ガス貯槽に取り付けた場
合、液面の状態では、発熱抵抗体2が低温液化
ガスの気相部に位置することから発熱抵抗体2か
ら周囲への放熱量が自然対流伝熱により支配され
るため少ない。従つて、発熱抵抗体2の温度は上
昇し、温度t2(この時の液面高さはh1)であり、
この場合、熱電対は温度t2と低温液化ガス液相部
の温度との差に応じた電圧を発生し、それが電圧
計4ではV3として検出される。また、発熱抵抗
体2の位置に液面がある場合(この時の液面高さ
h2)では、発熱抵抗体2から周囲への放熱量が核
沸騰伝熱により支配されるため多く、この結果発
熱抵抗体2の温度が下がり、ほとんど液相温度t1
に等しくなり、基準接点11との温度差がないた
め起電力は生じず、従つて、発生電圧はほとんど
零である。液面の状態でも同様である。
Next, the operation will be explained. Current is supplied to the heating resistor 2 by the external power source 1, and the temperature rises due to Joule heat generation. The temperature measuring junction 3 is in thermal contact with the heating resistor 2, and due to temperature changes, that is, changes in the height of the liquid phase of the low-temperature liquefied gas, the temperature at 14 in FIG.
It has a generated voltage curve like this. For example, when such a device is installed in a low-temperature liquefied gas storage tank, the heat generating resistor 2 is located in the gas phase of the low-temperature liquefied gas at the liquid level, so the amount of heat radiated from the heating resistor 2 to the surroundings is natural. It is small because it is dominated by convective heat transfer. Therefore, the temperature of the heating resistor 2 rises to a temperature t 2 (the liquid level height at this time is h 1 ),
In this case, the thermocouple generates a voltage corresponding to the difference between the temperature t 2 and the temperature of the low-temperature liquefied gas liquid phase, which is detected by the voltmeter 4 as V 3 . Also, if there is a liquid level at the position of the heating resistor 2 (the liquid level height at this time
h 2 ), the amount of heat radiated from the heating resistor 2 to the surroundings is dominated by nucleate boiling heat transfer, and as a result, the temperature of the heating resistor 2 decreases, almost reaching the liquidus temperature t 1
Since there is no temperature difference with reference junction 11, no electromotive force is generated, and therefore, the generated voltage is almost zero. The same applies to the state of the liquid level.

このように、発熱抵抗体2が気相部に置かれた
場合は或る大きさの電圧を発生し、液相部に置れ
た場合は電圧を発生しないことになり、液体中に
ない場合はON、ある場はOFFというようなデジ
タル的信号が得られ、液面が発熱抵抗体2の上に
あるか下にあるかを明確に判定できる。
In this way, if the heating resistor 2 is placed in the gas phase, it will generate a certain amount of voltage, if it is placed in the liquid phase, it will not generate any voltage, and if it is not in the liquid, it will generate a certain amount of voltage. A digital signal such as ON for some fields and OFF for some fields can be obtained, and it can be clearly determined whether the liquid level is above or below the heating resistor 2.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、従来の装置では以上のように構
成されているので、低温液化ガス液面検出センサ
を低温液化ガス貯槽5内に支持材6によつて取付
けることかつ熱電対の基準接点11は絶えず液中
に置く必要から低温液化ガス貯槽5内の最下端に
位置させねばならないことなどの理由のため、主
として固定式となつている。従つてあらかじめ配
設した位置に液面が在るか否かの判定をする場合
に供すもので、任意の液面位置における液面有無
の判定には不都合という欠点があつた。仮りに上
下自由な可動式にしようとすれば、測温接点3と
支準接点6とを継ぐ熱電対線の遊びを長く取ると
いう処置が必要となりこの場合、低温液化ガス液
面検出センサを動かすことに因り、断線の危険性
が伴い、またこの危険性を避けようとすれば、か
なり複雑な構造となるという問題点があつた。
However, since the conventional device is configured as described above, the low-temperature liquefied gas liquid level detection sensor is mounted in the low-temperature liquefied gas storage tank 5 by the support member 6, and the reference junction 11 of the thermocouple is constantly submerged in the liquid. It is mainly a fixed type because it has to be located at the lowest end in the low temperature liquefied gas storage tank 5. Therefore, it is used for determining whether a liquid level is present at a predetermined position, and has the disadvantage that it is inconvenient for determining the presence or absence of a liquid level at an arbitrary liquid level position. If you try to make it movable up and down, it will be necessary to take a long play in the thermocouple wire connecting the temperature measurement contact 3 and the support contact 6, and in this case, move the low temperature liquefied gas liquid level detection sensor. As a result, there is a risk of wire breakage, and if this risk is to be avoided, the structure becomes quite complicated.

