JPH04310567A - Carbon fiber reinforced carbon composite material having low coefficient of friction - Google Patents

Carbon fiber reinforced carbon composite material having low coefficient of friction

Info

Publication number
JPH04310567A
JPH04310567A JP3073290A JP7329091A JPH04310567A JP H04310567 A JPH04310567 A JP H04310567A JP 3073290 A JP3073290 A JP 3073290A JP 7329091 A JP7329091 A JP 7329091A JP H04310567 A JPH04310567 A JP H04310567A
Authority
JP
Japan
Prior art keywords
carbon
carbon fiber
composite material
thermal expansion
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3073290A
Other languages
Japanese (ja)
Inventor
Hirohisa Miura
三浦 宏久
Kunihiko Imahashi
今橋 邦彦
Koji Shimoda
好司 霜田
Yoshiteru Nakagawa
喜照 中川
Takayuki Azuma
隆行 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Toyota Motor Corp
Original Assignee
Osaka Gas Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Toyota Motor Corp filed Critical Osaka Gas Co Ltd
Priority to JP3073290A priority Critical patent/JPH04310567A/en
Publication of JPH04310567A publication Critical patent/JPH04310567A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a carbon fiber reinforced carbon composite material having a low coefficient of friction. CONSTITUTION:This carbon fiber reinforced carbon composite material consists of a base composed of carbon fiber reinforced carbon and 1-20wt.% metal boride powder and/or fiber having >=1,800 deg.C melting point, hardly being reacted with carbon of the base, embedded in the base. TiB2, ZrB2, CrB or CrB2 may be used as the metal boride. When content of the carbon fiber is <=40wt.%, apparent density of the composite material is >=1.65g/cm<2> and an average thermal expansion coefficient alpha1 of the carbon fiber reinforced carbon of the base at 20-1,000 deg.C and average thermal expansion coefficient alpha2 of the metal boride at 20-1,000 deg.C have a correlation shown by the formula -2<=alpha1-alpha2<=+3.5, the carbon fiber reinforced carbon composite material has more excellent wear resistance than the base itself not containing the metal boride.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、低摩擦係数をもち、耐
熱性および耐酸化性に優れ、ブッシユ、スラストワッシ
ヤ、ピストンリング、ポンプのベーン、ロ−タ、スリ−
ブ、高温用軸受けなどに利用して好適な炭素繊維強化炭
素複合材料に関する。本発明の炭素複合材料は、乾式摺
動下で摩擦係数が低く、耐焼付き性に優れる特性を有し
、機械構造体に利用してそのフリクションロス低減に寄
与する。このため、本発明の炭素複合材料は摺動部材、
特に高温下とか無潤滑状態で使用される摺動部材として
使用できる。
[Industrial Application Field] The present invention has a low coefficient of friction, excellent heat resistance and oxidation resistance, and is applicable to bushes, thrust washers, piston rings, pump vanes, rotors, sleeves, etc.
The present invention relates to a carbon fiber-reinforced carbon composite material suitable for use in bearings, high-temperature bearings, and the like. The carbon composite material of the present invention has a low coefficient of friction under dry sliding and has excellent seizure resistance, and can be used in mechanical structures to contribute to reducing friction loss. Therefore, the carbon composite material of the present invention can be used as a sliding member,
In particular, it can be used as a sliding member used at high temperatures or without lubrication.

【0002】0002

【従来の技術】従来、機械構造体の摺動部分はその耐焼
付き性が低いので、通常はオイル潤滑下で使用される。 乾式下で使用する摺動部材としてはオイルを含浸した焼
結材、銅系の焼結合金が知られている。一方、高温下と
か無潤滑状態で使用される材料には、低摩擦特性と耐熱
性および耐摩耗性が要求される。かかる材料として炭素
材料が知られている。炭素材料は炭素粉末とピッチ粉末
とを焼き固めたもの、高温で焼結することにより黒鉛化
したものが使用されている。
2. Description of the Related Art Conventionally, sliding parts of mechanical structures have low seizure resistance and are therefore usually used under oil lubrication. Sintered materials impregnated with oil and copper-based sintered alloys are known as sliding members used under dry conditions. On the other hand, materials used at high temperatures or without lubrication are required to have low friction characteristics, heat resistance, and wear resistance. Carbon materials are known as such materials. The carbon material used is one obtained by baking and solidifying carbon powder and pitch powder, or one obtained by graphitizing by sintering at high temperature.

【0003】近年、かかる目的で使用される炭素材料の
強度を向上させた材料として、炭素繊維強化炭素材料か
らなるものが提供されている。この炭素繊維強化炭素材
料は、例えば、炭化又は黒鉛化されかつ酸化処理などの
表面処理の施された強化材としての炭素繊維に、タ−ル
、ピッチまたは熱硬化性樹脂などの結合材としての液状
炭素材料を含浸し、不活性雰囲気下で焼成、必要に応じ
て黒鉛化することにより製造される(特開昭63−20
6351号公報)。
[0003] In recent years, carbon fiber-reinforced carbon materials have been provided as materials with improved strength of carbon materials used for such purposes. This carbon fiber-reinforced carbon material is made of, for example, carbon fibers that are carbonized or graphitized and subjected to surface treatment such as oxidation treatment as a reinforcing material, and combined with tar, pitch, or thermosetting resin as a binder. It is manufactured by impregnating a liquid carbon material, firing it in an inert atmosphere, and graphitizing it if necessary.
6351).

【0004】さらに、炭素繊維強化炭素材料の摩擦係数
を高めることを目的として、炭素繊維強化炭素材料に金
属とか炭化物セラミック粉を配合した炭素繊維強化炭素
複合材料が報告されている(特開昭63−13926号
公報、特開昭63−60173号公報)。
Furthermore, for the purpose of increasing the friction coefficient of carbon fiber reinforced carbon materials, a carbon fiber reinforced carbon composite material has been reported in which carbon fiber reinforced carbon materials are blended with metal or carbide ceramic powder (Japanese Unexamined Patent Application Publication No. 63 -13926, Japanese Unexamined Patent Publication No. 63-60173).

【0005】[0005]

【発明が解決しようとする課題】従来の炭素繊維強化炭
素材料は室温等の比較的低い温度域とか低荷重時におい
て、摩擦係数μが低いという特色を持つ。しかし高温下
とか高荷重下では比較的摩擦係数が高い。本発明は、こ
の問題点に鑑みてなされたものであり、低い摩擦係数を
持つ炭素繊維強化炭素複合材料を提供することを目的と
する。さらに、本発明は、低い摩擦係数を持つとともに
高強度で耐摩耗性に優れた炭素繊維強化炭素複合材料を
提供することを目的とする。
[Problems to be Solved by the Invention] Conventional carbon fiber-reinforced carbon materials have a characteristic of having a low coefficient of friction μ in a relatively low temperature range such as room temperature or under a low load. However, under high temperatures or high loads, the coefficient of friction is relatively high. The present invention has been made in view of this problem, and an object of the present invention is to provide a carbon fiber-reinforced carbon composite material having a low coefficient of friction. A further object of the present invention is to provide a carbon fiber-reinforced carbon composite material that has a low coefficient of friction, high strength, and excellent wear resistance.

