JPH0238365A - Complex sliding member of high-temperature-reisistant and high-strength graphite base - Google Patents

Complex sliding member of high-temperature-reisistant and high-strength graphite base

Info

Publication number
JPH0238365A
JPH0238365A JP63187682A JP18768288A JPH0238365A JP H0238365 A JPH0238365 A JP H0238365A JP 63187682 A JP63187682 A JP 63187682A JP 18768288 A JP18768288 A JP 18768288A JP H0238365 A JPH0238365 A JP H0238365A
Authority
JP
Japan
Prior art keywords
powder
graphite
boron carbide
sliding member
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63187682A
Other languages
Japanese (ja)
Inventor
Kenji Miyazaki
宮崎 憲治
Eiji Maeda
英司 前田
Hisayoshi Yoshida
吉田 久良
Kazutsugu Kashima
鹿島 和嗣
Katsumi Mino
美濃 克己
Wataru Abe
亘 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Oiles Industry Co Ltd
Original Assignee
Agency of Industrial Science and Technology
Oiles Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Oiles Industry Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP63187682A priority Critical patent/JPH0238365A/en
Publication of JPH0238365A publication Critical patent/JPH0238365A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the title member with excellent friction and wear characteristics, mechanical strength and heat resistance by forming a sintered material containing specific metal boride and boron carbide dispersed in graphite. CONSTITUTION:A complex sliding member of high-temperature-resistaut and high strength graphite base which comprises a sintered material of a mixture of (A) carbon powder (e.g., coke powder, carbon black powder or graphite powder), (B) at least one powder selected from borides (e.g., TiB, VB2 or CrB) of groups IVa, Va and VIa metals and carbides (e.g., TiC, VC or WC) and (C) boron carbide powder wherein the sintered material consists of graphite and the metal boride and boron carbide dispersed into the graphite. In the member, the blending ratio of the component B and the component C is 3-20wt.% component B and 2-25wt.% component C based on total amounts of the components A, B and C.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はすべり軸受、ころがり軸受のリテーナやすべり
弁など、摺動による摩擦を生じる部品として有用な耐高
温高強度黒鉛系複合摺動部材に関するものである。さら
に詳しくいえば、本発明は、特に高温における摩擦、摩
耗に対して良好な特性を示し、潤滑油やグリースのよう
な流体潤滑剤の使用が困難な条件、いわゆる乾燥摩擦条
件下での使用に好適な耐高温高強度黒鉛系複合摺動部材
に関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a high-temperature-resistant, high-strength graphite-based composite sliding member useful as a component that generates friction due to sliding, such as a retainer for a sliding bearing or a rolling bearing, or a sliding valve. be. More specifically, the present invention exhibits good properties against friction and wear, especially at high temperatures, and is suitable for use under so-called dry friction conditions, where it is difficult to use fluid lubricants such as lubricating oil and grease. The present invention relates to a suitable high temperature resistant, high strength graphite composite sliding member.

従来の技術 近年、メカトロニクスの発達に伴ない、特に高温領域に
おける摩擦、摩耗特性の良好な摺動部材に対する要望が
高まってきている。
BACKGROUND OF THE INVENTION In recent years, with the development of mechatronics, there has been an increasing demand for sliding members with good friction and wear characteristics, especially in high-temperature regions.

300〜500°Cという高温領域で使用される摺動部
材には、接触面間に潤滑油やグリースのような流体潤滑
剤を使用することができないため、通常、黒鉛、二硫化
モリブデンのような固体潤滑剤が用いられる。この固体
潤滑剤は、一般に流体潤滑剤のような流動性、濡れ性を
有しないので、これを使用する場合には、塗布、含浸、
圧加などの手段を用いることができない。
For sliding parts used in the high temperature range of 300 to 500°C, it is not possible to use fluid lubricants such as lubricating oil or grease between the contact surfaces. Solid lubricants are used. This solid lubricant generally does not have the fluidity and wettability of fluid lubricants, so when using it, it is necessary to apply, impregnate,
It is not possible to use means such as applying pressure.

したがって、固体潤滑剤の場合は、該固体潤滑剤を摩擦
面に被覆するか、摺動部材自体を該固体潤滑剤で作成す
るか、他の材料と混合して使用するなどの手段で適用し
なければならない。これらの手段は、いずれも摺動接触
面間において固体潤滑剤の一部が相手材の表面に移着し
、所望の膜厚の固体潤滑剤被膜が形成されることにより
、はじめて潤滑効果が発揮されるものであるから、相手
材表面に対する固体潤滑剤被膜の造膜性の良否が摩擦、
摩耗特性を左右することになる。
Therefore, in the case of a solid lubricant, it is applied by coating the friction surface with the solid lubricant, making the sliding member itself with the solid lubricant, or mixing it with other materials. There must be. In all of these methods, the lubrication effect is achieved only when a portion of the solid lubricant is transferred to the surface of the mating material between the sliding contact surfaces and a solid lubricant film of the desired thickness is formed. Therefore, the quality of film formation of the solid lubricant film on the surface of the mating material is determined by friction,
This will affect the wear characteristics.

しかるに、従来より、固体潤滑剤としては自己潤滑性を
有し、熱伝導性がよく、非溶融性であって、熱膨張率が
小さく、その上耐熱性に優れている黒鉛が最も多く使用
されている。
However, conventionally, graphite, which has self-lubricating properties, good thermal conductivity, is non-fusible, has a small coefficient of thermal expansion, and has excellent heat resistance, has been most commonly used as a solid lubricant. ing.

そして、この摺動部材に使用される黒鉛は一般に天然黒
鉛と人造黒鉛とに大別されるが、固体潤滑剤それ自体を
そのまま摺動部材とする用途においては、摩擦摩耗特性
の点で若干劣るものの、高強度の成形体を得ることがで
きる人造黒鉛が一般的に使用されている。
The graphite used in these sliding parts is generally classified into natural graphite and artificial graphite, but in applications where the solid lubricant itself is used as a sliding part, it is slightly inferior in terms of friction and wear characteristics. However, artificial graphite is commonly used because it can produce high-strength molded bodies.

