JPH04310512A - Production of active silicon carbide - Google Patents

Production of active silicon carbide

Info

Publication number
JPH04310512A
JPH04310512A JP3099423A JP9942391A JPH04310512A JP H04310512 A JPH04310512 A JP H04310512A JP 3099423 A JP3099423 A JP 3099423A JP 9942391 A JP9942391 A JP 9942391A JP H04310512 A JPH04310512 A JP H04310512A
Authority
JP
Japan
Prior art keywords
silicon carbide
surface area
specific surface
silicon
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3099423A
Other languages
Japanese (ja)
Inventor
Akira Kondo
明 近藤
Masumi Kosho
古庄 眞澄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP3099423A priority Critical patent/JPH04310512A/en
Publication of JPH04310512A publication Critical patent/JPH04310512A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To efficiently produce active silicon carbide having a high specific surface area in a short time by adding a specified crystallization agent to a carbonaceous raw material and subsequently thermally reacting the mixture with silicon monoxide. CONSTITUTION:A carbonaceous raw material such as active carbon or porous carbon having a specific surface area of >=60m<2>/g is mixed with 0.1-3.0wt.% of one kind or more of the single bodies (or compounds) of Be, B, Al, P, Cr, Fe, Ga and Bi as a particle growth-inhibiting agent. On the other hand, silica, etc., is mixed and thermally reacted with a reducing component powder such as silicon powder under vacuum to produce silicon monoxide gas. The above- mentioned carbonaceous raw material mixture is reacted with the silicon monoxide gas at 1400-1800 deg.C to produce active silicon carbide.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、触媒担体として有用な
高い比表面積を備える活性炭化珪素の製造方法に関する
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing activated silicon carbide having a high specific surface area and useful as a catalyst carrier.

【0002】0002

【従来の技術】セラミックス材に属する炭化珪素は、固
有の優れた強度、硬度、耐熱性、化学的安定性などの特
性を利用して高温で苛酷な雰囲気条件下で使われる各種
の部材として実用されているが、これら用途の1つに触
媒担体がある。触媒担体として用いられる炭化珪素には
表面活性を示す少なくとも60m2/gの比表面積が要
求される。
[Prior Art] Silicon carbide, which belongs to ceramic materials, is put into practical use as a variety of components used under high temperature and harsh atmospheric conditions by utilizing its unique properties such as excellent strength, hardness, heat resistance, and chemical stability. However, one of these uses is as a catalyst support. Silicon carbide used as a catalyst carrier is required to have a specific surface area of at least 60 m2/g to exhibit surface activity.

【0003】従来、炭化珪素による触媒担体としては、
細孔気孔 0.2〜2.0ml/g 、比表面積3m2
/g以上、平均圧縮強度300kgf/cm3以上の三
次元網目構造を備える多孔質炭化ケイ素質焼結体 (特
開昭62−45344 号公報) 、籾殻、稲わら等の
ケイ素集積バイオマスから製造した多孔質炭化ケイ素 
(特開昭64−85142 号公報) などが知られて
いるが、これらの比表面積はいずれも50m2/g以下
であって活性表面としては不十分である。また、SiO
2 とSiを反応させて生成したSiO気体を比表面積
が少なくとも200m2/g である分割状態の反応性
炭素と1100〜1400℃の温度で接触させて比表面
積が100m2/g の炭化ケイ素細粒からなる触媒担
体を製造する方法も提案されている (特開平1−13
1016号公報) 。ところが、この方法では反応温度
を1100〜1400℃という比較的低温度に設定する
ことが要件とされている関係で炭化ケイ素の生成に長時
間(4〜7時間)を要し、工業的な量産手段としては問
題点がある。
Conventionally, catalyst carriers made of silicon carbide include:
Pore 0.2-2.0ml/g, specific surface area 3m2
Porous silicon carbide sintered body having a three-dimensional network structure with an average compressive strength of 300 kgf/cm3 or more and an average compressive strength of 300 kgf/cm3 or more (Japanese Unexamined Patent Publication No. 62-45344), a porous silicon carbide sintered body manufactured from silicon-integrated biomass such as rice husk or rice straw. quality silicon carbide
(Japanese Unexamined Patent Application Publication No. 64-85142) are known, but all of these have a specific surface area of 50 m2/g or less, which is insufficient as an active surface. Also, SiO
2 and Si is brought into contact with split-state reactive carbon having a specific surface area of at least 200 m2/g at a temperature of 1100 to 1400°C to form silicon carbide fine particles with a specific surface area of 100 m2/g. A method for producing a catalyst carrier has also been proposed (Japanese Unexamined Patent Publication No. 1999-13
Publication No. 1016). However, this method requires a relatively low reaction temperature of 1,100 to 1,400 degrees Celsius, so it takes a long time (4 to 7 hours) to produce silicon carbide, making it difficult for industrial mass production. There are problems with this method.