この発明は従来のものの問題点を解消するため
なされたもので、簡単な構造で、任意の位置にお
ける液面の有無を判定できる低温液化ガス液面検
出センサを提供することを目的としている。
The present invention was made to solve the problems of the conventional sensor, and an object of the present invention is to provide a low temperature liquefied gas liquid level detection sensor that has a simple structure and can determine the presence or absence of a liquid level at any position.

〔問題点を解決するための手段〕 この発明に係る低温液化ガス液面検出センサ
は、加熱源、この加熱源によつて発熱する第1発
熱体、加熱源によつて発熱し、第1発熱体より低
温液化ガスの液面の変位方向に離れて並設した第
2発熱体、及び第1、第2発熱体のそれぞれの温
度を計測し起電力を発生する熱電対を備え、第
1、第2発熱体間の温度差により低温液化ガスの
液面位置を検知するようにしたものである。
[Means for Solving the Problems] The low-temperature liquefied gas liquid level detection sensor according to the present invention includes a heating source, a first heating element that generates heat by the heating source, and a first heating element that generates heat by the heating source. a thermocouple that measures the temperature of each of the first and second heating elements and generates an electromotive force; The liquid level position of the low temperature liquefied gas is detected based on the temperature difference between the second heating elements.

〔作用〕[Effect]

この発明における低温液化ガス液面検出センサ
においては、液面の変位方向に各々配設された第
1、第2発熱体のうち、例えば第1発熱体の温度
を基準として、第2発熱体の温度を検出し(第
1、第2発熱体の関係を反対にしても良い)、第
1、第2発熱体間に液面が位置するか否かの判定
を行うものである。
In the low-temperature liquefied gas liquid level detection sensor of the present invention, of the first and second heating elements disposed in the direction of displacement of the liquid level, for example, the temperature of the second heating element is set as a reference. The temperature is detected (the relationship between the first and second heating elements may be reversed), and it is determined whether the liquid level is located between the first and second heating elements.

〔実施例〕〔Example〕

以下、この発明の一実施を図について説明す
る。第1図において1〜13までの構成要素は従
来例と同様であり、2a,2bは第1、第2発熱
体、例えば第1、第2発熱抵抗体で、液面の変位
方向、例えば上下方向に数mmから1cm程度離れ
て、支持材6に固定されている。3a,3bはそ
れぞれ第1、第2発熱抵抗体の温度を測定するた
めの熱電対の第1、第2測温接点であり、電圧計
4と接続されている。また、第2図において15
は第1図の如き構成された場合の電圧計4で検知
される発生電圧特性曲線であり、液面高さに対す
る電圧を示すものである。,,はそれぞれ
第1図における液面位置に相当している。
Hereinafter, one embodiment of the present invention will be described with reference to the drawings. In FIG. 1, the constituent elements 1 to 13 are the same as those of the conventional example, and 2a and 2b are first and second heating elements, for example, first and second heating resistors, and the liquid level is displaced in the direction of displacement, for example up and down. It is fixed to the support member 6 at a distance of about several mm to 1 cm in the direction. 3a and 3b are first and second temperature measuring contacts of a thermocouple for measuring the temperatures of the first and second heating resistors, respectively, and are connected to the voltmeter 4. Also, in Figure 2, 15
is a generated voltage characteristic curve detected by the voltmeter 4 when configured as shown in FIG. 1, and shows the voltage with respect to the liquid level height. , , respectively correspond to the liquid level position in FIG.