この高強度の黒鉛成形体を得る方法としては従来より、
例えばコークス粉末などの骨材をそれ自身が加熱焼成に
より炭化、黒鉛化するコールタールピッチなどの粘結材
(バインダー)を使って成形し、これを700〜110
0℃の温度で焼成したのち、ピッチなどの含浸剤を浸透
させて再焼成し、これを2500〜3000°Cの温度
で熱処理して黒鉛化させて得る方法が採られており、さ
らに高強度の黒鉛成形体を得るべく、黒鉛成形体に樹脂
あるいは金属を含浸させる方法も行われている。
Conventionally, the method for obtaining this high-strength graphite compact is as follows.
For example, aggregate such as coke powder is molded using a binder such as coal tar pitch, which itself becomes carbonized and graphitized by heating and baking, and is then molded to a 700 to 110
After firing at a temperature of 0°C, impregnating agents such as pitch are infiltrated and firing is performed again, followed by heat treatment at a temperature of 2,500 to 3,000°C to graphitize. In order to obtain a graphite molded body, a method of impregnating a graphite molded body with resin or metal has also been used.

しかしながら、このような方法によって得られた高強度
黒鉛成形体はそのまま摺動部材として使用することがで
きるが、摩擦摩耗特性、特に高温領域における相手材表
面への固体潤滑剤(黒鉛)被膜の造膜性などの点に問題
があり、結果として摩擦係数が高く、摩耗量が大きいと
いう摩擦摩耗特性に欠点をもたらすことになる上、上記
方法においてはコークス粉末の黒鉛化など製造に要する
時間が極めて長時間(一般には2〜3か月といわれてい
る)を要するという欠点も有している。
However, although the high-strength graphite compact obtained by this method can be used as a sliding member as it is, the friction and wear characteristics, especially the formation of a solid lubricant (graphite) film on the surface of the mating material in high-temperature regions, are important. There are problems with film properties, etc., which results in disadvantages in friction and wear characteristics such as a high coefficient of friction and a large amount of wear.In addition, the above method requires an extremely long manufacturing time such as graphitization of coke powder. It also has the disadvantage of requiring a long time (generally said to be 2 to 3 months).

そこで、本発明者らは、このような欠点を改良した摺動
部材として、先に無定形炭素粉末と特定の金属ホウ化物
粉末と天然黒鉛粉末やキッシュ黒鉛粉末とを所定の割合
で含有する混合物の焼結体から成る黒鉛−金属ホウ化物
系摺動部材を提案した(特公昭63−13954号公報
)。
Therefore, the present inventors first developed a mixture containing amorphous carbon powder, a specific metal boride powder, and natural graphite powder or Quiche graphite powder in a predetermined ratio in order to create a sliding member that improves these drawbacks. proposed a graphite-metal boride sliding member made of a sintered body (Japanese Patent Publication No. 13954/1983).

しかしながら、この黒鉛−金属ホウ化物系摺動部材にお
いては、短時間で黒鉛成形体を得ることができ、かつ従
来のピッチバインダーを使用して得られた黒鉛摺動部材
の欠点である高温領域における相手材表面への黒鉛被膜
の造膜性や摩擦摩耗特性などの点は改良されたが、摩擦
摩耗特性の向上を目的として一定割合の天然黒鉛やキッ
シュ黒鉛粉末が配合されているため、機械的強度や耐熱
性については不十分であり、特に高強度や耐熱性が要求
される用途には使用できないという欠点がある。
However, with this graphite-metal boride sliding member, it is possible to obtain a graphite molded body in a short time, and it is possible to obtain a graphite compact in a high temperature region, which is a drawback of graphite sliding members obtained using conventional pitch binders. Although improvements have been made in the ability to form a graphite film on the surface of the mating material and the friction and wear characteristics, mechanical It has the disadvantage that it has insufficient strength and heat resistance, and cannot be used in applications that require particularly high strength and heat resistance.

発明が解決しようとする課題 本発明は、従来のピッチバインダーを使用して得られた
黒鉛摺動部材の欠点である高温領域における相手材表面
への固体潤滑(黒鉛)被膜の移着性や造膜性及び摩擦摩
耗特性の不十分な点を解決するとともに、機械的強度や
耐熱性をさらに向上させた摺動部材を提供することを目
的としてなされたものである。
Problems to be Solved by the Invention The present invention solves the disadvantages of graphite sliding members obtained using conventional pitch binders, such as the transferability of a solid lubricant (graphite) film to the surface of a mating material in a high-temperature region and the structure. The purpose of this invention is to provide a sliding member that has improved mechanical strength and heat resistance, as well as solving the problems of insufficient film properties and friction and wear characteristics.

課題を解決するための手段 本発明者らは、高温においても高い強度を示す摺動部材
を開発するために鋭意研究を重ねた結果、炭化ホウ素が
炭素に対して金属ホウ化物と同様に黒鉛化促進作用及び
焼結促進作用を有する上に、耐熱性に優れていることに
着目し、この炭化ホウ素粉末をある種の金属ホウ化物粉
末及び金属炭化物粉末とともに、所定の割合で炭素粉末
に配合して成る混合物を焼結することにより得られる、
黒船中に金属ホウ化物及び炭化ホウ素が分散含有された
焼結体が優れた摩擦摩耗特性を示すとともに、優れた機
械的強度及び耐熱性を有することを見出し、この知見に
基づいて本発明を完成するに至った。
Means for Solving the Problems As a result of intensive research to develop a sliding member that exhibits high strength even at high temperatures, the inventors found that boron carbide graphitizes carbon in the same way as metal borides. Focusing on its ability to accelerate and accelerate sintering as well as its excellent heat resistance, this boron carbide powder was blended with carbon powder in a predetermined ratio along with certain metal boride powders and metal carbide powders. obtained by sintering a mixture consisting of
It was discovered that a sintered body in which metal borides and boron carbide are dispersed in black ship exhibits excellent friction and wear characteristics, as well as excellent mechanical strength and heat resistance, and based on this knowledge, the present invention was completed. I ended up doing it.