【0004】0004

【発明が解決しようとする課題】しかし、前記の方法を
採る場合に反応温度を上昇させると、生成する炭化珪素
の粒成長が進行して粗粒化し、比表面積を低下させる結
果を招く。
However, when the above-mentioned method is adopted, if the reaction temperature is increased, the grain growth of the produced silicon carbide progresses and the grains become coarser, resulting in a decrease in the specific surface area.

【0005】本発明の目的は、炭素と一酸化珪素との反
応により炭化珪素を生成させる場合、反応温度の上昇に
伴う炭化珪素の粒成長を抑制し、よって高反応温度域に
おいて高度の比表面積を有する活性炭化珪素を効率的に
製造するための方法を提供することにある。
An object of the present invention is to suppress the grain growth of silicon carbide that accompanies an increase in reaction temperature when silicon carbide is produced by the reaction between carbon and silicon monoxide. An object of the present invention is to provide a method for efficiently producing activated silicon carbide having the following properties.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めの本発明による活性炭化珪素の製造方法は、炭素質原
料に一酸化珪素ガスを高温で接触反応させて高比表面積
の炭化珪素に転化させる工程において、予め炭素質原料
に炭化珪素の粒成長抑制剤としてベリリウム、硼素、ア
ルミニウム、燐、クロム、鉄、ガリウムまたはビスマス
の単体または化合物の1種もしくは2種以上を 0.1
〜3.0 重量%の範囲で添加し、1400〜1800
℃の温度域で一酸化珪素と反応させることを構成上の特
徴とする。
[Means for Solving the Problems] A method for producing activated silicon carbide according to the present invention to achieve the above-mentioned object is to produce silicon carbide with a high specific surface area by subjecting a carbonaceous raw material to a catalytic reaction with silicon monoxide gas at high temperature. In the conversion step, one or more of beryllium, boron, aluminum, phosphorus, chromium, iron, gallium, or bismuth alone or as a compound is added to the carbonaceous raw material in advance as a grain growth inhibitor of silicon carbide.
Added in the range of ~3.0% by weight, 1400~1800
The structural feature is that it reacts with silicon monoxide in the temperature range of °C.

【0007】本発明に用いる炭素質原料は最終的に炭化
珪素質に転化する基材となるもので、材質的に高い比表
面積を備えるものから選定される。例えば、60m2/
g以上の比表面積を有する活性炭、多孔質炭素、カーボ
ンブラック等が好適に使用される。
The carbonaceous raw material used in the present invention serves as a base material that will eventually be converted into silicon carbide, and is selected from those having a high specific surface area. For example, 60m2/
Activated carbon, porous carbon, carbon black, etc. having a specific surface area of 100 g or more are preferably used.

【0008】炭化珪素の反応源となる一酸化珪素ガスは
、珪砂またはシリカゲル等の二酸化珪素含有粉末に珪素
または炭素などの還元成分粉末を混合し、減圧下に10
00〜1500℃の温度で加熱反応させることによって
生成させることができる。
Silicon monoxide gas, which is a reaction source for silicon carbide, is prepared by mixing a powder containing a reducing component such as silicon or carbon with a powder containing silicon dioxide such as silica sand or silica gel, and then heating the mixture under reduced pressure for 10 minutes.
It can be produced by a heating reaction at a temperature of 00 to 1500°C.

