JPH04310921A - Liquid crystal electro-optic element - Google Patents

Liquid crystal electro-optic element

Info

Publication number
JPH04310921A
JPH04310921A JP7645091A JP7645091A JPH04310921A JP H04310921 A JPH04310921 A JP H04310921A JP 7645091 A JP7645091 A JP 7645091A JP 7645091 A JP7645091 A JP 7645091A JP H04310921 A JPH04310921 A JP H04310921A
Authority
JP
Japan
Prior art keywords
liquid crystal
polysilane
light scattering
scattering film
initiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7645091A
Other languages
Japanese (ja)
Inventor
Eiji Chino
英治 千野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOUDO EIZOU GIJUTSU KENKYUSHO KK
Original Assignee
KOUDO EIZOU GIJUTSU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOUDO EIZOU GIJUTSU KENKYUSHO KK filed Critical KOUDO EIZOU GIJUTSU KENKYUSHO KK
Priority to JP7645091A priority Critical patent/JPH04310921A/en
Publication of JPH04310921A publication Critical patent/JPH04310921A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a liquid crystal display body having high display quality and reliability by making the resistivity of a light scattering film almost equal to a liquid crystal single body. CONSTITUTION:When a polysilane is used as a polymn. initiator of a light scattering film 1, the polysilane opens and changes into radicals by irradiation of UV ray. These radicals crosslink the polysilane in a three-dimensional state as well as act as a polymn. initiator to polymerize a UV curing resin. The polysilane which is soluble in a solvent becomes insoluble by irradiation of UV ray, and at the same time, low mol.wt. polysilanes and UV curing resin are polymerized and fixed to the polymer matrix. Thereby, elution of unreacted low mol.wt. matter and polymn. initiator as impurities into the liquid crystal is prevented, and as a result, the resistivity is increased.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、液晶テレビ,液晶プロ
ジェクター,液晶ディスプレイなどの液晶電気光学素子
に関し、さらには高精細液晶ライトバルブに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to liquid crystal electro-optical devices such as liquid crystal televisions, liquid crystal projectors, and liquid crystal displays, and more particularly to high-definition liquid crystal light valves.

【0002】0002

【発明の概要】本発明は液晶電気光学素子に関し、紫外
線硬化型高分子の重合開始剤としてポリシランを用いる
ことにより、光散乱膜の比抵抗を液晶単品と同じにし、
かつ安定なTFE駆動を可能として、表示品位を向上さ
せる。
SUMMARY OF THE INVENTION The present invention relates to a liquid crystal electro-optical element, which uses polysilane as a polymerization initiator for an ultraviolet curable polymer to make the specific resistance of a light scattering film the same as that of a single liquid crystal.
Moreover, it enables stable TFE driving and improves display quality.

【0003】0003

【従来の技術】図1は液晶電気光学素子の一般的構成を
示す模式的断面図である。図1に示したように光散乱膜
1は、ネマチック液晶5が粒子状または3次元ネットワ
ーク構造状高分子6中に分散した構造を持つ。光散乱膜
1は、電圧印加にともなって光散乱状態から光透過状態
に変化する。
2. Description of the Related Art FIG. 1 is a schematic cross-sectional view showing the general structure of a liquid crystal electro-optical element. As shown in FIG. 1, the light scattering film 1 has a structure in which nematic liquid crystals 5 are dispersed in polymers 6 in the form of particles or a three-dimensional network structure. The light scattering film 1 changes from a light scattering state to a light transmitting state as a voltage is applied.