このような装置を低温液化ガス貯槽に取り付け
た場合、液面の状態では、第1、第2発熱抵抗
体2a,2bの温度はそれぞれ低温液化ガス液相
部12の温度に比べ上昇しているが、上昇度は互
いに同程度となつている。それ故出力電圧として
は、ほとんど零であり、第2図の左側平坦部の様
な出力特性となる。また、液面の状態では第
1、第2発熱抵抗体2a,2bは共に低温液化ガ
ス液相部12に位置するためほぼ低温液化ガス液
相と同温度になり、やはり出力電圧としてはほと
んど零となり、第2図の右側平坦部の様な出力特
性となる。そして、液面の状態では、第1発熱
抵抵体2aは低温液化ガス気相部13に、第2発
熱抵抗体2bは低温液化ガス液相部12にそれぞ
れ位置することになりこの場合、第1発熱抵抗体
2aの温度は第2発熱抵抗体2bの温度より上昇
しているため、出力電圧としてある値が発生され
ることになる。従つて、この状態の出力電圧特性
が第2図の凸部に相当するもので、その時の出力
電圧としてV4が得られることとなる。
When such a device is installed in a low-temperature liquefied gas storage tank, at the liquid level, the temperatures of the first and second heating resistors 2a and 2b are respectively higher than the temperature of the low-temperature liquefied gas liquid phase section 12. However, the rate of increase is about the same. Therefore, the output voltage is almost zero, resulting in an output characteristic like the flat part on the left side of FIG. 2. In addition, in the liquid level state, the first and second heating resistors 2a and 2b are both located in the low temperature liquefied gas liquid phase part 12, so the temperature is almost the same as the low temperature liquefied gas liquid phase, and the output voltage is almost zero. This results in an output characteristic similar to the flat part on the right side of FIG. In the liquid level state, the first heating resistor 2a is located in the low-temperature liquefied gas vapor phase part 13, and the second heating resistor 2b is located in the low-temperature liquefied gas liquid phase part 12. Since the temperature of the first heating resistor 2a is higher than the temperature of the second heating resistor 2b, a certain value is generated as the output voltage. Therefore, the output voltage characteristic in this state corresponds to the convex portion in FIG. 2, and V4 is obtained as the output voltage at that time.

このように、第1、第2発熱抵抗体2a,2b
が共に低温液化ガス気相部13あるいは液相部1
2に位置する場合は電圧を発生せずに第1発熱抵
抗体2aが低温液化ガス気相部13に位置し、第
2発熱抵抗体2bが低温液化ガス液相部12に位
置する場合、つまり第1、第2発熱抵抗体2a,
2b間に液面がある場合のみ、或る大きさの電圧
を発生する。従つて、低温変化ガスの液面位置を
ON/OFFというデジタル的信号にて明確に判定
できることになる。
In this way, the first and second heating resistors 2a, 2b
are both low temperature liquefied gas gas phase part 13 or liquid phase part 1
2, no voltage is generated and the first heating resistor 2a is located in the low-temperature liquefied gas vapor phase section 13, and the second heating resistor 2b is located in the low-temperature liquefied gas liquid phase section 12, that is. First and second heating resistors 2a,
A voltage of a certain magnitude is generated only when there is a liquid level between 2b. Therefore, the liquid level position of the low temperature changing gas is
This means that it can be clearly determined using digital signals such as ON/OFF.

上記のように、近接した第1、第2発熱抵抗体
2a,2bによつて液面を検出するので、両者を
支持材6に固定し、支持材6を移動することによ
り、任意の液面を検出できる。第1、第2発熱抵
抗体2a,2b間を接続する熱電対線の長さも固
定で、短かくなり、断線の危険性も低下する。
As mentioned above, since the liquid level is detected by the first and second heating resistors 2a and 2b that are close to each other, by fixing both to the support member 6 and moving the support member 6, it is possible to detect any liquid level. can be detected. The length of the thermocouple wire connecting between the first and second heating resistors 2a and 2b is also fixed and shortened, and the risk of wire breakage is also reduced.

また、構造が簡単で扱い易いため、低温液化ガ
ス貯槽への出し入れ作業が容易となり、従つて判
定に要する操作が非常に容易となる。
In addition, since the structure is simple and easy to handle, it is easy to put it in and take it out of the low temperature liquefied gas storage tank, and therefore the operation required for determination is very easy.

上記実施例では、発熱体として発熱抵抗体を用
い、加熱源として電源を用いた場合について説明
したが、他の例として発熱体として受光発熱体を
用い、加熱源として光源を用いた場合にも、上記
実施例と同様の効果を奏する。また、これに限ら
ずある操作により発熱する構造体であれば良い。
In the above embodiment, a case has been described in which a heating resistor is used as a heating element and a power source is used as a heating source. However, as another example, a case in which a light-receiving heating element is used as a heating element and a light source is used as a heating source is also applicable. , the same effect as the above embodiment is achieved. Further, the present invention is not limited to this, and any structure that generates heat due to a certain operation may be used.

