JPH04310240A - Catalyst for reducing nitrogen oxide - Google Patents

Catalyst for reducing nitrogen oxide

Info

Publication number
JPH04310240A
JPH04310240A JP3164094A JP16409491A JPH04310240A JP H04310240 A JPH04310240 A JP H04310240A JP 3164094 A JP3164094 A JP 3164094A JP 16409491 A JP16409491 A JP 16409491A JP H04310240 A JPH04310240 A JP H04310240A
Authority
JP
Japan
Prior art keywords
zeolite
ion
catalyst
metal
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3164094A
Other languages
Japanese (ja)
Inventor
Tadao Nakatsuji
忠夫 仲辻
Hiromasu Shimizu
宏益 清水
Ritsu Yasukawa
安川 律
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakai Chemical Industry Co Ltd
Original Assignee
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakai Chemical Industry Co Ltd filed Critical Sakai Chemical Industry Co Ltd
Priority to JP3164094A priority Critical patent/JPH04310240A/en
Publication of JPH04310240A publication Critical patent/JPH04310240A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To reduce efficiently nitrogen oxide of low concentration in an exhaust gas by using a catalyst for reducing nitrogen oxide which is prepared by loading a specified metal oxide on zeolite ion-exchanged with a specific metal ion. CONSTITUTION:An ion M in zeolite expressed by the molecular formula Ma {(AlO2)X(SiO2)y}.ZH2O, where M is alkali metal, alkaline earth metal, or hydrogen, and nA=X ((n) is a valency of M), Y1X>=5}, is partly or totally ion-exchanged for a metal ion selected from Ti<4+>, Zr<4+>,and Sn<4+>. Separately, an aqueous solution of a metal salt, the metal of which is selected from V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Nb, Mo, and W, is prepared. The ion-exchanged zeolite, after being immersed in the metal salt aqueous solution to carry the metal salt, is dried and calcinated to obtain the catalyst for reducing nitrogen oxide with NH3.

Description

【発明の詳細な説明】[Detailed description of the invention]

【産業上の利用分野】本発明は、NH3を還元剤として
用いる場合の窒素酸化物接触還元用触媒に係わり、詳し
くは工場、自動車などから排出される排気ガスの中に含
まれる有害な窒素酸化物を還元除去する際に用いて好適
なNH3による窒素酸化物接触還元用触媒に関する。ま
たとりわけ低濃度窒素酸化物のNH3による窒素酸化物
接触還元用触媒に関する。
[Industrial Application Field] The present invention relates to a catalyst for catalytic reduction of nitrogen oxides when NH3 is used as a reducing agent, and more specifically, the present invention relates to a catalyst for catalytic reduction of nitrogen oxides when NH3 is used as a reducing agent. The present invention relates to a catalyst for catalytic reduction of nitrogen oxides using NH3, which is suitable for use in reducing and removing substances. In particular, the present invention relates to a catalyst for the catalytic reduction of nitrogen oxides with NH3 of low concentration nitrogen oxides.

【従来の技術及び発明が解決しようとする課題】従来、
排気ガス中に含まれる窒素酸化物は、■該窒素酸化物を
酸化した後、アルカリに吸収させる方法、■NH3、H
2、CO等の還元剤を用いてN2に変える方法などによ
って除去されてきた。しかしながら、■の方法による場
合は、公害防止のためのアルカリの排液処理が必要とな
り、また■の方法において還元剤としてNH3を用いる
方法が窒素酸化物との反応選択性が高く、大型固定発生
源(火力発電所など)において実用化がなされてきた、
しかし排ガス中の窒素酸化物濃度が100ppmを下回
るとその還元率が低下してしまうという問題があった。 また、H2、CO、炭化水素を環元剤として用いる場合
、これらが低濃度に存在するNOXより高濃度に存在す
るO2と反応してしまうため、NOXを低減するために
は多量の還元剤を必要とした。本発明は、以上の事情に
鑑みてなされたものであって、その目的とするところは
、排ガス中の低濃度窒素酸化物をNH3を還元剤として
用いたときに、排ガス中の低濃度窒素酸化物を効率良く
還元することができるNH3による窒素酸化物接触還元
用触媒を提供するにある。
[Prior art and problems to be solved by the invention] Conventionally,
Nitrogen oxides contained in exhaust gas can be treated by: ■ oxidizing the nitrogen oxides and then absorbing them into alkali; ■ NH3, H
2. It has been removed by methods such as converting it into N2 using a reducing agent such as CO. However, in the case of the method (■), alkali drainage treatment is required to prevent pollution, and the method (2) using NH3 as a reducing agent has high reaction selectivity with nitrogen oxides and generates large-sized fixed substances. It has been put into practical use at power sources (thermal power plants, etc.).