すなわち、本発明は、(A)炭素粉末と、(B)周期律
表の第IVa族、第Va族及び第Via族に属する金属
のホウ化物及び炭化物の中から選ばれた少なくとも1種
の粉末3〜20重量%と、(C)炭化ホウ素粉末2〜2
5重量%との混合物の焼結体から成り、かつ該焼結体が
黒鉛とこの黒鉛中に分散含有された金属ホウ化物及び炭
化ホウ素とから成ることを特徴とする耐高温高強度黒鉛
系複合摺動部材を提供するものである。
That is, the present invention provides at least one powder selected from (A) carbon powder and (B) borides and carbides of metals belonging to Group IVa, Group Va, and Group Via of the Periodic Table. 3 to 20% by weight, and (C) boron carbide powder 2 to 2
5% by weight, and the sintered body is composed of graphite and a metal boride and boron carbide dispersed in the graphite. A sliding member is provided.

本発明においては、(A)成分として用いる炭素粉末と
しては、コークス粉末、無煙炭粉末、カーボンブラック
粉末、木炭粉末、人造黒鉛などが挙げられる。これらは
それぞれ単独で用いてもよいし、2種以上を混合して用
いてもよい。
In the present invention, examples of the carbon powder used as component (A) include coke powder, anthracite powder, carbon black powder, charcoal powder, and artificial graphite. These may be used alone or in combination of two or more.

本発明においては、(B)成分として周期律表の第IV
a族、第Va族及び第VIa族に属する金属のホウ化物
及び炭化物の中から選ばれた少なくとも1種の粉末が使
用される。前記金属ホウ化物としては、例えばホウ化チ
タン(TiB)、ニホウ化チタン(TiBz)、ニホウ
化ジルコニウム(ZrB2)、ニホウ化ハフニウム(H
fB2)、ニホウ化バナジウム(VB2)、ニホウ化ニ
オブ(NbBり、ニホウ化タンタル(TaBz)、ホウ
化クロム(CrB)、ニホウ化クロム(crBz)、ホ
ウ化モリブデン(MoB)、ニホウ化モリブデン(Mo
B、)、ホウ化タングステン(WB)、ニホウ化タング
ステン(WBりなどが挙げられ、これらはそれぞれ単独
で用いてもよいし、2種以上を組み合わせて用いてもよ
い。
In the present invention, as the component (B),
At least one powder selected from borides and carbides of metals belonging to Group A, Group Va, and Group VIa is used. Examples of the metal borides include titanium boride (TiB), titanium diboride (TiBz), zirconium diboride (ZrB2), and hafnium diboride (H
fB2), vanadium diboride (VB2), niobium diboride (NbB), tantalum diboride (TaBz), chromium boride (CrB), chromium diboride (crBz), molybdenum boride (MoB), molybdenum diboride (Mo
Examples include tungsten boride (WB), tungsten diboride (WB), and these may be used alone or in combination of two or more.

また、該金属炭化物としては、例えば炭化チタン(Ti
C)、炭化ジルコニウム(ZrC)、炭化ハフニウム(
HfC)、炭化バ六ジウム(VC)、炭化ニオブ(Nb
C)、炭化タンタル(TaC)、炭化クロム(Cr3C
2)、炭化モリブデン(MoC)、炭化タングステン(
vic)などが挙げられ、これらはそれぞれ単独で用い
てもよいし、2種以上を組み合わせて用いてもよい。さ
らに、本発明においては、前記金属ホウ化物粉末と金属
炭化物粉末とを組み合わせて用いてもよい。
Further, as the metal carbide, for example, titanium carbide (Ti
C), zirconium carbide (ZrC), hafnium carbide (
HfC), bar6dium carbide (VC), niobium carbide (Nb
C), tantalum carbide (TaC), chromium carbide (Cr3C)
2), molybdenum carbide (MoC), tungsten carbide (
vic), and these may be used alone or in combination of two or more. Furthermore, in the present invention, the metal boride powder and metal carbide powder may be used in combination.

前記金属炭化物粉末は、(C)成分として配合される炭
化ホウ素粉末と加圧・加熱焼結過程において反応し、金
属ホウ化物に変化して焼結体中に分散含有される。
The metal carbide powder reacts with the boron carbide powder blended as component (C) during the pressure/heat sintering process, changes into metal boride, and is dispersed and contained in the sintered body.

本発明においては、(C)成分として炭化ホウ素粉末が
用いられる。この炭化ホウ素粉末は、該炭素粉末焼結時
の黒鉛化促進作用及び焼結促進作用を有するとともに、
(b)成分として金属炭化物粉末を用いる場合には、こ
のものと反応して該金属炭化物を金属ホウ化物に変化さ
せる作用も有している。
In the present invention, boron carbide powder is used as component (C). This boron carbide powder has a graphitization promoting effect and a sintering promoting effect during sintering of the carbon powder, and
When a metal carbide powder is used as the component (b), it also has the effect of reacting with the powder and converting the metal carbide into a metal boride.