第1、第2発熱体間の距離は、上記実施例に限
るものではないが、あまり離れると液面検出精度
が悪くなり、近すぎると、互いに温度の影響を受
けるため、両者の温度差による出力電圧が得られ
なくなる。また、第1、第2発熱体は液面に垂直
でなくても、多少ななめに配置してもよい。
The distance between the first and second heating elements is not limited to the above example, but if they are too far apart, the liquid level detection accuracy will deteriorate, and if they are too close, they will be influenced by each other's temperature, so Output voltage cannot be obtained. Furthermore, the first and second heating elements do not have to be perpendicular to the liquid surface, but may be arranged somewhat diagonally.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、この発明によれば、加熱
源、この加熱源によつて発熱する第1発熱体、加
熱源によつて発熱し、第1発熱体より低温液化ガ
スの液面の変位方向に離れて並設した第2発熱
体、及び第1、第2発熱体のそれぞれの温度を計
測し起電力を発生する熱電対を備え、第1、第2
発熱体間の温度差により低温液化ガスの液面位置
を検知するようにしたことにより、簡単な構造
で、任意の位置における液面の有無を検出できる
低温液化ガス液面検出センサが得られる効果があ
る。
As described above, according to the present invention, there is a heating source, a first heating element that generates heat by the heating source, and a direction in which the liquid level of the liquefied gas that generates heat by the heating source and is lower than the first heating element is displaced. and a thermocouple that measures the temperature of each of the first and second heating elements and generates an electromotive force;
By detecting the liquid level position of low-temperature liquefied gas based on the temperature difference between the heating elements, it is possible to obtain a low-temperature liquefied gas liquid level detection sensor that can detect the presence or absence of a liquid level at any position with a simple structure. There is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の一実施例による低温液化
ガス液面検出センサを示す構成図、第2図は第1
図のセンサによる液面高さに対する発生電圧特性
曲線を示す特性図、第3図は従来の低温液化ガス
液面検出センサを示す構成図、第4図は、第3図
のセンサを取付けた低温液化ガス貯槽の断面図、
第5図は第3図のセンサによる液面高さに対する
発生電圧特性曲線を示す特性図である。 1……加熱源、2a……第1発熱体、2b……
第2発熱体、3a……第1熱電対測温接点、3b
……第2熱電対測温接点、2……液面。なお、図
中、同一符号は同一、又は相当部分を示す。
FIG. 1 is a configuration diagram showing a low-temperature liquefied gas level detection sensor according to an embodiment of the present invention, and FIG.
Figure 3 is a configuration diagram showing a conventional low-temperature liquefied gas liquid level detection sensor; Figure 4 is a low-temperature sensor equipped with the sensor shown in Figure 3. Cross-sectional view of liquefied gas storage tank,
FIG. 5 is a characteristic diagram showing a voltage characteristic curve generated by the sensor of FIG. 3 with respect to the liquid level height. 1... Heat source, 2a... First heating element, 2b...
Second heating element, 3a...First thermocouple temperature measuring junction, 3b
...Second thermocouple temperature measuring junction, 2...Liquid level. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】 1 加熱源、低温液化ガス中に設けられ上記加熱
源によつて発熱する第1発熱体、上記低温液化ガ
ス中に設けられ上記加熱源によつて発熱し、第1
発熱体より上記低温液化ガスの液面の変位方向に
離れて並設した第2発熱体、及び第1、第2発熱
体の温度差により起電力を発生するように配設し
た熱電対を備え、第1、第2発熱体間に液面があ
る時の温度差による起電力を検出することによ
り、上記低温液化ガスの液面位置を検知するよう
にした低温液化ガス液面検出センサ。 2 第1発熱体と第2発熱体を数mmから1cm程度
離れて並設した特許請求の範囲第1項記載の低温
液化ガス液面検出センサ。 3 加熱源は電源であり、発熱体は発熱抵抗体で
ある特許請求の範囲第1項又は第2項記載の低温
液化ガス液面検出センサ。 4 加熱源は光源であり、発熱体は受光発熱体で
ある特許請求の範囲第1項又は第2項記載の低温
液化ガス液面検出センサ。
[Scope of Claims] 1. A heating source, a first heating element provided in the low-temperature liquefied gas and generating heat by the heating source, a first heating element provided in the low-temperature liquefied gas and generating heat by the heating source;
A second heating element arranged in parallel apart from the heating element in the direction of displacement of the liquid surface of the low-temperature liquefied gas, and a thermocouple arranged so as to generate an electromotive force due to a temperature difference between the first and second heating elements. A low temperature liquefied gas liquid level detection sensor configured to detect the liquid level position of the low temperature liquefied gas by detecting an electromotive force due to a temperature difference when there is a liquid level between the first and second heating elements. 2. The low-temperature liquefied gas liquid level detection sensor according to claim 1, wherein the first heating element and the second heating element are arranged side by side at a distance of about several mm to 1 cm. 3. The low temperature liquefied gas liquid level detection sensor according to claim 1 or 2, wherein the heating source is a power source and the heating element is a heating resistor. 4. The low temperature liquefied gas liquid level detection sensor according to claim 1 or 2, wherein the heating source is a light source and the heating element is a light-receiving heating element.
JP14880485A 1985-07-04 1985-07-04 Sensor for detecting liquid level of low temperature liquefied gas Granted JPS628019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14880485A JPS628019A (en) 1985-07-04 1985-07-04 Sensor for detecting liquid level of low temperature liquefied gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14880485A JPS628019A (en) 1985-07-04 1985-07-04 Sensor for detecting liquid level of low temperature liquefied gas