However, there is a problem in that when the concentration of nitrogen oxides in the exhaust gas is less than 100 ppm, the reduction rate decreases. Furthermore, when H2, CO, and hydrocarbons are used as ring agents, they react with O2, which is present in higher concentrations, than with NOX, which is present in low concentrations, so a large amount of reducing agent is required to reduce NOX. I needed it. The present invention has been made in view of the above circumstances, and its purpose is to reduce the low concentration of nitrogen oxides in exhaust gas by using NH3 as a reducing agent. An object of the present invention is to provide a catalyst for catalytic reduction of nitrogen oxides using NH3, which can efficiently reduce nitrogen oxides.

【問題を解決するための手段】上記目的を達成するため
の本発明に係る窒素酸化物の選択的還元触媒(接触還元
触媒)は、下記組成式(1)で表されるゼオライト中の
イオンMの一部または全部を、Ti4+、Zr4+およ
びSn4+からなる群より選ばれた金属イオンでイオン
交換してなるゼオライト(A)に、V、Cr、Mn、F
e、Co、Ni、Cu、Zn、Nb、MoおよびWから
なる群より選ばれた少なくとも一種の金属の酸化物(B
)を担持させてなる。 MA〔(AlO2)X(SiO2)Y〕・ZH2O……
(1)〔式中、イオンMはアルカリ金属イオン、アルカ
リ土類金属イオンまたは水素イオン、nA=X(n:イ
オンMの価数)、Y/X≧5である。〕本発明に係るN
H3による窒素酸化物選択的還元触媒は、例えば次のよ
うにして製造される。すなわち、先ず、上式(1)で表
される市販のゼオライトを前駆体として、従来公知の方
法によりその中に含まれるアルカリ金属イオン、アルカ
リ土類金属イオンまたは水素イオンMの一部または全部
を、特定の金属イオンM’とイオン交換して下記組成式
(2)で表されるゼオライト(A)を調製する。 MAM’B〔(AlO2)X(SiO2)Y〕・ZH2
O……(2)〔式中、M’はTi4+、Zr4+および
Sn4+からなる群より選ばれた金属イオン、n1A+
n2B=X(n1、n2:それぞれイオンMおよび金属
イオンM’の価数)、Y/X≧5、B≠0である。〕前
駆体たる上式(1)で表される原料ゼオライトの代表的
な上市品としては、NM−100P(ナトリウム型モル
デナイト、Y/X=8、日本化学社製、商品名)、HM
−100P(ナトリウム型モルデナイト、Y/X=12
、日本化学社製、商品名)、ZSM−5(ナトリウム型
、Y/X=35、日本モービル触媒社製)などが挙げら
れる。このように、本発明において、Y/X≧5の原料
ゼオライトを用いるのは、Y/X<5のものでは、原料
ゼオライト中のSiO2の量が少な過ぎて耐酸性が不良
でTi4+などへのイオン交換処理が困難となるからで
ある。本発明におけるゼオライト(A)は、Ti4+、
Zr4+およびSn4+から選ばれた少なくとも一種の
金属イオンM’でイオンMの一部または全部をイオン交
換して得られる。このイオン交換処理は、ゼオライトを
所定濃度のTi4+、Zr4+および/またはSn4+
を含有する水溶液に浸潰し、所定時間撹拌した後、ろ別
、洗浄することにより行われる。この処理を適宜の回数
繰り返し行うことにより市販のゼオライト中のイオンM
を金属イオンM’と所定量イオン交換することができる
。上記ゼオライト(A)に代えて、該ゼオライト(A)
または上式(1)で表される市販のゼオライトに、Ti
O2、ZrO2およびSnO2から選ばれた少なくとも
一種の金属酸化物を担持させてなるゼオライト(C)を
用いてよい。かかるゼオライト(C)は、所定量のTi
4+、Zr4+および/またはSn4+を少なくとも一
種を含有するこれらの金属塩の水溶液に、上式(1)で
表される原料ゼオライトを浸漬し、撹拌しながら、NH