前記(A)成分の炭素粉末に対する(B)成分の金属ホ
ウ化物粉末や金属炭化物粉末及び(C)成分の炭化ホウ
素粉末の配合割合は、加圧・加熱焼結過程における該炭
素の黒鉛化や高密度化及び焼結体の機械的強度、摩擦摩
耗特性、耐熱性などのバランスの点から決定される。ま
た、該金属ホウ化物及び炭化ホウ素の黒鉛化促進効果は
、加圧・加熱焼結過程において、該金属ホウ化物及び炭
化ホウ素中のホウ素が該炭素粉末に拡散固溶することに
よって発揮される。
The blending ratio of the metal boride powder or metal carbide powder of the component (B) and the boron carbide powder of the component (C) to the carbon powder of the component (A) is determined by the graphitization of the carbon during the pressure/heat sintering process. It is determined based on the balance between high density, mechanical strength, friction and wear characteristics, and heat resistance of the sintered body. Further, the graphitization promoting effect of the metal boride and boron carbide is exerted by the boron in the metal boride and boron carbide being diffused and dissolved into the carbon powder during the pressure/heat sintering process.

このような理由により、本発明においては、(B)成分
及び(C)成分の配合量は、(A)、(B)及び(C)
成分の合計重量に基づき、それぞれ3〜20重量%及び
2〜25重量%の範囲で選ぶことが必要である。(B)
成分及び(C)成分の配合量が前記範囲より少ないと黒
鉛化促進の効果が十分に発揮されないし、また前記範囲
より多いと摩擦摩耗特性が低下する傾向が生じる。
For these reasons, in the present invention, the blending amounts of component (B) and component (C) are as follows: (A), (B) and (C)
Based on the total weight of the components, it is necessary to choose between 3 and 20% by weight and between 2 and 25% by weight, respectively. (B)
If the amount of the component and component (C) is less than the above range, the effect of promoting graphitization will not be sufficiently exhibited, and if it is more than the above range, the friction and wear characteristics will tend to deteriorate.

金属ホウ化物及び炭化ホウ素の摩擦摩耗特性に対する効
果は、これら自体黒鉛や二硫化モリブデンのような潤滑
性を示さないが、焼結体(黒鉛体)中に分散含有される
ことにより、相手材との摩擦において相手材表面への固
体潤滑(黒鉛)被膜の造膜性を助長し、乾燥摩擦におけ
る被膜の耐久性を増大させる点である。
The effect of metal borides and boron carbide on the friction and wear characteristics is that although they themselves do not exhibit the same lubricity as graphite or molybdenum disulfide, by being dispersed and contained in a sintered body (graphite body), they are able to interact with the mating material. It promotes the formation of a solid lubricant (graphite) film on the surface of the mating material during friction, and increases the durability of the film during dry friction.

したがって、焼結体中にこれらホウ化物が多量に分散含
有されることは、相手材との摩擦においてそれ自体潤滑
性を示さない金属ホウ化物、炭化ホウ素との摩擦になり
、摩擦摩耗特性を低下させることになる。
Therefore, when a large amount of these borides are dispersed and contained in a sintered body, friction with metal borides and boron carbide, which themselves do not exhibit lubricity, occurs in friction with the mating material, reducing the friction and wear characteristics. I will let you do it.

また、(B)成分として金属炭化物粉末を用いる場合、
この金属炭化物粉末は、焼結過程において、(C)成分
の炭化ホウ素と反応して、すべて金属ホウ化物に変化し
て、焼結体中に分散含有されることが必要であり、その
ために、(C)成分の炭化ホウ素粉末の配合量は、前記
範囲内において、該金属炭化物粉末の配合量より、化学
量論的に多くし、焼結体中に、少なくとも2重量%の炭
化ホウ素が分散含有されることが重要である。
In addition, when using metal carbide powder as component (B),
During the sintering process, this metal carbide powder needs to react with the boron carbide of component (C) to completely change into metal boride and be dispersed and contained in the sintered body. The amount of boron carbide powder as component (C) is within the above range and is stoichiometrically larger than the amount of the metal carbide powder, so that at least 2% by weight of boron carbide is dispersed in the sintered body. It is important that it be included.

本発明の摺動部材は、前記(A)成分、’(B)成分及
び(C)成分をそれぞれ所定の割合で均一に混合し、こ
の混合物を黒鉛型に充填し、100721?/ cm”
以上、好ましくは150〜300に9/cm”の加圧下
で、かつ1500℃以上、好ましくは1800〜250
0℃の温度で焼結することによって、焼結体中に金属ホ
ウ化物及び炭化ホウ素が分散含有された黒鉛系複合摺動
部材が得られる。
The sliding member of the present invention is produced by uniformly mixing the component (A), the component (B), and the component (C) at predetermined ratios, and filling a graphite mold with this mixture. / cm”
above, preferably under a pressure of 150 to 300 to 9/cm", and above 1500 °C, preferably 1800 to 250 °C
By sintering at a temperature of 0° C., a graphite-based composite sliding member in which metal boride and boron carbide are dispersed and contained in the sintered body is obtained.

このようにして得られた本発明の黒鉛系複合摺動部材の
異なった例の物性値を第1表に示す。
Table 1 shows the physical property values of different examples of the graphite-based composite sliding member of the present invention thus obtained.

第1表において黒鉛系複合摺動部材■及び■は、それぞ
れ炭素粉末と金属ホウ化物粉末3〜20重量%と炭化ホ
ウ素粉末2〜20重量%との混合物及び炭素粉末と金属
炭化物粉末3〜20重量%と炭化ホウ素粉末5〜25重
量%との混合物を加圧・加熱して得た焼結体である。
In Table 1, graphite-based composite sliding members ■ and ■ are a mixture of carbon powder, 3 to 20% by weight of metal boride powder, and 2 to 20% by weight of boron carbide powder, and a mixture of carbon powder and metal carbide powder of 3 to 20% by weight, respectively. This is a sintered body obtained by pressurizing and heating a mixture of 5% to 25% by weight of boron carbide powder.