【0009】本発明においては、前記の炭素質原料と一
酸化珪素ガスを高温下で接触反応させる際、予め炭素質
原料に炭化珪素の粒成長を抑制するための成分を添加混
合することが重要な要件となる。この粒成長抑制剤は、
ベリリウム、硼素、アルミニウム、燐、クロム、鉄、ガ
リウムおよびビスマスの単体または化合物から選択され
、1種もしくは2種以上を混合して使用される。取扱面
および価格的に最も好適な成分は、硼素またはアルミニ
ウムである。粒成長抑制剤の添加比率は、炭素質原料に
対し 0.1〜3.0 重量%の範囲に設定する。この
添加比率が 0.1重量%未満であると炭化珪素の粒成
長を抑制する効果が現出せず、3.0 重量を越えると
添加成分が炭化珪素の粒界に残留して好ましくない。
In the present invention, when the above-mentioned carbonaceous raw material and silicon monoxide gas are subjected to a contact reaction at high temperature, it is important to add and mix a component for suppressing the grain growth of silicon carbide to the carbonaceous raw material in advance. This is a requirement. This grain growth inhibitor is
It is selected from beryllium, boron, aluminum, phosphorus, chromium, iron, gallium, and bismuth alone or as a compound, and is used singly or in combination of two or more. The most suitable component in terms of handling and cost is boron or aluminum. The addition ratio of the grain growth inhibitor is set in the range of 0.1 to 3.0% by weight based on the carbonaceous raw material. If the addition ratio is less than 0.1% by weight, the effect of suppressing the grain growth of silicon carbide will not be achieved, and if it exceeds 3.0% by weight, the added component will remain at the grain boundaries of silicon carbide, which is not preferable.

【0010】粒成長抑制剤を添加混合した炭素質原料は
、1400〜1800℃の高温度域で一酸化珪素ガスと
反応させて炭化珪素に転化する。該反応温度が1400
℃未満であると炭化珪素の生成に長時間を要するように
なり、また1800℃を越えると粒成長抑制剤の効果が
減殺されて生成炭化珪素の粗粒化が生じる。
[0010] The carbonaceous raw material mixed with a grain growth inhibitor is reacted with silicon monoxide gas in a high temperature range of 1400 to 1800°C and converted into silicon carbide. The reaction temperature is 1400
If it is less than 1800°C, it will take a long time to generate silicon carbide, and if it exceeds 1800°C, the effect of the grain growth inhibitor will be diminished and the silicon carbide produced will become coarse.

【0011】[0011]

【作用】本発明によれば、予め添加した粒成長抑制剤が
炭素質原料と一酸化珪素との反応過程で生成する炭化珪
素の粒子表面に移行し、炭化珪素粒の表面拡散を阻止す
る作用を営む。この作用によって1400〜1800℃
という高い反応温度においても生成した炭化珪素が粗粒
化することなく、高水準の比表面積が維持される。した
がって、高反応温度により極めて短時間内に優れた比表
面積を有する活性炭化珪素を製造することが可能となる
[Function] According to the present invention, the grain growth inhibitor added in advance migrates to the surface of silicon carbide particles generated during the reaction process between the carbonaceous raw material and silicon monoxide, and has the effect of inhibiting surface diffusion of silicon carbide particles. runs a business. 1400-1800℃ due to this action
Even at such high reaction temperatures, the produced silicon carbide does not become coarse and a high level of specific surface area is maintained. Therefore, the high reaction temperature makes it possible to produce activated silicon carbide having an excellent specific surface area within a very short time.

【0012】0012

【実施例】以下、本発明の実施例を比較例と対比して説
明する。 実施例1〜3、比較例1〜5 比表面積750m2/g の活性炭粉末〔タケダ製薬(
株) 製、商品名「白鷺」〕を炭素質原料とし、これに
粒成長抑制剤を添加してボールミルにより十分に乾式混
合した。粒成長抑制剤としては、平均粒径 0.9μm
 の硼素粉末〔ヘルマシCシュタルク社製、アモルファ
スボロン〕および平均粒径 0.2μm のアルミナ粉
末〔大明化学(株)製、商品名「タイミクロンTMD」
〕を用いた。
[Examples] Examples of the present invention will be explained below in comparison with comparative examples. Examples 1 to 3, Comparative Examples 1 to 5 Activated carbon powder with a specific surface area of 750 m2/g [Takeda Pharmaceutical Co., Ltd.
Co., Ltd., trade name ``Shirasagi''] was used as a carbonaceous raw material, a grain growth inhibitor was added thereto, and the mixture was thoroughly dry-mixed using a ball mill. As a grain growth inhibitor, the average grain size is 0.9 μm.
boron powder [manufactured by Hermashi C. Stark, amorphous boron] and alumina powder with an average particle size of 0.2 μm [manufactured by Daimei Kagaku Co., Ltd., trade name "Taimicron TMD"]
] was used.