3,NaOH等のアルカリ水溶液を滴下して生成した沈
澱物を、ろ別、洗浄、乾燥した後、300〜700℃で
焼成することにより得られる。このようにして得られた
触媒は、NH3などの投入時期および反応温度によって
異なるが、担持金属の大部分は金属水酸化物として担持
され、焼成によりそれらは金属酸化物となる。その他、
上記金属塩の水溶液をゼオライトに含浸させた後、乾燥
する操作を適宜の回数繰り返し行った後、300〜70
0℃で焼成し上記金属塩を熱分解することによっても得
られる。この方法によって得られた触媒は、担持金属の
多くが金属塩として担持され、焼成によりそれらは金属
酸化物となる。ゼオライト(C)の好適な調製法として
は、四塩化チタン、チタニル硫酸、硫酸チタン等の水溶
性チタン塩:四塩化ジルコニウム、硫酸ジルコニウム等
の水溶性ジルコニウム塩:四塩化スズ、硫酸スズ等の水
溶性スズ塩などを水に溶かした水溶液中にゼオライト(
A)を投入し、加熱加水分解し、細孔内などにチタン酸
、ジルコン酸、スズ酸の沈澱物を生成させる方法が挙げ
られる。この方法における最適な水溶性金属塩は、硫酸
チタン、硫酸ジルコニウム、硫酸スズ等の硫酸塩である
。硫酸塩を用いると、固体酸性度が極めて高くなるため
と考える。このように、本発明におけるゼオライトは、
ゼオライトに、Ti4+、Zr4+およびSn4+を少
なくとも一種および金属酸化物が存在するので、担体と
しての効果が充分に発現される。これらの方法によって
担持される金属酸化物の好適な担持量は、金属として0
.1〜20重量%である。20重量%を越えると、触媒
の細孔を閉塞するため活性が低下し、また0.1重量%
未満であると、金属酸化物の効果が充分に発現されなく
なる,なお、担持されたTi等の担持状態については、
詳細は不明であるが、酸溶解性テスト、FT−IR解析
からTiのイオン交換が行われていることが明らかにな
っている。しかし、その量比については不明である。上
記ゼオライト(A)または(C)に、V、Cr、Mn、
Fe、Co、Ni、Cu、Zn、Nb、MoおよびWか
らなる群より選ばれた少なくとも一種の金属の酸化物(
B)を担持させることにより本発明に係るNH3を還元
剤とした窒素酸化物接触還元用触媒が得られる。上記金
属酸化物(B)の好適な総担持量は、0.1〜20重量
%である。20重量%を越えても、増量に応じた添加効
果が得られず不経済であり、また0.1重量%未満であ
ると、充分な活性が得られない。本発明に係るNH3を
還元剤として用いる窒素酸化物接触還元用触媒は、従来
公知の成形方法によりハニカム状、球状等の種々の形状
に成形することができ、金属酸化物(B)は、成形前の
粉末状のゼオライト(A)または(C)に担持させても
よく、成形時にゼオライト(A)または(C)に混練し
てもよく、さらには成形後のゼオライト(A)または(
C)に含浸させてもよい。成形の際に、成形助剤、成形
体補強体、無機繊維、有機バインダー等を適宣配合して
もよい。上記NH3の好適な添加量は、窒素酸化物除去
率およびリークアンモニア濃度によって異なるが、窒素
酸化物の濃度に対してモル比で0.1〜2倍程度である
。0.1倍未満であると、充分な活性を得ることができ
ず、また2倍を越えると、未反応のNH3排出量が多く
なるため、これを処理するための後処理が必要となる。 本発明に係るNH3による窒素酸化物の選択的還元用触
媒が窒素酸化物に対して還元活性を示す最適な温度は、
触媒種により異なるが、通常100〜800℃であり、
この温度領域においては、空間速度(SV)500〜5
0000程度で排気ガスを通流させることが好ましい。 なお、より好適な使用温度領域は300〜600℃であ
る。
[Means for Solving the Problems] The catalyst for selective reduction of nitrogen oxides (catalytic reduction catalyst) according to the present invention for achieving the above object has the following compositional formula (1): V, Cr, Mn, F to zeolite (A) obtained by ion-exchanging some or all of with metal ions selected from the group consisting of Ti4+, Zr4+ and Sn4+.
oxide of at least one metal selected from the group consisting of e, Co, Ni, Cu, Zn, Nb, Mo and W (B
). MA [(AlO2)X(SiO2)Y]・ZH2O...