なお、該表中の摩擦摩耗特性は、 摺動部材の寸法:長さ20mm、幅20mtn、厚さ7
mmのブロック状摺動部材 相 手 材:外径18mm、内径14龍、長さ20mr
aのステンレス鋼から成る筒状体 筒    重: 20 kgf/ cm”速    度
:5m/min 試 験 機:鈴本式スラスト試験機 試験雰囲気温度二500℃ の試験条件で測定した値である。
The friction and wear characteristics in the table are as follows: Dimensions of sliding member: length 20mm, width 20mtn, thickness 7
mm block-shaped sliding member mating material: outer diameter 18 mm, inner diameter 14 mm, length 20 mr
A cylindrical body made of stainless steel Weight: 20 kgf/cm" Speed: 5 m/min Testing machine: Suzumoto thrust tester The values were measured under the test conditions of a test atmosphere temperature of 2500°C.

また、前記の黒鉛系複合摺動部材■及び■の耐熱性につ
いて試験した結果を図にグラフで示す。
In addition, the results of testing the heat resistance of the graphite-based composite sliding members (1) and (2) are shown graphically in the figure.

このグラフは、該摺動部材■及び■の試験片を、それぞ
れ560℃の温度に保持した炉中に放置し、放置時間と
該摺動部材■及び■の硬度との関係を示すものである。
This graph shows the relationship between the standing time and the hardness of the sliding members (1) and (2) after test pieces of the sliding members (2) and (2) were left in a furnace maintained at a temperature of 560°C. .

なお、図中、符号Aは黒鉛系複合摺動部材■、Bは黒鉛
系複合摺動部材■、C及びDはそれぞれピッチバインダ
ーを使用した黒鉛摺動部材及び特公昭63−13954
号公報の黒鉛系摺動部材である。
In addition, in the figure, symbol A is a graphite-based composite sliding member (■), B is a graphite-based composite sliding member (■), and C and D are graphite sliding members using a pitch binder and Japanese Patent Publication No. 63-13954, respectively.
This is a graphite-based sliding member disclosed in the publication.

この図から、本発明の黒鉛系複合摺動部材は、硬度の変
化が認められず、耐熱性に優れていることが分かる。
From this figure, it can be seen that the graphite-based composite sliding member of the present invention exhibits no change in hardness and has excellent heat resistance.

発明の効果 本発明の黒鉛系複合摺動部材は、優れた摩擦摩耗特性を
有する上に、黒鉛中に金属ホウ化物及び炭化ホウ素が分
散含有されているので、機械的強度及び耐熱性が大幅に
向上しており、従来のものでは使用できなかった5 0
0 ’O程度の高温領域での使用が可能である。
Effects of the Invention The graphite-based composite sliding member of the present invention not only has excellent friction and wear characteristics, but also has significantly improved mechanical strength and heat resistance because metal borides and boron carbide are dispersed in the graphite. 50 which could not be used with the conventional one.
It can be used in a high temperature range of about 0'O.

実施例 次に、実施例により本発明をさらに詳細に説明するが、
本発明はこれらの例によってなんら限定されるものでは
ない。
Examples Next, the present invention will be explained in more detail with reference to examples.
The present invention is not limited in any way by these examples.

実施例1 粒径150μm以下の仮焼ピッチコークス粉末に、全混
合粉末に対し、平均粒径7μmのニホウ化クロム粉末3
1i量%及び炭化ホウ素粉末2重量%の割合で混合し、
コークス粉末、ニホウ化クロム粉末及び炭化ホウ素粉末
の均一な混合粉末を得た。
Example 1 Chromium diboride powder 3 with an average particle size of 7 μm was added to the calcined pitch coke powder with a particle size of 150 μm or less based on the total mixed powder.
1i amount% and boron carbide powder 2% by weight,
A uniform mixed powder of coke powder, chromium diboride powder and boron carbide powder was obtained.

この混合粉末を黒鉛型に充填し、200kg/ cm”
の加圧下で2100°Cの温度まで昇温し、この温度で
1時間保持して焼結した。
This mixed powder was filled into a graphite mold and weighed 200 kg/cm”
The temperature was raised to 2100° C. under pressure of 100° C. and sintered by holding at this temperature for 1 hour.

次いで、室温(20°C)まで冷却したのち取り出し、
黒鉛系複合摺動部材を得た。
Then, after cooling to room temperature (20°C), take out the
A graphite-based composite sliding member was obtained.

このものの物性値及び摩擦摩耗特性を第2表の試料No
、lに示す。
The physical property values and friction and wear characteristics of this material were determined as Sample No. 2 in Table 2.
, l.

なお、表中の摩擦摩耗特性は前記の試験条件と同一の条
件で行い、摩耗量については試験開始5時間後に測定し
た値を示した。
The friction and wear characteristics in the table were conducted under the same test conditions as described above, and the amount of wear was measured 5 hours after the start of the test.

実施例2 実施例1と同じ仮焼ピッチコークス粉末に、全混合粉末
に対し、ニホウ化クロム粉末10重量%及び炭化ホウ素
粉末10重量%の割合で混合し、コークス粉末、ニホウ
化クロム粉末及び炭化ホウ素粉末の均一な混合粉末を得
た。以下、実施例1と同じ方法で焼結し、黒鉛系複合摺
動部材を得た。
Example 2 The same calcined pitch coke powder as in Example 1 was mixed at a ratio of 10% by weight of chromium diboride powder and 10% by weight of boron carbide powder with respect to the total mixed powder, and the coke powder, chromium diboride powder, and carbonized A uniform mixed powder of boron powder was obtained. Thereafter, sintering was performed in the same manner as in Example 1 to obtain a graphite-based composite sliding member.

このものの物性値及び摩擦摩耗特性を第2表に試料No
、2に示す。
The physical property values and friction and wear characteristics of this material are shown in Table 2 for sample No.
, 2.