【0006】[0006]

【課題を解決するための手段】本発明の炭素繊維強化炭
素複合材料は、基材が炭素繊維強化炭素で構成され、該
基材中に1800℃以上の融点を有し該基材の炭素と反
応しにくい金属硼化物粉末および/または繊維が1〜2
0重量%埋設されていることを特徴とする。本発明者は
、炭素繊維強化炭素材料に各種のセラミックスを配合し
て各種の炭素繊維強化炭素複合材料を作り、得られた複
合材料の密度、強度、乾式下および湿式下の摩擦係数お
よび摩耗量を詳細に調べてきた。セラミックスとして金
属硼化物を使用した場合には、他のセラミックスを配合
した場合とは異なり、基材の炭素繊維強化炭素材料より
低い摩擦係数を持つことが判明した。
[Means for Solving the Problems] The carbon fiber-reinforced carbon composite material of the present invention has a base material made of carbon fiber-reinforced carbon, and has a melting point of 1800°C or higher and a carbon fiber of the base material. 1 to 2 metal boride powders and/or fibers that are difficult to react
It is characterized by being buried at 0% by weight. The present inventor created various carbon fiber-reinforced carbon composite materials by blending various ceramics with carbon fiber-reinforced carbon materials, and the density, strength, friction coefficient under dry and wet conditions, and amount of wear of the resulting composite materials. have been investigated in detail. It has been found that when metal boride is used as the ceramic, it has a lower coefficient of friction than the carbon fiber-reinforced carbon material of the base material, unlike when other ceramics are mixed.

【0007】そこで、本発明者等は、一部の知見を特願
平1−341883および特願平2−163388とし
て特許出願した。これら特許出願した発明は、主に炭素
繊維強化炭素材料からなる基材に特色を持つもので、自
己焼結性をもつ炭素粉末と完全炭化前の未炭化炭素繊維
とを一体的に焼結したつした焼結体であり、耐摩耗性が
特に優れている。そして、この焼結体を基材としてこれ
に各種セラミックスを配合した炭素繊維強化炭素複合材
料は、優れた耐摩耗性とともに、セラミックスを選択す
ることにより、所望の摩擦係数が得られる。
[0007] Therefore, the inventors of the present invention filed patent applications for some of their findings in Japanese Patent Application No. 1-341883 and Japanese Patent Application No. 2-163388. These patented inventions are mainly characterized by a base material made of carbon fiber-reinforced carbon material, and are made by integrally sintering carbon powder with self-sintering properties and uncarbonized carbon fibers before complete carbonization. It is a solid sintered body with particularly excellent wear resistance. A carbon fiber-reinforced carbon composite material made of this sintered body as a base material and mixed with various ceramics has excellent wear resistance and, by selecting the ceramic, can obtain a desired coefficient of friction.

【0008】本発明者は、さらに基材となる炭素繊維強
化炭素材料の範囲を広げ、かつ広い範囲のセラミックス
を組合わせて研究した結果、低い摩擦係数をもちかつ構
造材として使用できる機械的強度をもつ新たな炭素繊維
強化炭素複合材料を見出し、本発明を完成したものであ
る。本発明の炭素繊維強化炭素複合材料は、炭素繊維強
化炭素で構成された基材と1800℃以上の融点を有し
該基材の炭素と反応しにくい金属硼化物粉末および/ま
たは繊維1〜20重量%とからなる。
The present inventor has further expanded the range of carbon fiber-reinforced carbon materials that can be used as base materials, and as a result of research on combining a wide range of ceramics, has found a material with a low coefficient of friction and mechanical strength that can be used as a structural material. The present invention was completed by discovering a new carbon fiber-reinforced carbon composite material having the following characteristics. The carbon fiber-reinforced carbon composite material of the present invention comprises a base material made of carbon fiber-reinforced carbon, and metal boride powder and/or fibers 1 to 20 that have a melting point of 1800°C or higher and are difficult to react with the carbon of the base material. % by weight.

【0009】基材は炭素繊維とマトリツクス炭素とから
構成されている。炭素繊維としては、PAN(ポリアク
リロニトリル)、石炭または石油系ピッチを原料として
紡糸し、炭化した炭素繊維が使用できる。好ましい炭素
繊維として、ピッチ系の光学的等方性の炭素繊維がある
。この光学的等方性炭素繊維は繊維方向による熱膨張係
数の異方性がなく20〜1000℃の範囲の平均熱膨張
係数は2〜4×10−6/℃である。また、PAN系お
よびピッチ系で、高強度、高剛性の光学的異方性をもつ
炭素繊維が知られている。この炭素繊維は、繊維方向の
熱膨張係数が室温から400℃程度まで負の係数をもち
、400〜1000℃の熱膨張係数は0〜2×10−6
/℃であり、かつ繊維の長手方向とそれに直行する方向
の熱膨張係数が異なる。この繊維も用途によっては充分
に活用できる。
[0009] The base material is composed of carbon fibers and matrix carbon. As the carbon fiber, carbon fiber spun using PAN (polyacrylonitrile), coal, or petroleum pitch as a raw material and carbonized can be used. A preferred carbon fiber is a pitch-based optically isotropic carbon fiber. This optically isotropic carbon fiber has no anisotropy in thermal expansion coefficient depending on the fiber direction, and has an average thermal expansion coefficient of 2 to 4 x 10-6/°C in the range of 20 to 1000°C. Further, PAN-based and pitch-based carbon fibers having high strength, high rigidity, and optical anisotropy are known. This carbon fiber has a negative thermal expansion coefficient in the fiber direction from room temperature to about 400°C, and a thermal expansion coefficient of 0 to 2 x 10-6 from 400 to 1000°C.
/°C, and the coefficient of thermal expansion in the longitudinal direction of the fiber is different from that in the direction perpendicular thereto. This fiber can also be fully utilized depending on the purpose.

【0010】これら炭素繊維の繊維長さは、短繊維、長
繊維に限らない。しかし、短繊維の場合には0.01〜
50mmのものを使用することができる。特に、0.0
3〜10mmのものが混合のしやすさ、アスペクト比の
関係から好ましい。長すぎては繊維同士が絡みあい分散
性が低下し、ひいては製品特性の均一性に劣り、また0
.01mmより短くては製品の強度が急激に低下して好
ましくない。また、繊維径としては、5〜25μm程度
のものが好ましい。さらに、これらの繊維からなる不織
布またはコ−ティング布として使用することもできる。
[0010] The fiber length of these carbon fibers is not limited to short fibers or long fibers. However, in the case of short fibers, 0.01~
A 50mm one can be used. In particular, 0.0
A diameter of 3 to 10 mm is preferred from the viewpoint of ease of mixing and aspect ratio. If the length is too long, the fibers will become entangled with each other and the dispersibility will decrease, resulting in poor uniformity of product properties.
.. If it is shorter than 0.1 mm, the strength of the product will drop rapidly, which is not preferable. Further, the fiber diameter is preferably about 5 to 25 μm. Furthermore, these fibers can also be used as nonwoven fabrics or coated fabrics.