(1) [Wherein, ion M is an alkali metal ion, alkaline earth metal ion or hydrogen ion, nA=X (n: valence of ion M), Y/X≧5. ]N according to the present invention
The nitrogen oxide selective reduction catalyst using H3 is produced, for example, as follows. That is, first, using a commercially available zeolite represented by the above formula (1) as a precursor, some or all of the alkali metal ions, alkaline earth metal ions, or hydrogen ions M contained therein are removed by a conventionally known method. , a zeolite (A) represented by the following compositional formula (2) is prepared by ion exchange with a specific metal ion M'. MAM'B [(AlO2)X(SiO2)Y]・ZH2
O...(2) [wherein M' is a metal ion selected from the group consisting of Ti4+, Zr4+ and Sn4+, n1A+
n2B=X (n1, n2: valence of ion M and metal ion M', respectively), Y/X≧5, and B≠0. ] Typical commercial products of the precursor zeolite represented by the above formula (1) include NM-100P (sodium type mordenite, Y/X=8, manufactured by Nippon Kagaku Co., Ltd., trade name), HM
-100P (sodium type mordenite, Y/X=12
, manufactured by Nippon Kagaku Co., Ltd. (trade name), and ZSM-5 (sodium type, Y/X=35, manufactured by Nippon Mobil Shokubai Co., Ltd.). Thus, in the present invention, the raw material zeolite with Y/X≧5 is used because if Y/X<5, the amount of SiO2 in the raw material zeolite is too small, resulting in poor acid resistance and resistance to Ti4+ etc. This is because ion exchange treatment becomes difficult. The zeolite (A) in the present invention includes Ti4+,
It is obtained by ion-exchanging part or all of the ion M with at least one kind of metal ion M' selected from Zr4+ and Sn4+. This ion exchange treatment involves converting the zeolite into predetermined concentrations of Ti4+, Zr4+ and/or Sn4+.
This is done by immersing the sample in an aqueous solution containing it, stirring it for a predetermined period of time, filtering it out, and washing it. By repeating this process an appropriate number of times, ions M in commercially available zeolite can be obtained.
can be ion-exchanged with metal ion M' in a predetermined amount. Instead of the above zeolite (A), the zeolite (A)
Alternatively, Ti
Zeolite (C) supported on at least one metal oxide selected from O2, ZrO2 and SnO2 may be used. Such zeolite (C) contains a predetermined amount of Ti.
The raw material zeolite represented by the above formula (1) is immersed in an aqueous solution of these metal salts containing at least one of Zr4+, Zr4+, and/or Sn4+, and while stirring, NH
3. The precipitate produced by dropping an aqueous alkali solution such as NaOH is filtered, washed, dried, and then calcined at 300 to 700°C. The catalyst thus obtained differs depending on the timing of addition of NH3 and the reaction temperature, but most of the supported metals are supported as metal hydroxides, and upon calcination, they become metal oxides. others,
After impregnating zeolite with the aqueous solution of the metal salt and repeating the drying operation an appropriate number of times,
It can also be obtained by thermally decomposing the above metal salt by firing at 0°C. In the catalyst obtained by this method, most of the supported metals are supported as metal salts, and upon calcination, they become metal oxides. Preferred methods for preparing zeolite (C) include water-soluble titanium salts such as titanium tetrachloride, titanyl sulfate, and titanium sulfate; water-soluble zirconium salts such as zirconium tetrachloride and zirconium sulfate; and water-soluble zirconium salts such as tin tetrachloride and tin sulfate. Zeolite (
Examples include a method in which A) is charged and hydrolyzed by heating to produce precipitates of titanic acid, zirconic acid, and stannic acid within the pores. The most suitable water-soluble metal salts for this method are sulfates such as titanium sulfate, zirconium sulfate, and tin sulfate. This is thought to be due to the fact that when sulfate is used, the solid acidity becomes extremely high. In this way, the zeolite in the present invention is
Since the zeolite contains at least one of Ti4+, Zr4+, and Sn4+ and a metal oxide, its effect as a carrier is fully expressed. The preferred amount of metal oxide supported by these methods is 0 as the metal.
.. It is 1 to 20% by weight. If it exceeds 20% by weight, the activity decreases because the pores of the catalyst are blocked, and if it exceeds 0.1% by weight.