実施例3 実施例1と同じ仮焼ピッチコークス粉末に、全混合粉末
に対し、ニホウ化クロム粉末20重量%及び炭化ホウ素
粉末20重量%の割合で混合し、コークス粉末、ニホウ
化クロム粉末及び炭化ホウ素粉末の均一な混合粉末を得
た。
Example 3 The same calcined pitch coke powder as in Example 1 was mixed with 20% by weight of chromium diboride powder and 20% by weight of boron carbide powder based on the total mixed powder, and the coke powder, chromium diboride powder, and carbonized A uniform mixed powder of boron powder was obtained.

以下、実施例1と同じ方法で焼結し、黒鉛系複合摺動部
材を得た。
Thereafter, sintering was performed in the same manner as in Example 1 to obtain a graphite-based composite sliding member.

このものの物性値及び摩擦摩耗特性を第2表の試料No
、3に示す。
The physical property values and friction and wear characteristics of this material were determined as Sample No. 2 in Table 2.
, 3.

実施例4 実施例1と同じ仮焼ピッチコークス粉末に、全混合粉末
に対し、平均粒径7pmのニホウ化ジルコニウム粉末1
0重量%及び炭化ホウ素粉末10重量%の割合で混合し
、コークス粉末、ニホウ化ジルコニウム粉末及び炭化ホ
ウ素粉末の均一な混合粉末を得た。
Example 4 To the same calcined pitch coke powder as in Example 1, zirconium diboride powder 1 with an average particle size of 7 pm was added to the total mixed powder.
A uniform mixed powder of coke powder, zirconium diboride powder, and boron carbide powder was obtained by mixing 0% by weight and 10% by weight of boron carbide powder.

以下、実施例1と同じ方法で焼結し、黒鉛系複合摺動部
材を得た。
Thereafter, sintering was performed in the same manner as in Example 1 to obtain a graphite-based composite sliding member.

このものの物性値及び摩擦摩耗特性を第2表の試料No
、4に示す。
The physical property values and friction and wear characteristics of this material were determined as Sample No. 2 in Table 2.
, 4.

実施例5 実施例1と同じ仮焼ピッチコークス粉末に、全混合粉末
に対し、平均粒径7μmのニホウ化ニオブ粉末10重量
%及び炭化ホウ素粉末10重量%の割合で混合し、コー
クス粉末、ニホウ化ニオブ粉末及び炭化ホウ素の均一な
混合粉末を得た。
Example 5 The same calcined pitch coke powder as in Example 1 was mixed with 10% by weight of niobium diboride powder and 10% by weight of boron carbide powder with an average particle size of 7 μm based on the total mixed powder. A uniform mixed powder of niobium oxide powder and boron carbide was obtained.

以下、実施例1と同じ方法で焼結し、黒鉛系複合摺動部
材を得た。
Thereafter, sintering was performed in the same manner as in Example 1 to obtain a graphite-based composite sliding member.

このものの物性値及び摩擦摩耗特性を第2表の試料No
、5に示す。
The physical property values and friction and wear characteristics of this material were determined as Sample No. 2 in Table 2.
, 5.

実施例6 実施例1と同じ仮焼ピッチコークス粉末に、全混合粉末
に対し、平均粒径7μmのニホウ化クロム粉末5重量%
、ニホウ化モリブデン粉末5重量%及び炭化ホウ素粉末
10重量%の割合で混合し、コークス粉末、ニホウ化ク
ロム粉末、ニホウ化モリブデン粉末及び炭化ホウ素粉末
の均一な混合粉末を得た。
Example 6 In the same calcined pitch coke powder as in Example 1, 5% by weight of chromium diboride powder with an average particle size of 7 μm was added to the total mixed powder.
, 5% by weight of molybdenum diboride powder and 10% by weight of boron carbide powder to obtain a uniform mixed powder of coke powder, chromium diboride powder, molybdenum diboride powder, and boron carbide powder.

以下、実施例1と同じ方法で焼結し、黒鉛系複合摺動部
材を得た。
Thereafter, sintering was performed in the same manner as in Example 1 to obtain a graphite-based composite sliding member.

このものの物性値及び摩擦摩耗特性を第2表の試料No
、6に示す。
The physical property values and friction and wear characteristics of this material were determined as Sample No. 2 in Table 2.
, 6.

実施例7 実施例1と同じ仮焼°ピッチコークス粉末に、全混合粉
末に対し、炭化クロム粉末3重量%、炭化ホウ素粉末5
重量%の割合で混合し、コークス粉末、炭化クロム粉末
及び炭化ホウ素粉末の均一な混合物を得た。
Example 7 To the same calcined pitch coke powder as in Example 1, 3% by weight of chromium carbide powder and 5% by weight of boron carbide powder were added to the total mixed powder.
A uniform mixture of coke powder, chromium carbide powder, and boron carbide powder was obtained by mixing them in a proportion of % by weight.

以下、実施例1と同じ方法で焼結し、黒鉛系複合摺動部
材を得た。
Thereafter, sintering was performed in the same manner as in Example 1 to obtain a graphite-based composite sliding member.

この黒鉛系摺動部材中には、炭化クロムは炭化ホウ素と
反応してニホウ化クロムにすべて変化していることをX
線回折により確認した。このものの物性値及び摩擦摩耗
特性を第2表の試料N007に示す。
X
Confirmed by line diffraction. The physical property values and friction and wear characteristics of this material are shown in Sample No. 007 in Table 2.

実施例8 実施例1で用いたのと同じ仮焼ピッチコークス粉末に、
全混合粉末に対し、炭化チタン粉末5重量%、炭化ホウ
素粉末10重量%の割合で混合し、コークス粉末、炭化
チタン粉末及び炭化ホウ素粉末の均一な混合物を得た。
Example 8 The same calcined pitch coke powder used in Example 1 was
5% by weight of titanium carbide powder and 10% by weight of boron carbide powder were mixed with respect to the total mixed powder to obtain a uniform mixture of coke powder, titanium carbide powder, and boron carbide powder.