【0004】この光散乱膜をディスプレイとして使用す
るには、図1のように、素子基板2に形成された回路素
子3、および画素電極8と対向基板4上に形成された透
明電極(共通電極)7で光散乱膜1を挟んで、印加電圧
で透過光量をコントロールすることによって、表示が可
能になる。光散乱膜をディスプレイとして使用すると、
従来の液晶表示素子に不可欠だった偏光板が不必要にな
るため、明るい表示素子を得ることが可能であり、高輝
度が望まれる高精細液晶ライトバルブには特に有望であ
る。
In order to use this light scattering film as a display, as shown in FIG. ) 7 with the light scattering film 1 in between, and by controlling the amount of transmitted light with an applied voltage, display is possible. When the light scattering film is used as a display,
Since the polarizing plate that was essential to conventional liquid crystal display elements is no longer necessary, it is possible to obtain a bright display element, and this is particularly promising for high-definition liquid crystal light valves where high brightness is desired.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
光散乱膜の比抵抗は109 Ω・cmと、液晶単体の1
012Ω・cmより低い。そのため、TFT(薄膜トラ
ンジスタ)素子と組み合わせた場合電圧保持率が低く、
極端な場合には駆動が不可能であった。また、透明電極
から構成される単純マトリックスの場合でも、表示の焼
き付きに代表される表示品位の低下が顕著であった。
[Problems to be Solved by the Invention] However, the specific resistance of the conventional light scattering film is 109 Ω・cm, which is
Lower than 0.012Ω・cm. Therefore, when combined with a TFT (thin film transistor) element, the voltage holding rate is low.
In extreme cases, driving was impossible. Furthermore, even in the case of a simple matrix composed of transparent electrodes, there was a noticeable deterioration in display quality, typified by display burn-in.

【0006】これらの原因は次のように考えられる。液
晶・高分子複合膜を作成する際に、従来の紫外線硬化型
樹脂と重合開始剤を使用した場合には、紫外線照射によ
りすみやかに重合する。しかし、重合開始剤は高分子マ
トリックスに組み込まれず、低分子の状態で残留する。 これが不純物として作用するので、光散乱膜の比抵抗が
低下する。あるいは、高分子マトリックス中から徐々に
液晶中に溶解するので、液晶表示体の特性,性能が経時
的に変化し、製品としての信頼性に問題があった。
[0006] The causes of these problems are thought to be as follows. When a conventional ultraviolet curable resin and polymerization initiator are used to create a liquid crystal/polymer composite film, the film quickly polymerizes when exposed to ultraviolet rays. However, the polymerization initiator is not incorporated into the polymer matrix and remains in a low molecular state. Since this acts as an impurity, the specific resistance of the light scattering film decreases. Alternatively, since it gradually dissolves into the liquid crystal from within the polymer matrix, the characteristics and performance of the liquid crystal display change over time, resulting in problems with product reliability.

【0007】本発明はこのような課題を解決するために
なされたもので、その目的とするところは、光散乱膜の
比抵抗を液晶単体とほぼ同じ値にし、表示品質、および
信頼性の高い液晶表示素子を提供することにある。
The present invention has been made to solve these problems, and its purpose is to make the resistivity of the light scattering film almost the same as that of the liquid crystal itself, and to achieve high display quality and reliability. An object of the present invention is to provide a liquid crystal display element.

【0008】[0008]

【課題を解決するための手段】このような目的を達成す
るために、本発明の液晶電気光学素子は、紫外線硬化型
樹脂中にネマチック液晶が分散されている光散乱膜を有
する液晶電気光学素子において、前記紫外線硬化型樹脂
の重合開始剤としてポリシランが含有されていることを
特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the liquid crystal electro-optical element of the present invention is a liquid crystal electro-optical element having a light scattering film in which nematic liquid crystal is dispersed in an ultraviolet curable resin. The method is characterized in that polysilane is contained as a polymerization initiator for the ultraviolet curable resin.

【0009】ポリシランとしては、ポリ(フェニルメチ
ルシリレン),ジメチルシリレンとフェニルメチルシリ
レンとの共重合体,ポリジヘキシルシリレンなどが好ま
しく用いられる。
As the polysilane, poly(phenylmethylsilylene), a copolymer of dimethylsilylene and phenylmethylsilylene, polydihexylsilylene, etc. are preferably used.

【0010】本発明に適用できるポリシランとしては下
記式で示されるものが代表例として挙げられる。
Typical examples of polysilanes applicable to the present invention include those represented by the following formula.