If the amount is less than
Although the details are unknown, it is clear from acid solubility tests and FT-IR analysis that Ti ion exchange is occurring. However, the quantitative ratio is unknown. The above zeolite (A) or (C) contains V, Cr, Mn,
An oxide of at least one metal selected from the group consisting of Fe, Co, Ni, Cu, Zn, Nb, Mo and W (
By supporting B), the catalyst for catalytic reduction of nitrogen oxides using NH3 as a reducing agent according to the present invention can be obtained. A suitable total amount of the metal oxide (B) supported is 0.1 to 20% by weight. Even if it exceeds 20% by weight, the added effect corresponding to the increase in amount cannot be obtained and it is uneconomical, and if it is less than 0.1% by weight, sufficient activity cannot be obtained. The catalyst for catalytic reduction of nitrogen oxides using NH3 as a reducing agent according to the present invention can be formed into various shapes such as a honeycomb shape and a spherical shape by a conventionally known forming method. It may be supported on the previous powdered zeolite (A) or (C), it may be kneaded with the zeolite (A) or (C) during molding, or it may be supported on the zeolite (A) or (C) after molding.
C) may be impregnated. During molding, molding aids, molded body reinforcements, inorganic fibers, organic binders, etc. may be appropriately blended. The preferable addition amount of NH3 varies depending on the nitrogen oxide removal rate and the leaked ammonia concentration, but is about 0.1 to 2 times the molar ratio to the nitrogen oxide concentration. If it is less than 0.1 times, sufficient activity cannot be obtained, and if it exceeds 2 times, the amount of unreacted NH3 discharged increases, which requires post-treatment. The optimal temperature at which the catalyst for selective reduction of nitrogen oxides by NH3 according to the present invention exhibits reduction activity toward nitrogen oxides is as follows:
Although it varies depending on the catalyst type, it is usually 100 to 800 °C,
In this temperature range, the space velocity (SV) is 500-5
It is preferable to allow the exhaust gas to flow through the exhaust gas at a temperature of about 0,000. Note that a more suitable operating temperature range is 300 to 600°C.

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、その要旨を変更しない範囲において適宣変
更して実施することが可能なものである。 (I)触媒の調製 (実施例1)組成式:NaX〔(AlO2)X・(Si
O2)Y〕・ZH2Oで表されるナトリウム型モルデナ
イトの市販品(日本化学社製、商品名「NM−100P
」、Y/X=8)100gを0.025モル/lのTi
Cl4水溶液1l中に浸潰し、24時間撹拌してNaを
Tiでイオン交換した後、ろ別、水洗してゼオライトの
ケーキを得た。次いで、このケーキを乾燥した後、65
0℃で4時間焼成した。得られたゼオライト中のTiの
量はTiO2換算で0.4重量%であった。このゼオラ
イト50gを、15.2g/lの硝酸銅(II)水溶液
500mlに入れて、充分に撹拌混合した後、これに水
酸化ナトリウム水溶液を液のpHが8になるまで加えて
沈澱物を生成させた。この沈澱物を、ろ別、水洗、乾燥
した後、500℃にて3時間焼成して、触媒(A−1)
を得た。 (実施例2)実施例1において、イオン交換後、過剰の
Tiをアンモニア水で中和して、TiO2として2重量
%担持させたこと以外は実施例1と同様にして、触媒(
A−2)を得た。 (実施例3)実施例2において、NM−100Pに代え
て、組成式:HX〔(AlO2)X・(SiO2)Y〕
・ZH2Oで表される水素型モルデナイトの市販品(日
本化学社製、商品名「HM−100P」、Y/X=12