【0013】ついで、上記の混合粉末を密閉式加熱炉に
入れ、炉内を10Torrの減圧下に保持しながら所定
の温度まで昇温した。この炉内に別系統で珪砂と珪素と
の混合粉末を30Torrの真空雰囲気で1300℃の
温度で反応生成させた一酸化珪素ガスを導入して混合粉
末と接触反応させた。適用した反応条件を表1に示した
[0013] Next, the above mixed powder was placed in a closed heating furnace, and the temperature was raised to a predetermined temperature while maintaining the inside of the furnace under a reduced pressure of 10 Torr. A silicon monoxide gas produced by reacting a mixed powder of silica sand and silicon at a temperature of 1300° C. in a vacuum atmosphere of 30 Torr was introduced into this furnace in a separate system, and brought into contact with the mixed powder. The reaction conditions applied are shown in Table 1.

【0014】[0014]

【0015】生成物を空気中で 600℃の温度で燃焼
処理して未反応の炭素質原料を焼却除去した。このよう
にして製造した各炭化珪素の比表面積、SiC転化率お
よび粒成長抑制剤の残留率を測定し、その結果を表2に
示した。なお、比表面積は窒素吸着法により、また粒成
長抑制剤の残留率は蛍光X線定量分析法によった。
The product was combusted in air at a temperature of 600° C. to burn off unreacted carbonaceous materials. The specific surface area, SiC conversion rate, and residual rate of grain growth inhibitor of each silicon carbide thus produced were measured, and the results are shown in Table 2. Note that the specific surface area was determined by the nitrogen adsorption method, and the residual rate of the grain growth inhibitor was determined by the fluorescent X-ray quantitative analysis method.

【0016】[0016]

【0017】表2の結果から、本発明の反応条件を満た
す実施例1〜3の炭化珪素は比表面積350m2/g 
を上廻る高度の活性表面を呈し、良好なSiC転化率と
微小な残留率を示した。これに対し、粒成長抑制剤を添
加しない比較例1では比表面積が著しく低下し、逆にこ
の添加率が 3.0重量%を越える比較例2では不都合
な残留量の増大化が認められた。反応温度が1800℃
を上廻る比較例3では比表面積が大幅に減少する。反応
温度が1300℃のときは、反応時間30分ではSiC
の転化が不十分(比較例4)となり、反応時間を 18
0分に延長しても実施例に比べて比表面積、SiC転化
率ともに低い結果を示した(比較例5)。
From the results in Table 2, the silicon carbide of Examples 1 to 3 that satisfies the reaction conditions of the present invention has a specific surface area of 350 m2/g.
It exhibited a highly active surface that exceeded 100%, and showed a good SiC conversion rate and a small residual rate. On the other hand, in Comparative Example 1, in which no grain growth inhibitor was added, the specific surface area decreased significantly, and on the other hand, in Comparative Example 2, in which the addition rate exceeded 3.0% by weight, an undesirable increase in the residual amount was observed. . Reaction temperature is 1800℃
In Comparative Example 3, which exceeds the above, the specific surface area is significantly reduced. When the reaction temperature is 1300℃ and the reaction time is 30 minutes, SiC
The conversion of was insufficient (Comparative Example 4), and the reaction time was reduced to 18
Even when extended to 0 minutes, both the specific surface area and the SiC conversion rate were lower than in the example (Comparative Example 5).