【0011】[0011]

【化1】[Chemical formula 1]

【0012】ポリシランは、紫外線を照射すると開裂し
ラジカルになる。そして、このラジカルによってポリシ
ランが3次元架橋すると同時に、ラジカルが重合開始剤
として作用し、紫外線硬化型樹脂が重合を始める。
[0012] When polysilane is irradiated with ultraviolet rays, it cleaves into radicals. Then, at the same time as the polysilane is three-dimensionally crosslinked by these radicals, the radicals act as a polymerization initiator, and the ultraviolet curable resin begins to polymerize.

【0013】紫外線硬化型樹脂としては、ポリエステル
アクリレート,エポキシアクリレート,ウレタンアクリ
レートなどのオリゴマー,エチルヘキシルアクリレート
,N−ビニルピロリドン,ヘキサンジオールジアクリレ
ート,ネオペンチルグリコールジアクリレート,トリメ
チロールプロパントリアクリレート,ジペンタエリスリ
トールヘキサアクリレートなどの反応性希釈剤の単独、
あるいはオリゴマーとの混合物が好ましく用いられる。
Examples of UV-curable resins include oligomers such as polyester acrylate, epoxy acrylate, and urethane acrylate, ethylhexyl acrylate, N-vinylpyrrolidone, hexanediol diacrylate, neopentyl glycol diacrylate, trimethylolpropane triacrylate, and dipentaerythritol. Reactive diluents alone, such as hexaacrylates,
Alternatively, a mixture with an oligomer is preferably used.

【0014】ポリシラン成分と紫外線硬化型樹脂の混合
割合は、紫外線硬化型高分子100重量部に対してポリ
シラン0.05〜2重量部混合される。ポリシランが0
.05重量部未満では重合開始剤としての作用があまり
期待できず、ポリシランが2重量部を越えると紫外線硬
化した後の樹脂が液晶により膨潤する傾向にある。
The mixing ratio of the polysilane component and the ultraviolet curable resin is 0.05 to 2 parts by weight of the polysilane per 100 parts by weight of the ultraviolet curable polymer. Polysilane is 0
.. If the polysilane is less than 0.5 parts by weight, it cannot be expected to function as a polymerization initiator very well, and if the polysilane exceeds 2 parts by weight, the resin after being cured by ultraviolet rays tends to swell with the liquid crystal.

【0015】光散乱膜を作成するには、まず上記のポリ
シランと紫外線硬化型樹脂との混合物に液晶を添加混合
しなければならないが、液晶の混合割合はポリシランと
紫外線硬化型樹脂と液晶との混合物の25〜95重量%
が望ましい。液晶の割合が25重量%未満ではコントラ
ストが不十分であり、また、液晶の割合が95重量%を
越えると光散乱能力が低下する。
[0015] In order to create a light scattering film, it is first necessary to add and mix liquid crystal to the above mixture of polysilane and ultraviolet curable resin, but the mixing ratio of liquid crystal is determined by the proportion of polysilane, ultraviolet curable resin, and liquid crystal. 25-95% by weight of the mixture
is desirable. When the proportion of liquid crystal is less than 25% by weight, the contrast is insufficient, and when the proportion of liquid crystal exceeds 95% by weight, the light scattering ability decreases.

【0016】このようにして得られた混合物は、2枚の
基板の間に挟む、あるいは、1枚の基板上に塗布するな
どした後に、紫外線を照射して硬化させる。
The mixture thus obtained is sandwiched between two substrates or coated on one substrate, and then cured by irradiation with ultraviolet rays.

【0017】[0017]

【作用】本発明によれば、紫外線照射前は溶剤中に可溶
であったポリシランが、紫外線照射によって不溶化する
と同時に、ポリシランと紫外線硬化型樹脂とが重合反応
し、高分子マトリックスに固定される。従って、未反応
の低分子量物および重合開始剤が液晶中に不純物として
溶け出すことはなくなり、その結果、比抵抗が上昇する
[Operation] According to the present invention, the polysilane, which was soluble in the solvent before irradiation with ultraviolet rays, becomes insolubilized by irradiation with ultraviolet rays, and at the same time, the polysilane and the ultraviolet curable resin undergo a polymerization reaction and are fixed in the polymer matrix. . Therefore, unreacted low molecular weight substances and polymerization initiators do not dissolve into the liquid crystal as impurities, and as a result, the specific resistance increases.