)を用いたこと以外は実施例2と同様にして、触媒(A
−3)を得た。得られたゼオライト中のTiの量はTi
O2として、2.8重量%であった。 (実施例4)実施例1において、TiCl4水溶液に代
えて、TiOSO4水溶液を用いたこと以外は実施例1
と同様にして、触媒(A−4)を得た。得られたゼオラ
イト中のTiの量はTiO2として、0.7重量%であ
った。 (実施例5)実施例3において、硝酸銅(II)水溶液
に代えて、25.3g/lの硝酸鉄(III)水溶液を
用いたこと以外は実施例3と同様にして、触媒(A−5
)を得た。 (実施例6)実施例3において、硝酸銅(II)水溶液
に代えて、18.2g/lの硝酸コバルト水溶液を用い
たこと以外は実施例3と同様にして、触媒(A−6)を
得た。 (実施例7)実施例3において、硝酸銅(II)水溶液
に代えて、19.5g/lの硝酸ニッケル水溶液を用い
たこと以外は実施例3と同様にして、触媒(A−7)を
得た。 (実施例8)実施例3において、硝酸銅(II)水溶液
に代えて、18.2g/lの硝酸マンガン水溶液を用い
たこと以外は実施例3と同様にして、触媒(A−8)を
得た。 (実施例9)実施例3において、硝酸銅(II)水溶液
に代えて、18.3g/lの硝酸亜鉛水溶液を用いたこ
と以外は実施例3と同様にして、触媒(A−9)を得た
。 (実施例10)実施例3において、硝酸銅(II)水溶
液に代えて、26.3g/lの硝酸クロム水溶液を用い
たこと以外は実施例3と同様にして、触媒(A−10)
を得た。 (実施例11)実施例3と同様にして得たゼオライト5
0gを、V2O5換算で142g/lのシュウ酸バナジ
ルを含有するシュウ酸バナジル水溶液に浸潰し、過剰の
水溶液を取り除いた後、乾燥し、次いで500℃にて3
時間焼成して、触媒(A一11)を得た。 (実施例12)実施例11において、シュウ酸バナジル
水溶液に代えて、WO3換算で142g/lのメタタン
グステン酸アンモニウムを含有するメタタングステン酸
アンモニウム水溶液を用いたこと以外は実施例11と同
様にして、触媒(A−12)を得た。 (実施例13)実施例11において、シュウ酸バナジル
水溶液に代えて、NoO3換算で142g/lのモリブ
デン酸アンモニウムを含有するモリブデン酸アンモニウ
ム水溶液を用いたこと以外は実施例11と同様にして、
触媒(A−13)を得た。 (実施例14)実施例11において、シュウ酸バナジル
水溶液に代えて、Nb2O5換算で142g/lのシュ
ウ酸ニオブを含有するシュウ酸ニオブ水溶液を用いたこ
と以外は実施例11と同様にして、触媒(A−14)を
得た。 (実施例15)実施例3において、15.2g/lの硝
酸銅(II)水溶液に代えて、7.6g/l硝酸銅(I
I)水溶液を用いたこと以外は実施例3と同様にして、
触媒(A−15)を得た。 (実施例16)実施例3において、15.2g/lの硝
酸銅(II)水溶液に代えて、30.4g/lの硝酸銅
(II)水溶液を用いたこと以外は実施例3と同様にし
て、触媒(A−16)を得た。 (実施例17)実施例3において、152g/lの硝酸
銅(II)水溶液に代えて、硝酸銅を7.6g/l、硝
酸コバルトを9.1g/l含有する水溶液を用いたこと
以外は実施例3と同様にして、触媒(A−17)を得た
。 (実施例18)実施例2において、0.025モル/リ
ットルのTiCl4水溶液に代えて、0.075モル/
リットルのTiCl4水溶液を用いたこと以外は実施例
2と同様にして、TiO2担持ゼオライトを得た。得ら
れたゼオライト中のTiの量はTiO2として7.3重
量%であった。以下、実施例2と同様の方法にて触媒(
A−18)を得た。 (実施例19)実施例2において、0.025モル/リ
ットルのTiCl4水溶液に代えて、0.15モル/リ
ットルのTiCl4水溶液を用いたこと以外は実施例2
と同様にしてゼオライトのケーキを得た。得られたゼオ
ライト中のTiの量はTiO2として16.7重量%で
あった。以下、実施例2と同様の方法にて触媒(A−1
9)を得た。 (実施例20)実施例2において、TiCl4水溶液に
代えて、0.025モル/リットルのZrCl4水溶液
を用いたこと以外は実施例2と同様にしてゼオライトの
ケーキを得た。得られたゼオライト中のZrの量はZr
O2として2.9重量%であった。以下、実施例2と同
様の方法にて触媒(A−20)を得た。 (実施例21)実施例2において、TiCl4水溶液に
代えて、0.075モル/リットルのZrCl4水溶液
を用いたこと以外は実施例2と同様にしてゼオライトの
ケーキを得た。得られたゼオライト中のZrの量はZr
O2として8.1重量%であった。以下、実施例2と同
様の方法にて触媒(A−21)を得た。 (実施例22)実施例2において、TiCl4水溶液に
代えて、0.025モル/リットルのSnCl4水溶液
を用いたこと以外は実施例2と同様にしてゼオライトの
ケーキを得た。得られたゼオライト中のSnの量はSn
O2として3.2重量%であった。以下、実施例2と同
様の方法にて触媒(A−22)を得た。 (実施例23)組成式:NaX〔(AlO2)X・(S
iO2)Y〕・ZH2Oで表されるナトリウム型モルデ
ナイトの市販品(日本モービル社製、商品名「ZSM−
5」、Y/X=35)100gを0.025モル/リッ
トルのTiOSO4水溶液1リットル中に浸潰し、充分
に撹拌した。これをオートクレーブ中にて撹拌しながら
100℃/時の昇温速度で昇温して125℃に1時間保
持し、TiOSO4を加水分解させて、NaをTiでイ
オン交換した後、ろ別、水洗してゼオライトのケーキを
得た。次いで、このケーキを乾燥した後、650℃で4
時間焼成した。得られたゼオライト中のTiの量はTi
O2として2.4重量%であった。以下、実施例11と
同様の方法にて触媒(A−23)を得た。 (比較例)比表面積が85m2/gであるアナタース型
酸化チタンを100g、V2O5換算で5gのシュウ酸
バナジル水溶液を混合し、充分混練した後、100℃に
て15時間乾燥した後450℃にて3時間焼成し触媒(
B−1)を得た。 (II)評価試験実施例1〜23、比較例1で得た触媒
A−1〜A−23およびB−1について、下記の試験条
件により、窒素酸化物含有ガスの窒素酸化物接触還元を
行ない、窒素酸化物の除去率を下記の算式により求めた
。 (試験条件) ■  ガス組成      NO      50pp
mNH3    50ppm SO2  100ppm O2      10% H2O      5% N2    バランス ■  反応温度      300℃、350℃、40
0℃結果は第1表に示すとおりである。