以下、実施例1と同じ方法で焼結し、黒鉛系複合摺動部
材を得た。
Thereafter, sintering was performed in the same manner as in Example 1 to obtain a graphite-based composite sliding member.

この黒鉛系複合摺動部材中には、炭化チタンは炭化ホウ
素と反応してニホウ化チタンにすべて変化していること
をX線回折により確認した。このものの物性値及び摩擦
摩耗特性を第2表の試料No。
It was confirmed by X-ray diffraction that all titanium carbide in this graphite-based composite sliding member reacted with boron carbide and changed to titanium diboride. The physical properties and friction and wear characteristics of this material are shown in Table 2 as Sample No.

8に示す。8.

実施例9 実施例1で用いI;のと同じ仮焼ピッチコークス粉末に
、全混合粉末に対し、炭化ニオブ粉末5重量%、炭化ホ
ウ素粉末10重量%の割合で混合し、コークス粉末、炭
化ニオブ粉末及び炭化ホウ素粉末の均一な混合物を得た
Example 9 The same calcined pitch coke powder used in Example 1 was mixed with 5% by weight of niobium carbide powder and 10% by weight of boron carbide powder based on the total mixed powder. A homogeneous mixture of powder and boron carbide powder was obtained.

以下、実施例1と同じ方法で焼結し、黒鉛系複合摺動部
材を得た。
Thereafter, sintering was performed in the same manner as in Example 1 to obtain a graphite-based composite sliding member.

この黒鉛系複合摺動部材中には、炭化ニオブは炭化ホウ
素と反応してニホウ化ニオブにすべて変化していること
をX線回折により確認した。このものの物性値及び摩擦
摩耗特性を第2表の試料No。
It was confirmed by X-ray diffraction that all niobium carbide in this graphite-based composite sliding member reacted with boron carbide and changed to niobium diboride. The physical properties and friction and wear characteristics of this material are shown in Table 2 as Sample No.

9に示す。9.

比較例1 実施例1で用いたのと同じ仮焼ピッチコークス粉末に、
全混合粉末に対し、ニホウ化クロム粉末10重量%、天
然黒鉛粉末10重量%の割合で混合し、以下実施例1と
同様の方法で焼結して、黒鉛系複合摺動部材を得た(特
願昭59−233276号)。
Comparative Example 1 The same calcined pitch coke powder used in Example 1 was
The total mixed powder was mixed with 10% by weight of chromium diboride powder and 10% by weight of natural graphite powder, and then sintered in the same manner as in Example 1 to obtain a graphite-based composite sliding member ( (Japanese Patent Application No. 59-233276).

このものの物性値及び摩擦摩耗特性を第2表の試料No
、IOに示す。
The physical property values and friction and wear characteristics of this material were determined as Sample No. 2 in Table 2.
, IO.

比較例2 ピッチ系バインダ1を使用して得た黒鉛成形体から成る
黒鉛摺動部材で、このものの物性値及び摩擦摩耗特性と
を第2表の試料No、llに示す。
Comparative Example 2 A graphite sliding member made of a graphite molded body obtained using pitch-based binder 1. The physical properties and friction and wear characteristics of this member are shown in Samples No. and 11 in Table 2.

第2表から、本発明の黒鉛系摺動部材(実施例1〜実施
例9)は、機械的強度、特に曲げ強度が大幅に向上して
いることが分かる。また、500°Cという高温雰囲気
下の摩擦においても安定した性能を発揮し、試験後の相
手材表面には黒鉛の薄い被膜が形成されているのが確認
された。
From Table 2, it can be seen that the graphite-based sliding members of the present invention (Examples 1 to 9) have significantly improved mechanical strength, particularly bending strength. Furthermore, it exhibited stable performance even in friction under a high-temperature atmosphere of 500°C, and it was confirmed that a thin graphite film was formed on the surface of the mating material after the test.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の黒鉛系複合摺動部材と従来の黒鉛摺動部材
との耐熱性について試験した結果を示すグラフである。 特許出願人 工業技術院長 飯塚幸三 (ほか1名) 復代理人阿 形 明
The figure is a graph showing the results of a test on the heat resistance of the graphite-based composite sliding member of the present invention and a conventional graphite sliding member. Patent applicant: Director of the Agency of Industrial Science and Technology Kozo Iizuka (and one other person) Sub-agent Akira Agata

Claims (1)

【特許請求の範囲】[Claims] 1 (A)炭素粉末と、(B)周期律表の第IVa族、第
Va族及び第VIa族に属する金属のホウ化物及び炭化物
の中から選ばれた少なくとも1種の粉末3〜20重量%
と、(C)炭化ホウ素粉末2〜25重量%との混合物の
焼結体から成り、かつ該焼結体が黒鉛とこの黒鉛中に分
散含有された金属ホウ化物及び炭化ホウ素とから成るこ
とを特徴とする耐高温高強度黒鉛系複合摺動部材。
1 (A) Carbon powder and (B) 3 to 20% by weight of at least one powder selected from borides and carbides of metals belonging to Group IVa, Group Va, and Group VIa of the Periodic Table.
and (C) 2 to 25% by weight of boron carbide powder, and the sintered body is composed of graphite and metal boride and boron carbide dispersed in the graphite. A high-temperature resistant, high-strength graphite-based composite sliding member.
JP63187682A 1988-07-27 1988-07-27 Complex sliding member of high-temperature-reisistant and high-strength graphite base Pending JPH0238365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63187682A JPH0238365A (en) 1988-07-27 1988-07-27 Complex sliding member of high-temperature-reisistant and high-strength graphite base

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63187682A JPH0238365A (en) 1988-07-27 1988-07-27 Complex sliding member of high-temperature-reisistant and high-strength graphite base

Publications (1)

Publication Number Publication Date
JPH0238365A true JPH0238365A (en) 1990-02-07

Family

ID=16210297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63187682A Pending JPH0238365A (en) 1988-07-27 1988-07-27 Complex sliding member of high-temperature-reisistant and high-strength graphite base