Publications (2)

Publication Number Publication Date
JPS628019A JPS628019A (en) 1987-01-16
JPH0431339B2 true JPH0431339B2 (en) 1992-05-26

Family

ID=15461079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14880485A Granted JPS628019A (en) 1985-07-04 1985-07-04 Sensor for detecting liquid level of low temperature liquefied gas

Country Status (1)

Country Link
JP (1) JPS628019A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5782131A (en) * 1996-06-28 1998-07-21 Lord; Richard G. Flooded cooler with liquid level sensor
NL2003849C2 (en) * 2009-11-23 2011-05-24 Stichting Energie LEVEL SENSOR IN AN EVAPORATOR.
US8438919B2 (en) * 2010-07-23 2013-05-14 Rosemount Aerospace Inc. Systems and methods for liquid level sensing having a differentiating output
DE102011052775B4 (en) * 2011-08-17 2013-09-05 Thermofin Gmbh Arrangement and method for refrigerant level monitoring and control in refrigeration systems

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54118330A (en) * 1978-03-08 1979-09-13 Hitachi Ltd Detection of surface position of molten metal
JPS5544923A (en) * 1978-09-27 1980-03-29 Japan Atom Energy Res Inst Heater surface temperature measuring type level gage

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54118330A (en) * 1978-03-08 1979-09-13 Hitachi Ltd Detection of surface position of molten metal
JPS5544923A (en) * 1978-09-27 1980-03-29 Japan Atom Energy Res Inst Heater surface temperature measuring type level gage

Also Published As

Publication number Publication date
JPS628019A (en) 1987-01-16

Similar Documents

Publication Publication Date Title
US3321974A (en) Surface temperature measuring device
US6859471B2 (en) Method and system for providing thermal control of superluminescent diodes
EP0626573B1 (en) Convection thermocouple vacuum gauge
JPH0431339B2 (en)
US6437331B1 (en) Bolometer type infrared sensor with material having hysterisis
US5141330A (en) Thin-film quadrant temperature sensor for use in a system to control the alignment of a CO2 laser beam
US6453571B1 (en) Thermocouple tilt sensing device
JPS61240135A (en) Vacuum gauge
JPH0433378B2 (en)
JP4490580B2 (en) Infrared sensor
JPS5927223A (en) Liquid level detecting sensor
JPH04299225A (en) Clinical thermometer
JP2003098012A (en) Temperature measuring device and gas concentration measuring device using it
JPH07243851A (en) Tilt angle sensor
JPH04116464A (en) Fluid velocity sensor
JPS6171326A (en) Photodetector
JPH0459571B2 (en)
JP2908942B2 (en) Thermal flow sensor
JPH0674805A (en) Heat sensing flow rate sensor
JPH0712771A (en) Gas detector
JPH0516730B2 (en)
WO1993020406A1 (en) Tilt determination
JPS59184829A (en) Thermometer
SU1237917A1 (en) Device or measuring spectral absorption ability of electroconductive materials
SU1613882A1 (en) Heat flow sensor