【0011】炭素繊維は、さらにタ−ル、ピッチ、有機
高分子などの粘結成分を含有する材料で表面処理し、結
合材とのなじみ性を向上させることが好ましい。この表
面処理は、炭素繊維100重量部に100〜1000重
量部程度の粘結成分含有材料を加えて攪拌し、有機溶媒
により洗浄後、乾燥して行うことができる。炭素繊維は
、必要に応じて分散処理される。すなわち、乾燥させた
繊維が、塊状化または凝集していることがあるので、こ
のような場合には、通常の粉体ミル、アトマイザ−、パ
ルバライザ−などの任意の手段により分散を行う。
[0011] It is preferable that the carbon fiber is further surface-treated with a material containing a caking component such as tar, pitch, or organic polymer to improve its compatibility with the binder. This surface treatment can be carried out by adding about 100 to 1000 parts by weight of a material containing a viscous component to 100 parts by weight of carbon fibers, stirring the mixture, washing with an organic solvent, and drying. The carbon fibers are subjected to a dispersion treatment if necessary. That is, since the dried fibers may be lumped or aggregated, in such a case, dispersion is carried out by any means such as a conventional powder mill, an atomizer, or a pulverizer.

【0012】マトリックス炭素としては、フェノール樹
脂等の樹脂を熱分解して炭化したもの、石炭または石油
ピッチを加熱してさらに炭化したもの、コークス粉砕品
、メソカーボンマイクロビーズのように自己焼結性をも
つ粉、CVDによる気相法で得られる炭素等が利用でき
る。金属硼化物としては、1800℃以上の高融点を有
し、複合材製造時に炭素と反応しにくいものであること
が必要である。かかる金属硼化物として、TiB2 、
ZrB2 、CrB、CrB2 等を挙げることができ
る。 なお、後で説明するが金属硼化物としては、前記高融点
、炭素と反応しにくいという条件以外に、低い熱膨張係
数(α2 )をもつことが好ましい。低熱膨張であると
いう観点から、TiB2 (α2 ;7.6〜8.3×
10−6/℃)、ZrB2 (α2 ;5.3〜6.2
×10−6/℃)が推奨される。
[0012] Matrix carbon can be carbonized by thermal decomposition of resin such as phenol resin, carbonized by heating coal or petroleum pitch, crushed coke, or self-sintering materials such as mesocarbon microbeads. Powder with a carbon dioxide, carbon obtained by a vapor phase method using CVD, etc. can be used. The metal boride needs to have a high melting point of 1800° C. or higher and be difficult to react with carbon during composite material production. Such metal borides include TiB2,
ZrB2, CrB, CrB2, etc. can be mentioned. As will be explained later, the metal boride preferably has a low coefficient of thermal expansion (α2) in addition to the above-mentioned conditions of high melting point and being difficult to react with carbon. From the viewpoint of low thermal expansion, TiB2 (α2; 7.6 to 8.3×
10-6/℃), ZrB2 (α2; 5.3-6.2
×10-6/°C) is recommended.

【0013】金属硼化物の粉末を採用する場合は、基材
とのなじみ性、分散性および複合材としての強度および
耐摩耗性を考慮して、粒径0.1〜10μmのものが好
ましく、より好ましくは粒径0.3〜5μmのものがよ
い。粒径が0.1μmより小さいと均一混合が難しく、
粒径が10μmより大きいと異常摩耗を起こす可能性が
ある。金属硼化物の繊維を採用する場合は、基材とのな
じみ性、分散性および複合材としての強度および耐摩耗
性を考慮して、直径0.7〜40μm、長さ0.01〜
8mmのものが好ましく、より好ましくは直径1〜15
μm、長さ0.05〜3mmのものがよい。なお、繊維
には、ウイスカ、セラミックス繊維が含まれる。
When a metal boride powder is used, it is preferable to have a particle size of 0.1 to 10 μm in consideration of compatibility with the base material, dispersibility, and strength and wear resistance as a composite material. More preferably, the particle size is 0.3 to 5 μm. If the particle size is smaller than 0.1 μm, uniform mixing is difficult;
If the particle size is larger than 10 μm, abnormal wear may occur. When using metal boride fibers, the diameter should be 0.7 to 40 μm and the length should be 0.01 to 40 μm, taking into account compatibility with the base material, dispersibility, strength and abrasion resistance as a composite material.
A diameter of 8 mm is preferable, and a diameter of 1 to 15 mm is more preferable.
It is preferable to have a length of 0.05 to 3 mm. Note that the fibers include whiskers and ceramic fibers.

【0014】本発明の炭素繊維強化炭素複合材料には、
金属硼化物と共に他の硼化物、例えば炭化硼素、窒化硼
素を配合することができる。配合割合は金属硼化物を含
め全硼化物の割合が20%以内であるのが良い。多くの
試験結果から、本発明者は、炭素繊維強化炭素複合材料
を構成する基材の熱膨張係数と金属硼化物の熱膨張係数
が近い程、炭素繊維強化炭素複合材料の材料強度等の機
械的性質が向上することを知見している。本発明の炭素
繊維強化炭素複合材料の使用が期待される20〜100
0℃の温度範囲で、基材を構成する炭素繊維強化炭素材
料の平均熱膨張係数は比較的低く、逆に、金属硼化物の
平均熱膨張係数は高い。
The carbon fiber reinforced carbon composite material of the present invention includes:
Other borides, such as boron carbide and boron nitride, can be blended with the metal boride. The blending ratio is preferably such that the total boride content, including metal borides, is within 20%. Based on numerous test results, the present inventor has found that the closer the thermal expansion coefficient of the base material constituting the carbon fiber reinforced carbon composite material and the thermal expansion coefficient of the metal boride, the greater the mechanical strength of the carbon fiber reinforced carbon composite material. It is known that this improves the physical properties. 20 to 100 expected to use the carbon fiber reinforced carbon composite material of the present invention
In the temperature range of 0° C., the average coefficient of thermal expansion of the carbon fiber-reinforced carbon material constituting the base material is relatively low, and conversely, the average coefficient of thermal expansion of the metal boride is high.

【0015】従って、基材は強度の低下が容認できる範
囲で、できるだけ熱膨張係数が高いものが好ましい。な
お、基材を構成する炭素繊維強化炭素材料の熱膨張係数
は、使用するマトリックス炭素原料、炭素繊維の種類を
選択したり、製造方法を変えることにより、ある程度任
意に調節できる。金属硼化物は、熱膨張係数の小さなも
のを選ぶのが好ましい。用途によって高い熱膨張係数を
もつセラミックスを選択しなければならない時は、その
配合量を少なくするとか、他の熱膨張係数の低い硼化物
と混合して使用する等の方法を採用できる。
[0015] Therefore, it is preferable that the base material has a coefficient of thermal expansion as high as possible within a range where a decrease in strength is acceptable. Note that the thermal expansion coefficient of the carbon fiber-reinforced carbon material constituting the base material can be arbitrarily adjusted to some extent by selecting the matrix carbon raw material and the type of carbon fiber to be used, or by changing the manufacturing method. It is preferable to select a metal boride with a small coefficient of thermal expansion. When it is necessary to select a ceramic with a high coefficient of thermal expansion depending on the application, methods such as reducing the amount of ceramic to be blended or using it in combination with other borides with a low coefficient of thermal expansion can be adopted.