Country Status (1)

Country Link
JP (1) JPH0238365A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0438152A (en) * 1990-06-01 1992-02-07 Hitachi Chem Co Ltd Electrical brush
JPH05306166A (en) * 1991-04-05 1993-11-19 Toyota Motor Corp Carbon composite material
JP2010223288A (en) * 2009-03-23 2010-10-07 Toyota Central R&D Labs Inc Sliding member and method of manufacturing the same
JP2017505274A (en) * 2013-12-11 2017-02-16 ベイカー ヒューズ インコーポレイテッド Carbon composite, manufacturing method, and use thereof
US10119011B2 (en) 2014-11-17 2018-11-06 Baker Hughes, A Ge Company, Llc Swellable compositions, articles formed therefrom, and methods of manufacture thereof
US10202310B2 (en) 2014-09-17 2019-02-12 Baker Hughes, A Ge Company, Llc Carbon composites
US10344559B2 (en) 2016-05-26 2019-07-09 Baker Hughes, A Ge Company, Llc High temperature high pressure seal for downhole chemical injection applications
US10480288B2 (en) 2014-10-15 2019-11-19 Baker Hughes, A Ge Company, Llc Articles containing carbon composites and methods of manufacture
US11097511B2 (en) 2014-11-18 2021-08-24 Baker Hughes, A Ge Company, Llc Methods of forming polymer coatings on metallic substrates
US11148950B2 (en) 2014-11-13 2021-10-19 Baker Hughes, A Ge Company, Llc Reinforced composites, methods of manufacture, and articles therefrom

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5322169A (en) * 1976-08-13 1978-03-01 Georugiebuichi Arabei Borisu Endothermic materials
JPS6127352A (en) * 1984-07-16 1986-02-06 Aisin Warner Ltd Support mechanism of power transmission mechanism in 4-wheel driving speed change gear
JPS6313953A (en) * 1986-07-07 1988-01-21 Komatsu Ltd Method for automatic speed change

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5322169A (en) * 1976-08-13 1978-03-01 Georugiebuichi Arabei Borisu Endothermic materials
JPS6127352A (en) * 1984-07-16 1986-02-06 Aisin Warner Ltd Support mechanism of power transmission mechanism in 4-wheel driving speed change gear
JPS6313953A (en) * 1986-07-07 1988-01-21 Komatsu Ltd Method for automatic speed change

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0438152A (en) * 1990-06-01 1992-02-07 Hitachi Chem Co Ltd Electrical brush
JPH05306166A (en) * 1991-04-05 1993-11-19 Toyota Motor Corp Carbon composite material
JP2010223288A (en) * 2009-03-23 2010-10-07 Toyota Central R&D Labs Inc Sliding member and method of manufacturing the same
JP2017505274A (en) * 2013-12-11 2017-02-16 ベイカー ヒューズ インコーポレイテッド Carbon composite, manufacturing method, and use thereof
US10202310B2 (en) 2014-09-17 2019-02-12 Baker Hughes, A Ge Company, Llc Carbon composites
US10480288B2 (en) 2014-10-15 2019-11-19 Baker Hughes, A Ge Company, Llc Articles containing carbon composites and methods of manufacture
US11148950B2 (en) 2014-11-13 2021-10-19 Baker Hughes, A Ge Company, Llc Reinforced composites, methods of manufacture, and articles therefrom
US10119011B2 (en) 2014-11-17 2018-11-06 Baker Hughes, A Ge Company, Llc Swellable compositions, articles formed therefrom, and methods of manufacture thereof
US11097511B2 (en) 2014-11-18 2021-08-24 Baker Hughes, A Ge Company, Llc Methods of forming polymer coatings on metallic substrates
US10344559B2 (en) 2016-05-26 2019-07-09 Baker Hughes, A Ge Company, Llc High temperature high pressure seal for downhole chemical injection applications

Similar Documents

Publication Publication Date Title
JP4207218B2 (en) Metal porous body, method for producing the same, and metal composite using the same
CN102197150B (en) Sliding bearing with improved wear resistance and method of manufacturing same
US2270199A (en) Graphite article
JPH0238365A (en) Complex sliding member of high-temperature-reisistant and high-strength graphite base
US4637884A (en) Sliding member of graphite-boron carbides
EP0404571B1 (en) Sliding member
US4720349A (en) Sliding member of graphite-metal borides
EP1337737B1 (en) Sliding pairing for machine parts that are subjected to the action of highly pressurized and high-temperature steam, preferably for piston-cylinder assemblies of steam engines
US5169718A (en) Sliding member
Zou et al. Effect of Ti3SiC2 amount on microstructures and properties of TiAl matrix composites
Han et al. High temperature tribological characteristics of Fe–Mo-based self-lubricating composites
JP2561876B2 (en) Graphite composite sliding member
Leshok et al. Tribotechnical properties of a copper-based powder friction material with the addition of iron-chromium alloy powder
JPH01145371A (en) Highly wear-resistant c-b4c-based sliding member
Li et al. Friction and Wear Properties of Spark Plasma Sintering NiCr–SrSO 4 Composites at Elevated Temperatures in Sliding Against Alumina Ball
JPS59131567A (en) Abrasion resistant sliding material
JPS60235767A (en) Sliding member and manufacture
JPH0246317A (en) Retainer for high temperature rolling bearing
JPS6127351B2 (en)
KR820002158B1 (en) Resin composites for bearing
JPH07133163A (en) Production of carbon sliding member
JPS6058188B2 (en) Highly wear-resistant sliding parts
JPH04310567A (en) Carbon fiber reinforced carbon composite material having low coefficient of friction
JPH0812474A (en) Production of carbon-sic composite material
Ilyushchanka et al. Tribotechnical Properties of Sintered Friction Material with Colloidal Graphite