[Examples] The present invention will be explained in more detail based on examples below, but the present invention is not limited to the following examples in any way, and can be practiced with appropriate modifications within the scope of the gist thereof. It is possible. (I) Preparation of catalyst (Example 1) Compositional formula: NaX [(AlO2)X・(Si
A commercial product of sodium type mordenite represented by O2)Y]・ZH2O (manufactured by Nippon Kagaku Co., Ltd., product name "NM-100P")
”, Y/X=8) 100g with 0.025 mol/l of Ti
The mixture was immersed in 1 liter of Cl4 aqueous solution and stirred for 24 hours to ion-exchange Na with Ti, followed by filtration and washing with water to obtain a zeolite cake. Then, after drying this cake, 65
It was baked at 0°C for 4 hours. The amount of Ti in the obtained zeolite was 0.4% by weight in terms of TiO2. 50 g of this zeolite was added to 500 ml of a 15.2 g/l copper (II) nitrate aqueous solution, stirred and mixed thoroughly, and then an aqueous sodium hydroxide solution was added until the pH of the solution reached 8 to form a precipitate. I let it happen. This precipitate was filtered, washed with water, dried, and then calcined at 500°C for 3 hours to obtain the catalyst (A-1).
I got it. (Example 2) The catalyst (
A-2) was obtained. (Example 3) In Example 2, instead of NM-100P, composition formula: HX [(AlO2)X・(SiO2)Y]
・Commercial product of hydrogen type mordenite represented by ZH2O (manufactured by Nippon Kagaku Co., Ltd., product name "HM-100P", Y/X = 12
) was used in the same manner as in Example 2 except that the catalyst (A
-3) was obtained. The amount of Ti in the obtained zeolite is Ti
As O2, it was 2.8% by weight. (Example 4) Example 1 except that a TiOSO4 aqueous solution was used in place of the TiCl4 aqueous solution in Example 1.
A catalyst (A-4) was obtained in the same manner as above. The amount of Ti in the obtained zeolite was 0.7% by weight as TiO2. (Example 5) The catalyst (A- 5
) was obtained. (Example 6) Catalyst (A-6) was prepared in the same manner as in Example 3 except that a 18.2 g/l cobalt nitrate aqueous solution was used in place of the copper(II) nitrate aqueous solution. Obtained. (Example 7) Catalyst (A-7) was prepared in the same manner as in Example 3 except that a 19.5 g/l nickel nitrate aqueous solution was used in place of the copper(II) nitrate aqueous solution. Obtained. (Example 8) Catalyst (A-8) was prepared in the same manner as in Example 3 except that a 18.2 g/l manganese nitrate aqueous solution was used in place of the copper(II) nitrate aqueous solution. Obtained. (Example 9) Catalyst (A-9) was prepared in the same manner as in Example 3 except that a 18.3 g/l zinc nitrate aqueous solution was used in place of the copper(II) nitrate aqueous solution. Obtained. (Example 10) Catalyst (A-10) was prepared in the same manner as in Example 3 except that a 26.3 g/l chromium nitrate aqueous solution was used in place of the copper(II) nitrate aqueous solution.