【0016】本発明の炭素繊維強化炭素複合材料の基材
の20〜1000℃の平均熱膨張係数α1 と金属硼化
物の20〜1000℃の平均熱膨張係数α2 とは次の
関係にあるのが好ましい。 −2×10−6/℃≦α1 −α2 ≦3.5×10−
6/℃(α1 −α2 )が−2より小さい、すなわち
基材の平均熱膨張係数α1 が、金属硼化物の平均熱膨
張係数α2 より2×10−6/℃小さいと、基材と金
属硼化物との境界部分に無視できない隙間が生じ、耐摩
耗性が低くなる。 また、同じことは、(α1 −α2 )が+3.5より
大きい、すなわち基材の平均熱膨張係数α1 が、金属
硼化物の平均熱膨張係数α2 より3.5×10−6/
℃大きいと、基材と金属硼化物との境界部分に無視でき
ない歪みが生じ、耐摩耗性が低くなる。なお、(α1 
−α2 )がプラス側とマイナス側で異なるのは、炭素
繊維強化炭素複合材料の基材と金属硼化物の境界部分の
関係が焼成温度で定まり、焼成温度から室温まで温度が
低下すると、その温度変化による熱収縮で基材と金属硼
化物との境界部分の関係が変化することによると考えて
いる。(α1 −α2 )がマイナス、すなわち金属硼
化物の熱膨張係数が大きいと、室温まで温度が低下する
と金属硼化物が大きく収縮し、基材と金属硼化物との境
界部分に隙間が生じる。逆に、(α1 −α2 )がプ
ラス、すなわち金属硼化物の熱膨張係数が小さいと、室
温まで温度が低下すると基材が大きく収縮し、基材は焼
き嵌めと同じ原理で金属硼化物を強く閉じ込め隙間が発
生しない。なお、(α1 −α2 )があまりにも大き
いと、基材が熱膨張の差に基ずく歪みを吸収できず、基
材か破壊され、耐摩耗性が大きく低下する。
The average coefficient of thermal expansion α1 at 20 to 1000°C of the base material of the carbon fiber reinforced carbon composite material of the present invention and the average coefficient of thermal expansion α2 at 20 to 1000°C of the metal boride have the following relationship. preferable. −2×10−6/℃≦α1 −α2 ≦3.5×10−
6/°C (α1 - α2) is smaller than -2, that is, when the average coefficient of thermal expansion α1 of the base material is 2×10-6/°C smaller than the average coefficient of thermal expansion α2 of the metal boride, the base material and the metal boride A non-negligible gap is created at the interface with the compound, resulting in lower wear resistance. The same thing can be said that (α1 - α2) is larger than +3.5, that is, the average coefficient of thermal expansion α1 of the base material is 3.5×10−6/
If the temperature is too high, non-negligible distortion will occur at the boundary between the base material and the metal boride, resulting in lower wear resistance. In addition, (α1
The reason why α2) differs between the positive and negative sides is that the relationship between the base material and the metal boride in the carbon fiber reinforced carbon composite material is determined by the firing temperature, and when the temperature decreases from the firing temperature to room temperature, the We believe that this is because the relationship between the boundary between the base material and the metal boride changes due to thermal contraction caused by the change. If (α1 − α2 ) is negative, that is, the coefficient of thermal expansion of the metal boride is large, the metal boride will shrink significantly when the temperature drops to room temperature, and a gap will be created at the boundary between the base material and the metal boride. Conversely, if (α1 - α2) is positive, that is, the coefficient of thermal expansion of the metal boride is small, the base material will shrink significantly when the temperature drops to room temperature, and the base material will strongly shrink the metal boride using the same principle as shrink fitting. No confinement gap occurs. Note that if (α1 − α2 ) is too large, the base material will not be able to absorb the strain caused by the difference in thermal expansion, and the base material will be destroyed, resulting in a significant decrease in wear resistance.

【0017】参考までに、基材を一定にし、配合する金
属硼化物等のセラミックスの種類を変えて熱膨張係数の
差(α1 −α2 )を変えた数種類の炭素繊維強化炭
素複合材料を作り、熱膨張係数の差(α1 −α2 )
と比摩耗量との関係を示す線図を図1に示すなお、図1
では熱膨張係数の差(α1 −α2 )を絶対値で示し
た。図1より、(α1 −α2 )がゼロ(0)に近ず
く程比摩耗量が低下しているのが判る。
For reference, several types of carbon fiber-reinforced carbon composite materials were prepared in which the difference in thermal expansion coefficient (α1 - α2) was varied by keeping the base material constant and changing the type of ceramics such as metal boride to be mixed. Difference in thermal expansion coefficient (α1 − α2)
Figure 1 shows a diagram showing the relationship between and specific wear amount.
Here, the difference in thermal expansion coefficient (α1 − α2) is shown as an absolute value. From FIG. 1, it can be seen that the closer (α1 − α2) is to zero (0), the lower the specific wear amount is.

【0018】本発明の炭素繊維強化炭素複合材料を10
0重量%(以下、%は特に明記しないかぎり重量%を示
す。)としたとき、金属硼化物粉末および/または繊維
の割合は、1〜20%であるのが好ましい。1%以下で
は摩擦係数の低下に充分ではなく、逆に20%を越える
と材料強度の低下が著しい。また、炭素繊維の含有量は
40%以下とするのが好ましい。40%を越えると材料
強度が著しく低下する。
[0018] The carbon fiber reinforced carbon composite material of the present invention
The proportion of the metal boride powder and/or fiber is preferably 1 to 20% when 0% by weight (hereinafter, % indicates weight% unless otherwise specified). If it is less than 1%, it is not sufficient to reduce the coefficient of friction, and if it exceeds 20%, the material strength is significantly reduced. Further, the content of carbon fiber is preferably 40% or less. If it exceeds 40%, the material strength will drop significantly.

【0019】本発明の炭素繊維強化炭素複合材料はその
見掛け密度が1.65g/cm3 以上であるのが好ま
しい。見掛け密度が高くなる程、材料強度、耐摩耗性等
の機械的特性が向上する。本発明の炭素繊維強化炭素複
合材料の形状は特に限定されずブッシユ、ワッシヤ、ロ
−タ、スリ−ブなどの所定の形状とすることができる。
The carbon fiber-reinforced carbon composite material of the present invention preferably has an apparent density of 1.65 g/cm 3 or more. The higher the apparent density, the better the mechanical properties such as material strength and wear resistance. The shape of the carbon fiber-reinforced carbon composite material of the present invention is not particularly limited, and may be any predetermined shape such as a bush, washer, rotor, or sleeve.

【0020】本発明の炭素繊維強化炭素複合材料は公知
の方法によって製造できる。マトリックス炭素として自
己焼結性の炭素粉末を使用する場合は、例えば図2に示
すような乾式混合、乾式成形および焼成という簡単な工
程で製造できる。炭素粉末と金属硼化物粉末および繊維
は、強度および耐摩耗性を等方的にするために、前記し
た原料を均一に混合することが好ましい。
The carbon fiber-reinforced carbon composite material of the present invention can be produced by a known method. When using self-sintering carbon powder as the matrix carbon, it can be manufactured by a simple process of dry mixing, dry molding, and firing, as shown in FIG. 2, for example. In order to make the carbon powder, metal boride powder, and fiber isotropic in strength and wear resistance, it is preferable to uniformly mix the above-mentioned raw materials.