【0018】[0018]

【実施例】以下、図面を参照しつつ本発明の実施例を詳
細に説明する。
Embodiments Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

【0019】図1は従来例の図1に示した液晶電気光学
素子と同様の構造を有する。すなわち、光散乱膜1,素
子基板2,回路素子3,対向基板4,ネマチック液晶5
,粒子状あるいは3次元ネットワーク構造状高分子6,
対向電極7,画素電極8,シール剤9を有する。電圧無
印加状態では光散乱膜は光散乱状態であり、透明電極あ
るいはTFT素子により電圧を印加することにより光透
過状態に変化する。
FIG. 1 has a structure similar to that of the conventional liquid crystal electro-optical element shown in FIG. That is, a light scattering film 1, an element substrate 2, a circuit element 3, a counter substrate 4, a nematic liquid crystal 5
, particulate or three-dimensional network structured polymer 6,
It has a counter electrode 7, a pixel electrode 8, and a sealant 9. The light scattering film is in a light scattering state when no voltage is applied, and changes to a light transmitting state by applying a voltage through a transparent electrode or a TFT element.

【0020】この液晶電気光学素子は次のようにして作
成した。
This liquid crystal electro-optical device was produced as follows.

【0021】(実施例1)ポリシランとしてはフェニル
メチルポリシラン(以下、MPS)を使用し、紫外線硬
化樹脂トリプロピレングリコルジアクリレート(以下、
TPGDA)と、MPS:TPGDA=1:100で混
合した。この混合物と液晶PN−001(ロディック社
製)とを混合物:液晶=25:75(重量比)の割合で
混合した。これらの混合物を、あらかじめ組み立ててお
いたパネルに真空封入した。ギャップは5ミクロンであ
った。次に、1500mJ/cm2 の紫外線を照射し
、硬化を行った。
(Example 1) Phenylmethylpolysilane (hereinafter referred to as MPS) was used as the polysilane, and ultraviolet curing resin tripropylene glycoldiacrylate (hereinafter referred to as
TPGDA) and MPS:TPGDA=1:100. This mixture and liquid crystal PN-001 (manufactured by Roddick) were mixed at a ratio of mixture:liquid crystal=25:75 (weight ratio). These mixtures were vacuum sealed into preassembled panels. The gap was 5 microns. Next, 1500 mJ/cm2 of ultraviolet rays were irradiated to effect curing.

【0022】得られた液晶セルの比抵抗は、2.1×1
011Ω・cm、コントラストは1:130であった。 このセルを60度乾熱の条件下に放置したところ200
0時間経過しても表示不良は発生しなかった。
The specific resistance of the obtained liquid crystal cell was 2.1×1
011 Ω·cm, and the contrast was 1:130. When this cell was left under dry heat conditions of 60 degrees, the
No display failure occurred even after 0 hours had elapsed.

【0023】(実施例2)実施例1における混合物の代
わりに、MPS:TPGDA=0.2:100の割合で
混合した混合物を、混合物:液晶(PN−001)=2
5:75の割合で混合した。それ以外は、実施例1と同
様にして液晶セルを組み立てた。得られた液晶セルの比
抵抗は、1.3×1010Ω・cm、コントラストは1
:105であった。このセルを60度乾熱の条件下に放
置したところ2000時間経過しても表示不良は発生し
なかった。
(Example 2) Instead of the mixture in Example 1, a mixture prepared at a ratio of MPS:TPGDA=0.2:100 was used as a mixture: liquid crystal (PN-001)=2
They were mixed at a ratio of 5:75. Other than that, a liquid crystal cell was assembled in the same manner as in Example 1. The specific resistance of the obtained liquid crystal cell was 1.3×1010 Ω・cm, and the contrast was 1.
:105. When this cell was left under dry heat conditions of 60 degrees, no display defects occurred even after 2000 hours.