【0018】[0018]

【発明の効果】以上のとおり、本発明に従えば炭素質原
料に一酸化珪素ガスを高温度で接触反応させることによ
り短時間内に高い比表面積を備える活性炭化珪素を効率
よく製造することができる。したがって、高温苛酷な条
件で使用される触媒担体を製造するための量産手段とし
て極めて有用である。
[Effects of the Invention] As described above, according to the present invention, activated silicon carbide having a high specific surface area can be efficiently produced within a short period of time by catalytically reacting silicon monoxide gas with carbonaceous raw materials at high temperatures. can. Therefore, it is extremely useful as a mass production means for manufacturing catalyst carriers used under high temperature and severe conditions.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  炭素質原料に一酸化珪素ガスを高温度
で接触反応させて高比表面積の炭化珪素に転化させる工
程において、予め炭素質原料に炭化珪素の粒成長抑制剤
としてベリリウム、硼素、アルミニウム、燐、クロム、
鉄、ガリウムまたはビスマスの単体または化合物の1種
もしくは2種以上を 0.1〜3.0重量%の範囲で添
加し、1400〜1800℃の温度域で一酸化珪素と反
応させることを特徴とする活性炭化珪素の製造方法。
Claim 1: In the process of converting a carbonaceous raw material into silicon carbide having a high specific surface area through a contact reaction with silicon monoxide gas at high temperatures, beryllium, boron, aluminum, phosphorus, chromium,
It is characterized by adding one or more of iron, gallium, or bismuth alone or as a compound in a range of 0.1 to 3.0% by weight, and reacting with silicon monoxide in a temperature range of 1400 to 1800°C. A method for producing activated silicon carbide.
JP3099423A 1991-04-04 1991-04-04 Production of active silicon carbide Pending JPH04310512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3099423A JPH04310512A (en) 1991-04-04 1991-04-04 Production of active silicon carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3099423A JPH04310512A (en) 1991-04-04 1991-04-04 Production of active silicon carbide

Publications (1)

Publication Number Publication Date
JPH04310512A true JPH04310512A (en) 1992-11-02

Family

ID=14247057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3099423A Pending JPH04310512A (en) 1991-04-04 1991-04-04 Production of active silicon carbide

Country Status (1)

Country Link
JP (1) JPH04310512A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9039939B2 (en) * 2007-03-29 2015-05-26 Tdk Corporation Production method of active material, and active material
US9246193B2 (en) 2007-03-29 2016-01-26 Tdk Corporation All-solid-state lithium-ion secondary battery and production method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9039939B2 (en) * 2007-03-29 2015-05-26 Tdk Corporation Production method of active material, and active material
US9246193B2 (en) 2007-03-29 2016-01-26 Tdk Corporation All-solid-state lithium-ion secondary battery and production method thereof
US9419308B2 (en) 2007-03-29 2016-08-16 Tdk Corporation All-solid-state lithium-ion secondary battery and production method thereof

Similar Documents

Publication Publication Date Title
EP1095906B1 (en) Process for the preparation of ammonia
US3960581A (en) Process for producing a solid solution of aluminum oxide in silicon nitride
EP0153000A1 (en) Refractories of silicon carbide and related materials having a modified silicon nitride bonding phase
US4619905A (en) Process for the synthesis of silicon nitride
JPS63274611A (en) Manufacture of ceramic powder based on beta&#39;-sialon
JPH04310512A (en) Production of active silicon carbide
JPS62241812A (en) Manufacture of silicon nitride
JPS5839764B2 (en) Method for producing aluminum nitride powder
JPH0216270B2 (en)
US7314593B2 (en) Process for preparing improved silicon carbide powder
CA1298319C (en) Process for the preparation of sialon products
JP3278681B2 (en) Method for producing porous silicon carbide sintered body
JPS61242905A (en) Production of alpha-silicon nitride powder
JPS61201608A (en) Manufacture of high purity aluminum nitride powder
JP2610156B2 (en) Method for producing silicon nitride powder
JP3743464B2 (en) Silicon oxynitride powder and method for producing the same
JP2635695B2 (en) Method for producing α-silicon nitride powder
JPH0442863A (en) Preparation of sialon-silicon carbide composite powder
JPS58217469A (en) Manufacture of silicon nitride-silicon carbide composition
CA2052103A1 (en) Process for the production of alpha-silicon nitride powder
CA1241027A (en) PROCESS FOR PRODUCING .beta.-SILICON ALUMINUM OXYNITRIDE (.beta.&#39;-SIALON) USING DISCRETE PARTICLES
JPS6128625B2 (en)
JPH024550B2 (en)
JPH092811A (en) Granulated material of low-oxygen porous silicon and its production
JPH0335244B2 (en)