【0021】成形は、常法によって行うことができ、通
常1〜10ton/cm2 程度の加圧下に所定の形状
に成形すればよい。または、CIP法、HIP法、ホッ
トプレス法などによって成形を行ってもよい。成形は、
常温でまたは不活性雰囲気下500℃程度までの加熱下
に行うことができる。焼成は、700〜1500℃程度
に加熱して炭素繊維および自己焼結性炭素粉末を炭化固
結させる。なお、必要に応じてこの炭化された複合体を
黒鉛化炉で焼結温度以上に加熱して黒鉛化させてもよい
[0021] Molding can be carried out by a conventional method, and the molding may be carried out into a predetermined shape under pressure of about 1 to 10 ton/cm2. Alternatively, the molding may be performed by a CIP method, a HIP method, a hot press method, or the like. The molding is
This can be carried out at room temperature or under heating up to about 500° C. in an inert atmosphere. In the firing, carbon fibers and self-sintering carbon powder are carbonized and solidified by heating to about 700 to 1500°C. Note that, if necessary, this carbonized composite may be heated to a temperature higher than the sintering temperature in a graphitization furnace to graphitize it.

【0022】マトリックス炭素として液状あるいは加熱
により液化する原料を使用する場合は、金属硼化物はマ
トリックス炭素原料に混合する。炭素繊維は従来の方法
と同様にマトリックス炭素原料に混合しても、あるいは
炭素繊維でできた予備成形体にマトリックス炭素原料を
付着させる方法でも良い。複合体を得るには得られた成
形体を加熱しマトリックス炭素原料の炭化を進め、全体
を一体化する。炭化の条件は、特に限定されないが、通
常非酸化性雰囲気中0.1〜300℃/時間程度の速度
で常温から1500℃程度の温度まで昇温し、0.5〜
10時間程度保持して行えばよい。なお、焼結時におい
てもより高温で焼結すると複合体の一部は炭化の後、黒
鉛化する。
[0022] When a liquid material or a raw material that can be liquefied by heating is used as the matrix carbon, the metal boride is mixed with the matrix carbon raw material. The carbon fibers may be mixed with the matrix carbon raw material as in the conventional method, or the matrix carbon raw material may be attached to a preformed body made of carbon fibers. To obtain a composite, the obtained molded body is heated to promote carbonization of the matrix carbon raw material, and the whole is integrated. The carbonization conditions are not particularly limited, but usually the temperature is raised from room temperature to about 1500°C at a rate of about 0.1 to 300°C/hour in a non-oxidizing atmosphere, and
This may be carried out by holding it for about 10 hours. Note that during sintering, if the composite is sintered at a higher temperature, a portion of the composite will be carbonized and then graphitized.

【0023】また、黒鉛化の条件も、特に限定されず、
非酸化性雰囲気中で焼結時の温度から0.1〜500℃
/時間程度の速度で1500〜3000℃程度の温度ま
で昇温し、0.5〜10時間程度保持すればよい。黒鉛
化を行った場合には、黒鉛結晶が十分に成長するととも
に秩序正しく配向し、これにより製品の密度、強度およ
び耐摩耗性などがさらに向上する。
[0023] Furthermore, the conditions for graphitization are not particularly limited;
0.1 to 500℃ from the temperature during sintering in a non-oxidizing atmosphere
The temperature may be raised to a temperature of about 1500 to 3000° C. at a rate of about 100° C./hour and maintained for about 0.5 to 10 hours. When graphitization is performed, graphite crystals grow sufficiently and are oriented in an orderly manner, thereby further improving the density, strength, wear resistance, etc. of the product.

【0024】[0024]

【実施例】以下、本発明の実施例を説明する。 (実施例1)炭素繊維として、長さ20mmの石炭ピッ
チ系の不融化炭素繊維を用いた。マトリックス炭素原料
として平均粒径7μmのコールタール系メソカーボンマ
イクロビーズ(大阪ガス製)を使用した。さらに金属硼
化物として平均粒径1.4μmのTiB2 (α2 ;
8.1×10−6/℃)粉末を使用した。そして、炭素
繊維;メソカーボンマイクロビーズ;TiB2 粉を重
量割合で30;65;5として配合した。この配合物を
ライカイ機で混合し、さらに室温で万能プレスで1to
n/cm2の成形圧力で成形した。その後、成形体を常
圧で非酸化性雰囲気中、150℃/時間の加熱速度で1
000℃まで昇温し、同温度で1時間保持しさらに非酸
化性雰囲気中、500℃/時間の速度で2000℃まで
加熱して焼結した。これにより本発明の炭素繊維強化炭
素複合材料を得た。
[Examples] Examples of the present invention will be described below. (Example 1) As the carbon fiber, a coal pitch-based infusible carbon fiber having a length of 20 mm was used. Coal tar-based mesocarbon microbeads (manufactured by Osaka Gas) with an average particle size of 7 μm were used as the matrix carbon raw material. Furthermore, as a metal boride, TiB2 (α2;
8.1×10 −6 /° C.) powder was used. Then, carbon fibers, mesocarbon microbeads, and TiB2 powder were blended in a weight ratio of 30:65:5. This mixture was mixed in a Raikai machine, and then 1 to
Molding was performed at a molding pressure of n/cm2. Thereafter, the molded body was heated for 1 hour at a heating rate of 150°C/hour in a non-oxidizing atmosphere at normal pressure.
The temperature was raised to 000°C, held at the same temperature for 1 hour, and further heated to 2000°C at a rate of 500°C/hour in a non-oxidizing atmosphere for sintering. As a result, a carbon fiber-reinforced carbon composite material of the present invention was obtained.