【0024】(比較例)実施例1におけるポリシランの
代わりに、重合開始剤として2,4−ジエチルオキサン
トンを、2,4−ジエチルオキサントン:TPGDA=
0.5:100の割合で混合した。それ以外は、実施例
1と同様にして液晶セルを組み立てた。得られた液晶セ
ルの比抵抗は、6.5×107 Ω・cm、コントラス
トは1:106であった。このセルを60度乾熱の条件
下に放置したところ500時間経過後、10枚中8枚の
パネルで表示不良が発生した。
(Comparative Example) Instead of the polysilane in Example 1, 2,4-diethyloxanthone was used as a polymerization initiator, and 2,4-diethyloxanthone:TPGDA=
They were mixed at a ratio of 0.5:100. Other than that, a liquid crystal cell was assembled in the same manner as in Example 1. The specific resistance of the obtained liquid crystal cell was 6.5×10 7 Ω·cm, and the contrast was 1:10 6 . When this cell was left under dry heat conditions of 60 degrees Celsius, display defects occurred in 8 out of 10 panels after 500 hours.

【0025】[0025]

【発明の効果】以上説明したように、本発明によれば、
ポリシランを重合開始剤に適用することにより、低分子
量の状態で残留した重合開始剤が液晶中に不純物として
存在することがなくなり、光散乱膜の比抵抗が液晶単品
並みに向上する。その結果、安定なTFT駆動が可能に
なり、表示品位も向上する。
[Effects of the Invention] As explained above, according to the present invention,
By applying polysilane as a polymerization initiator, the polymerization initiator remaining in a low molecular weight state is no longer present as an impurity in the liquid crystal, and the specific resistance of the light scattering film is improved to the same level as that of a single liquid crystal. As a result, stable TFT driving becomes possible and display quality is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】液晶電気光学素子の一般的な構成を示す模式的
断面図である。
FIG. 1 is a schematic cross-sectional view showing a general configuration of a liquid crystal electro-optical element.

【符号の説明】[Explanation of symbols]

1  光散乱膜 2  素子基板 3  回路素子 4  対向基板 5  ネマチック液晶 6  粒子状あるいは3次元ネットワーク構造状高分子
7  対向電極 8  画素電極 9  シール剤
1 Light scattering film 2 Element substrate 3 Circuit element 4 Counter substrate 5 Nematic liquid crystal 6 Particulate or three-dimensional network structured polymer 7 Counter electrode 8 Pixel electrode 9 Sealing agent

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  紫外線硬化型樹脂中にネマチック液晶
が分散されている光散乱膜を有する液晶電気光学素子に
おいて、前記紫外線硬化型樹脂の重合開始剤としてポリ
シランが含有されていることを特徴とする液晶電気光学
素子。
1. A liquid crystal electro-optical element having a light scattering film in which nematic liquid crystal is dispersed in an ultraviolet curable resin, characterized in that polysilane is contained as a polymerization initiator for the ultraviolet curable resin. Liquid crystal electro-optical element.
【請求項2】  前記紫外線硬化型樹脂100重量部に
ポリシランが0.05〜2重量部混合されていることを
特徴とする請求項1に記載の液晶電気光学素子。
2. The liquid crystal electro-optical element according to claim 1, wherein 0.05 to 2 parts by weight of polysilane is mixed with 100 parts by weight of the ultraviolet curable resin.
【請求項3】  前記ネマチック液晶が、ポリシランと
紫外線硬化型樹脂とネマチック液晶との全体量に対して
25〜95重量%含有されていることを特徴とする請求
項1に記載の液晶電気光学素子。
3. The liquid crystal electro-optical element according to claim 1, wherein the nematic liquid crystal is contained in an amount of 25 to 95% by weight based on the total amount of polysilane, ultraviolet curable resin, and nematic liquid crystal. .
JP7645091A 1991-04-09 1991-04-09 Liquid crystal electro-optic element Pending JPH04310921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7645091A JPH04310921A (en) 1991-04-09 1991-04-09 Liquid crystal electro-optic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7645091A JPH04310921A (en) 1991-04-09 1991-04-09 Liquid crystal electro-optic element