【0025】得られた炭素繊維強化炭素複合材料のTi
B2 の割合および見掛け密度はそれぞれ5%と1.7
5g/cm3 であった。また、この炭素繊維強化炭素
複合材料の20〜1000℃の平均熱膨張係数αは7.
5×10−6/℃であった。なお、本実施例のTiB2
 粉を全く含まないことだけ異なり、他は本実施例と全
く同じ方法で、TiB2 粉を全く含まない炭素繊維強
化炭素材料を作り、本実施例の炭素繊維強化炭素複合材
料を構成する基材とした。そしてこの基材の20〜10
00℃の平均熱膨張係数α1 を求めた。基材の20〜
1000℃の平均熱膨張係数α1 は7.3×10−6
/℃であった。この基材の平均熱膨張係数α1 とTi
B2 の平均熱膨張係数α2 から(α1 −α2 )
を求めると、TiB2 を含む本実施例の炭素繊維強化
炭素複合材料の(α1 −α2 )は、−0.8×10
−6/℃となる。 (実施例2)実施例1において使用した石炭ピッチ系の
不融化炭素繊維、メソカーボンマイクロビーズおよびT
iB2 をそれぞれ25%、70%および5%の割合で
配合しライカイ機で混合し、得られた混合物を2000
kg/cm2 で冷間静水圧成形(CIP法)し、窒素
ガス雰囲気中で1000℃に加熱して焼結した。そして
さらに密度を高めるため、得られた焼結体をフェノール
樹脂液に漬けてフェノール樹脂を含浸させ、窒素ガス中
で1000℃に加熱して炭化、焼結させた。この操作を
10回繰り返した後、アルゴンガス中で2200℃に加
熱して黒鉛化させて、本発明の炭素繊維強化炭素複合材
料を得た。
[0025] Ti of the obtained carbon fiber reinforced carbon composite material
The proportion and apparent density of B2 are 5% and 1.7, respectively.
It was 5g/cm3. Moreover, the average thermal expansion coefficient α of this carbon fiber reinforced carbon composite material at 20 to 1000°C is 7.
It was 5x10-6/°C. Note that TiB2 in this example
A carbon fiber-reinforced carbon material containing no TiB2 powder was produced using the same method as in this example, except that it did not contain any powder, and was used as the base material constituting the carbon fiber-reinforced carbon composite material of this example. did. And 20 to 10 of this base material
The average coefficient of thermal expansion α1 at 00°C was determined. 20~ of base material
The average coefficient of thermal expansion α1 at 1000℃ is 7.3×10-6
/℃. The average coefficient of thermal expansion α1 of this base material and Ti
From the average thermal expansion coefficient α2 of B2 (α1 − α2 )
When calculating, (α1 - α2) of the carbon fiber-reinforced carbon composite material of this example containing TiB2 is -0.8×10
-6/℃. (Example 2) Coal pitch-based infusible carbon fibers, mesocarbon microbeads, and T used in Example 1
iB2 was blended in proportions of 25%, 70% and 5%, respectively, and mixed in a Raikai machine, and the resulting mixture was
kg/cm 2 by cold isostatic pressing (CIP method), and sintered by heating to 1000° C. in a nitrogen gas atmosphere. In order to further increase the density, the obtained sintered body was immersed in a phenol resin liquid to impregnate it with phenol resin, and was heated to 1000° C. in nitrogen gas to carbonize and sinter it. After repeating this operation 10 times, it was heated to 2200° C. in argon gas to graphitize it to obtain a carbon fiber-reinforced carbon composite material of the present invention.

【0026】この実施例2のTiB2 の割合および見
掛け密度はそれぞれ5%と1.85g/cm3 であっ
た。 また、20〜1000℃の平均熱膨張係数は7.7×1
0−6/℃であった。なお、本実施例のTiB2 粉を
全く含まないことだけ異なり、他は本実施例と全く同じ
方法で、TiB2 粉を全く含まない炭素繊維強化炭素
材料を作り、本実施例の炭素繊維強化炭素複合材料を構
成する基材とした。そしてこの基材の20〜1000℃
の平均熱膨張係数α1 を求めた。基材の20〜100
0℃の平均熱膨張係数α1 は7.5×10−6/℃で
あった。この基材の平均熱膨張係数α1 とTiB2 
の平均熱膨張係数α2 から(α1 −α2 )を求め
ると、TiB2 を含む本実施例の炭素繊維強化炭素複
合材料の(α1 −α2 )は、−0.6×10−6/
℃となる。 (実施例3)実施例1において使用したTiB2 に代
えて平均粒径3.5μmのCrB2 (α2 ;10.
5×10−6/℃)粉末を使用し、その他はまったく実
施例1と同じ方法で炭素繊維強化炭素複合材料を作った
。この実施例3のCrB2 の割合および見掛け密度は
それぞれ5%と1.76g/cm3 であった。また、
20〜1000℃の平均熱膨張係数は8.3×10−6
/℃であった。
The TiB2 proportion and apparent density of Example 2 were 5% and 1.85 g/cm3, respectively. Also, the average coefficient of thermal expansion from 20 to 1000℃ is 7.7×1
It was 0-6/°C. A carbon fiber-reinforced carbon material containing no TiB2 powder was produced using the same method as in this example except that it did not contain any TiB2 powder, and the carbon fiber-reinforced carbon composite material of this example was It was used as the base material that constitutes the material. And 20~1000℃ of this base material
The average coefficient of thermal expansion α1 was determined. 20-100 of base material
The average coefficient of thermal expansion α1 at 0°C was 7.5×10 −6 /°C. The average coefficient of thermal expansion α1 and TiB2 of this base material
Calculating (α1 - α2) from the average coefficient of thermal expansion α2, (α1 - α2) of the carbon fiber-reinforced carbon composite material of this example containing TiB2 is -0.6×10-6/
℃. (Example 3) In place of TiB2 used in Example 1, CrB2 (α2; 10.
A carbon fiber-reinforced carbon composite material was produced in the same manner as in Example 1 except that a carbon fiber-reinforced carbon composite material was used. The CrB2 proportion and apparent density of this Example 3 were 5% and 1.76 g/cm3, respectively. Also,
The average coefficient of thermal expansion from 20 to 1000℃ is 8.3 x 10-6
/℃.

【0027】なお、本実施例のTiB2 粉を全く含ま
ないことだけ異なり、他は本実施例と全く同じ方法で、
CrB2 粉を全く含まない炭素繊維強化炭素材料を作
り、本実施例の炭素繊維強化炭素複合材料を構成する基
材とした。そしてこの基材の20〜1000℃の平均熱
膨張係数α1 を求めた。基材の20〜1000℃の平
均熱膨張係数α1 は7.3×10−6/℃であった。 この基材の平均熱膨張係数α1 とCrB2 の平均熱
膨張係数α2 から(α1 −α2 )を求めると、C
rB2 を含む本実施例の炭素繊維強化炭素複合材料の
(α1 −α2 )は、−3.2×10−6/℃となる
。 (比較例1)実施例1において使用した金属硼化物を使
用せず、実施例1で使用したのと同じ炭素繊維30%お
よび同じマトリックス炭素原料70%を使用し、その他
はまったく実施例1と同じ方法で金属硼化物を含まない
炭素繊維強化炭素材料を作った。この比較例1の見掛け
密度は1.74g/cm3 であった。また、20〜1
000℃の平均熱膨張係数は7.3×10−6/℃であ
った。なお、この比較例1で得られた炭素繊維強化炭素
材料は、実施例1および実施例3の基材に相当するもの
である。 (評価1)実施例1〜3および比較例1の炭素繊維強化
炭素複合材量および炭素繊維強化炭素材料につてい、無
潤滑下における摩擦係数を測定した。この測定は、機械
試験所式摩擦摩耗試験機により、回転数160rpm(
すべり速度;2cm/秒)で、荷重50kgfから荷重
を2分毎に10kgfずつ上昇させ、500kgfまで
の摩擦係数μを測定した。なお、相手材としては高炭素
クロム軸受鋼材(JIS  SUJ2、以下、SUJ2
と称する。)を使用した。その結果を図3に示す。
[0027] The only difference was that the TiB2 powder of this example was not included at all, but otherwise, the method was exactly the same as that of this example,
A carbon fiber-reinforced carbon material containing no CrB2 powder was produced and used as a base material constituting the carbon fiber-reinforced carbon composite material of this example. Then, the average coefficient of thermal expansion α1 of this base material at 20 to 1000°C was determined. The average coefficient of thermal expansion α1 of the base material from 20 to 1000°C was 7.3×10 −6 /°C. Calculating (α1 - α2) from the average coefficient of thermal expansion α1 of this base material and the average coefficient of thermal expansion α2 of CrB2, C
(α1 − α2 ) of the carbon fiber-reinforced carbon composite material of this example containing rB2 is −3.2×10 −6 /°C. (Comparative Example 1) The metal boride used in Example 1 was not used, and 30% of the same carbon fiber and 70% of the same matrix carbon raw material were used as in Example 1, and the rest was exactly the same as Example 1. A carbon fiber-reinforced carbon material without metal borides was made using the same method. The apparent density of Comparative Example 1 was 1.74 g/cm3. Also, 20-1
The average coefficient of thermal expansion at 000°C was 7.3 x 10-6/°C. Note that the carbon fiber-reinforced carbon material obtained in Comparative Example 1 corresponds to the base material of Example 1 and Example 3. (Evaluation 1) Regarding the amounts of carbon fiber-reinforced carbon composite materials and carbon fiber-reinforced carbon materials of Examples 1 to 3 and Comparative Example 1, the coefficient of friction without lubrication was measured. This measurement was performed using a mechanical testing laboratory type friction and wear tester at a rotation speed of 160 rpm (
At a sliding speed of 2 cm/sec), the load was increased by 10 kgf every 2 minutes from 50 kgf, and the friction coefficient μ was measured up to 500 kgf. The mating material is high carbon chromium bearing steel (JIS SUJ2, hereinafter SUJ2).
It is called. )It was used. The results are shown in FIG.