Publications (1)

Publication Number Publication Date
JPH04310921A true JPH04310921A (en) 1992-11-02

Family

ID=13605491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7645091A Pending JPH04310921A (en) 1991-04-09 1991-04-09 Liquid crystal electro-optic element

Country Status (1)

Country Link
JP (1) JPH04310921A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06148605A (en) * 1992-11-06 1994-05-27 Semiconductor Energy Lab Co Ltd Liquid crystal electrooptical device
WO1995004791A1 (en) * 1993-08-06 1995-02-16 Minnesota Mining And Manufacturing Company Light modulating device having a silicon-containing matrix
US5641426A (en) * 1994-04-29 1997-06-24 Minnesota Mining And Manufacturing Company Light modulating device having a vinyl ether-based matrix

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04227843A (en) * 1990-05-29 1992-08-17 Merck Patent Gmbh Method for producing liquid crystal capsule
JPH04240614A (en) * 1991-01-24 1992-08-27 Seiko Epson Corp Liquid crystal electrooptical element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04227843A (en) * 1990-05-29 1992-08-17 Merck Patent Gmbh Method for producing liquid crystal capsule
JPH04240614A (en) * 1991-01-24 1992-08-27 Seiko Epson Corp Liquid crystal electrooptical element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06148605A (en) * 1992-11-06 1994-05-27 Semiconductor Energy Lab Co Ltd Liquid crystal electrooptical device
WO1995004791A1 (en) * 1993-08-06 1995-02-16 Minnesota Mining And Manufacturing Company Light modulating device having a silicon-containing matrix
US5585035A (en) * 1993-08-06 1996-12-17 Minnesota Mining And Manufacturing Company Light modulating device having a silicon-containing matrix
US5641426A (en) * 1994-04-29 1997-06-24 Minnesota Mining And Manufacturing Company Light modulating device having a vinyl ether-based matrix

Similar Documents

Publication Publication Date Title
JP2933805B2 (en) Polymer-dispersed liquid crystal composite film, liquid crystal display device, and method of manufacturing the same
JP3070777B2 (en) Liquid crystal material and display cell using the same
JP3046397B2 (en) Liquid crystal display device
CN110794619B (en) Liquid crystal display panel and manufacturing method thereof
USRE37219E1 (en) Method of fabricating a polymer dispersed liquid crystal panel with measuring thickness, adjusting then hardening
JP3271316B2 (en) Method for manufacturing light modulation element
JPH04240614A (en) Liquid crystal electrooptical element
JPH04310921A (en) Liquid crystal electro-optic element
JP2827720B2 (en) Liquid crystal optical element and manufacturing method thereof
JP2880354B2 (en) Liquid crystal display device and method of manufacturing the same
JP3205503B2 (en) Liquid crystal display device and manufacturing method thereof
JPH04240613A (en) Liquid crystal electrooptical element
JPH0651351A (en) Electric field double refraction control type liquid crystal element and its production
KR100387230B1 (en) Method for manufacturing liquid crystal display panel
JPH09281507A (en) Spacer for liquid crystal display element and liquid crystal display element
JPH06102493A (en) Production of high polymer dispersion type liquid crystal display element
JPH05158020A (en) Production of liquid crystal electrooptical element
JPH0695083A (en) Liquid crystal optical element
JPH04323616A (en) Liquid crystal electrooptical element
JP3161111B2 (en) Method for manufacturing polymer-dispersed liquid crystal display device
JPH101673A (en) Liquid crystal display element
JPH0743730A (en) Liquid crystal display element
JPH11349949A (en) Polymer dispersion type liquid crystal element and its production
JP2784620B2 (en) Liquid crystal electro-optical device
JP3080285B2 (en) Liquid crystal electro-optical device