【0028】図3より明らかなように、本発明の実施例
1〜3の金属硼化物を配合した炭素繊維強化炭素複合材
量は、いずれも荷重が高くなるに連れ摩擦係数が0.1
あるいはそれ以下と急速に低下している。この傾向は、
比較例1の摩擦係数が荷重が高くなるにつれ大きくなっ
ているのと対照的である。実施例1〜3の炭素繊維強化
炭素複合材料の摩擦係数が荷重の増大とともに低下する
のは金属硼化物配合の作用と考えられる。なお、実施例
3の炭素繊維強化炭素複合材料の摩擦係数が比較的高い
のは、CrB2 と基材との平均熱膨張係数の差(α1
 −α2 )が、−3.2×10−6/℃と大きく、C
rB2 粉末が基材より脱落するためと考えられる。
As is clear from FIG. 3, in all of the carbon fiber reinforced carbon composite materials blended with metal boride of Examples 1 to 3 of the present invention, as the load increases, the friction coefficient decreases to 0.1.
Or even lower, and is rapidly declining. This trend is
This is in contrast to Comparative Example 1, where the friction coefficient increases as the load increases. The reason why the coefficient of friction of the carbon fiber-reinforced carbon composite materials of Examples 1 to 3 decreases as the load increases is considered to be due to the effect of the metal boride compound. The relatively high coefficient of friction of the carbon fiber-reinforced carbon composite material of Example 3 is due to the difference in average coefficient of thermal expansion (α1) between CrB2 and the base material.
-α2) is large at -3.2×10-6/℃, and C
This is thought to be because the rB2 powder falls off from the base material.

【0029】金属硼化物が配合されていない比較例1は
、摩擦係数が0.15程度から荷重の増大とともに摩擦
係数が急激に高くなる傾向が見られた。 (評価2)実施例1〜3および比較例1の炭素繊維強化
炭素複合材および炭素繊維強化炭素材料につてい、湿式
下(油潤滑)に摩耗量を測定した。この測定は、LFW
摩擦摩耗試験機により、荷重15kgf、回転数160
rpmで15分間の試験を実施し、得られる摩耗痕の深
さを測定するものである。相手材としてはSUJ2製の
リングを使用し、テストピースとしては10.0mm×
15.7mmの平板を、潤滑油としては5W−30ベー
スオイルを使用した。その結果を表1に示す。なお、参
考までに各実施例の基材と金属硼化物との20〜100
0℃の平均熱膨張係数の差(α1 −α2 )を合わせ
て示す。
In Comparative Example 1, in which no metal boride was blended, there was a tendency for the friction coefficient to increase rapidly from about 0.15 as the load increased. (Evaluation 2) The wear amount of the carbon fiber-reinforced carbon composite materials and carbon fiber-reinforced carbon materials of Examples 1 to 3 and Comparative Example 1 was measured under wet conditions (oil lubrication). This measurement is based on LFW
Using a friction and wear tester, the load was 15 kgf and the rotation speed was 160.
The test is conducted at rpm for 15 minutes and the depth of the resulting wear scar is measured. A SUJ2 ring was used as the mating material, and the test piece was 10.0 mm x
A 15.7 mm flat plate was used, and 5W-30 base oil was used as the lubricating oil. The results are shown in Table 1. For reference, the difference between the base material and the metal boride in each example is 20 to 100.
The difference in average coefficient of thermal expansion at 0°C (α1 − α2) is also shown.

【0030】[0030]

【表1】 −−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−  試験材料        摩耗
痕の深さ      平均熱膨張係数の差(α1 −α
2 )−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−  実施例1       
 25μm          −0.8×10−6/
℃−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−  実施例2        1
8μm          −0.6×10−6/℃−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−  実施例3        60μ
m          −3.2×10−6/℃−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−  比較例1        32μm 
             −−−−−       
               −−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−実
施例1および2の本発明の炭素繊維強化炭素複合材料の
摩耗痕が浅いのは、配合した金属硼化物と基材との平均
熱膨張係数の差(α1 −α2 )が小さく、かつ、複
合材の見掛け密度が高く、真密度に近く、ためだと考え
られる。一方、実施例3の本発明の炭素繊維強化炭素複
合材料の摩耗痕が深いのは、配合した金属硼化物と基材
との熱膨張係数の差が−3.2×10−6/℃と大きい
ため、金属硼化物が基材より脱落するためだと思われる
[Table 1] −−−−−−−−−−−−−−−−−−−−−
−−−−−−−−− Test material Depth of wear scar Difference in average coefficient of thermal expansion (α1 −α
2)------------------
−−−−−−−−−−−− Example 1
25μm -0.8×10-6/
℃−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−− Example 2 1
8μm -0.6×10-6/℃-
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−− Example 3 60μ
m -3.2×10-6/℃---
−−−−−−−−−−−−−−−−−−−−−−−−−
------- Comparative example 1 32 μm
------
−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−− The reason why the wear marks of the carbon fiber reinforced carbon composite materials of the present invention in Examples 1 and 2 are shallow is that the compounded metal This is thought to be because the difference in average coefficient of thermal expansion (α1 - α2) between the boride and the base material is small, and the apparent density of the composite material is high, close to the true density. On the other hand, the reason why the wear marks of the carbon fiber reinforced carbon composite material of the present invention in Example 3 are deep is that the difference in thermal expansion coefficient between the compounded metal boride and the base material is -3.2 x 10-6/℃. This seems to be because the metal boride falls off from the base material because it is large.

【0031】[0031]

【効果】本発明の金属硼化物を配合した炭素繊維強化炭
素複合材料は、金属硼化物を配合しない炭素繊維強化炭
素材料より低い摩擦係数をもつ。また、マトリックスと
なる基材の熱膨張係数α1 と金属硼化物の熱膨張係数
α2の差(α1 −α2 )が−2×10−6/℃≦α
1 −α2 ≦3.5×10−6/℃の範囲にあるもの
は、摩耗量も少ない。このため本発明の炭素繊維強化炭
素複合材料は、潤滑油が使用できない部分、特に高温と
なるブッシュ、メカニカルシール材料として適している
。よって、本発明の炭素繊維強化炭素複合材料を航空機
や自動車のエンジンの摺動部分に使用することにより、
摺動抵抗の少ない、高い耐久性をもつ優れたエンジンと
なる。
[Effect] The carbon fiber-reinforced carbon composite material containing the metal boride of the present invention has a lower coefficient of friction than the carbon fiber-reinforced carbon material containing no metal boride. In addition, the difference (α1 − α2) between the thermal expansion coefficient α1 of the base material serving as the matrix and the thermal expansion coefficient α2 of the metal boride is −2×10−6/℃≦α
Those in the range of 1-α2≦3.5×10-6/°C also have a small amount of wear. Therefore, the carbon fiber-reinforced carbon composite material of the present invention is suitable for parts where lubricating oil cannot be used, particularly bushes that are exposed to high temperatures, and mechanical seal materials. Therefore, by using the carbon fiber reinforced carbon composite material of the present invention in the sliding parts of aircraft and automobile engines,
This results in an excellent engine with low sliding resistance and high durability.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】炭素繊維強化炭素複合材料を構成する基材とセ
ラミックスとの平均熱膨張係数の差と比摩耗量との関係
を示す図である。
FIG. 1 is a diagram showing the relationship between the difference in average coefficient of thermal expansion between a base material and ceramics constituting a carbon fiber-reinforced carbon composite material and specific wear amount.

【図2】本発明の炭素繊維強化炭素複合材料の一製造方
法を示すブロック図である。
FIG. 2 is a block diagram showing one method for manufacturing the carbon fiber-reinforced carbon composite material of the present invention.

【図3】実施例および比較例で得られた炭素繊維強化炭
素複合材料の乾式摩擦下の摩擦係数を示す図である。
FIG. 3 is a diagram showing the friction coefficient under dry friction of carbon fiber-reinforced carbon composite materials obtained in Examples and Comparative Examples.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  基材が炭素繊維強化炭素で構成され、
該基材中に1800℃以上の融点を有し該基材の炭素と
反応しにくい金属硼化物粉末および/または繊維が1〜
20重量%埋設されていることを特徴とする低摩擦係数
を持つ炭素繊維強化炭素複合材料。
[Claim 1] The base material is composed of carbon fiber reinforced carbon,
The base material contains 1 to 100% of metal boride powder and/or fibers that have a melting point of 1800° C. or higher and are difficult to react with the carbon of the base material.
A carbon fiber-reinforced carbon composite material with a low coefficient of friction characterized by 20% by weight of embedded material.
【請求項2】  炭素繊維の含有量が40重量%以下で
ある請求項1記載の炭素繊維強化炭素複合材料。
2. The carbon fiber reinforced carbon composite material according to claim 1, wherein the carbon fiber content is 40% by weight or less.
【請求項3】  見掛け密度が1.65g/cm3 以
上である請求項1記載の炭素繊維強化炭素複合材料。
3. The carbon fiber reinforced carbon composite material according to claim 1, which has an apparent density of 1.65 g/cm 3 or more.
【請求項4】  基材の20〜1000℃の平均熱膨張
係数α1 と金属硼化物の20〜1000℃の平均熱膨
張係数α2 との間に −2×10−6/℃≦α1 −α2 ≦3.5×10−
6/℃の関係がある請求項1記載の炭素繊維強化炭素複
合材料。
4. Between the average thermal expansion coefficient α1 of the base material at 20 to 1000°C and the average thermal expansion coefficient α2 of the metal boride at 20 to 1000°C, -2×10-6/°C≦α1 −α2≦. 3.5×10−
The carbon fiber reinforced carbon composite material according to claim 1, which has a relationship of 6/°C.
JP3073290A 1991-04-05 1991-04-05 Carbon fiber reinforced carbon composite material having low coefficient of friction Pending JPH04310567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3073290A JPH04310567A (en) 1991-04-05 1991-04-05 Carbon fiber reinforced carbon composite material having low coefficient of friction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3073290A JPH04310567A (en) 1991-04-05 1991-04-05 Carbon fiber reinforced carbon composite material having low coefficient of friction

Publications (1)

Publication Number Publication Date
JPH04310567A true JPH04310567A (en) 1992-11-02

Family

ID=13513874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3073290A Pending JPH04310567A (en) 1991-04-05 1991-04-05 Carbon fiber reinforced carbon composite material having low coefficient of friction

Country Status (1)

Country Link
JP (1) JPH04310567A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0752538A2 (en) * 1995-07-05 1997-01-08 KSB Aktiengesellschaft Fluid lubricated sliding contact bearing
JP2001104675A (en) * 1998-09-25 2001-04-17 Juki Corp Needle bar, sliding device for sewing machine, and sewing machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0752538A2 (en) * 1995-07-05 1997-01-08 KSB Aktiengesellschaft Fluid lubricated sliding contact bearing
EP0752538A3 (en) * 1995-07-05 1997-06-25 Ksb Ag Fluid lubricated sliding contact bearing
JP2001104675A (en) * 1998-09-25 2001-04-17 Juki Corp Needle bar, sliding device for sewing machine, and sewing machine

Similar Documents

Publication Publication Date Title
TWI338611B (en) Manufacture of carbon/carbon composites by hot pressing
US8906522B2 (en) Hard non-oxide or oxide ceramic / hard non-oxide or oxide ceramic composite hybrid article
US6878331B2 (en) Manufacture of carbon composites by hot pressing
US7445095B2 (en) Brake system having a composite-material brake disc
JPH10503744A (en) Self-sintering silicon carbide / carbon composite
CA2335427C (en) Carbon composites
EP0404571B1 (en) Sliding member
EP0507564A2 (en) Carbon composite material
US20040155382A1 (en) Manufacture of carbon/carbon composites by hot pressing
US5169718A (en) Sliding member
JPS6313953B2 (en)
JPH04310567A (en) Carbon fiber reinforced carbon composite material having low coefficient of friction
JPS6313954B2 (en)
JPH0238365A (en) Complex sliding member of high-temperature-reisistant and high-strength graphite base
JPH04310568A (en) Carbon fiber reinforced carbon composite material having high coefficient of friction
JPH05306166A (en) Carbon composite material
JPH0478374A (en) Shift fork for transmission
JPH0476226A (en) Float bearing for turbochrger
EP0379328B1 (en) Carbon fiber reinforced carbon
JPH0476298A (en) Vane pump
JPH0476256A (en) Piston for internal combustion engine
JPH0476097A (en) Bush
JPH0478320A (en) Bush
JPH0476251A (en) Cylinder block
JPH0476258A (en) Piston ring for internal combustion engine