I got it. (Example 11) Zeolite 5 obtained in the same manner as Example 3
0g was immersed in an aqueous solution of vanadyl oxalate containing 142g/l of vanadyl oxalate in terms of V2O5, and after removing the excess aqueous solution, it was dried, and then soaked at 500°C for 3
The catalyst (A-11) was obtained by firing for a period of time. (Example 12) The procedure was repeated in the same manner as in Example 11, except that in Example 11, an ammonium metatungstate aqueous solution containing 142 g/l of ammonium metatungstate in terms of WO3 was used instead of the vanadyl oxalate aqueous solution. , catalyst (A-12) was obtained. (Example 13) In the same manner as in Example 11, except that in Example 11, an ammonium molybdate aqueous solution containing 142 g/l of ammonium molybdate in terms of NoO3 was used instead of the vanadyl oxalate aqueous solution.
A catalyst (A-13) was obtained. (Example 14) The catalyst was prepared in the same manner as in Example 11 except that a niobium oxalate aqueous solution containing 142 g/l of niobium oxalate in terms of Nb2O5 was used in place of the vanadyl oxalate aqueous solution. (A-14) was obtained. (Example 15) In Example 3, instead of the 15.2 g/l copper(II) nitrate aqueous solution, 7.6 g/l copper nitrate (I
I) Same as Example 3 except that an aqueous solution was used,
A catalyst (A-15) was obtained. (Example 16) The procedure was the same as in Example 3 except that 30.4 g/l of copper(II) nitrate aqueous solution was used instead of 15.2 g/l of copper(II) nitrate aqueous solution. Thus, a catalyst (A-16) was obtained. (Example 17) In Example 3, except that an aqueous solution containing 7.6 g/l of copper nitrate and 9.1 g/l of cobalt nitrate was used instead of the 152 g/l aqueous solution of copper(II) nitrate. A catalyst (A-17) was obtained in the same manner as in Example 3. (Example 18) In Example 2, 0.075 mol/liter of TiCl4 aqueous solution was replaced with 0.025 mol/liter of TiCl4 aqueous solution.
A TiO2-supported zeolite was obtained in the same manner as in Example 2, except that 1 liter of TiCl4 aqueous solution was used. The amount of Ti in the obtained zeolite was 7.3% by weight as TiO2. Hereinafter, the catalyst (
A-18) was obtained. (Example 19) Example 2 except that a 0.15 mol/liter TiCl4 aqueous solution was used in place of the 0.025 mol/liter TiCl4 aqueous solution in Example 2.
A zeolite cake was obtained in the same manner. The amount of Ti in the obtained zeolite was 16.7% by weight as TiO2. Hereinafter, the catalyst (A-1
9) was obtained. (Example 20) A zeolite cake was obtained in the same manner as in Example 2, except that a 0.025 mol/liter ZrCl4 aqueous solution was used in place of the TiCl4 aqueous solution. The amount of Zr in the obtained zeolite is Zr
It was 2.9% by weight as O2. Thereafter, a catalyst (A-20) was obtained in the same manner as in Example 2. (Example 21) A zeolite cake was obtained in the same manner as in Example 2, except that a 0.075 mol/liter ZrCl4 aqueous solution was used in place of the TiCl4 aqueous solution. The amount of Zr in the obtained zeolite is Zr
It was 8.1% by weight as O2. Thereafter, a catalyst (A-21) was obtained in the same manner as in Example 2. (Example 22) A zeolite cake was obtained in the same manner as in Example 2, except that a 0.025 mol/liter SnCl4 aqueous solution was used in place of the TiCl4 aqueous solution. The amount of Sn in the obtained zeolite is Sn
It was 3.2% by weight as O2. Thereafter, a catalyst (A-22) was obtained in the same manner as in Example 2. (Example 23) Composition formula: NaX [(AlO2)X・(S
A commercial product of sodium mordenite represented by iO2)Y]・ZH2O (manufactured by Nippon Mobil Co., Ltd., product name "ZSM-
5'', Y/X=35) was immersed in 1 liter of 0.025 mol/liter TiOSO4 aqueous solution and thoroughly stirred. This was heated in an autoclave at a rate of 100°C/hour with stirring and held at 125°C for 1 hour to hydrolyze TiOSO4 and ion exchange Na with Ti, followed by filtration and washing with water. and obtained a zeolite cake. Next, after drying this cake, it was heated at 650°C for 4 hours.
Baked for an hour. The amount of Ti in the obtained zeolite is Ti
It was 2.4% by weight as O2. Thereafter, a catalyst (A-23) was obtained in the same manner as in Example 11. (Comparative example) 100 g of anatase-type titanium oxide with a specific surface area of 85 m2/g and 5 g of vanadyl oxalate aqueous solution in terms of V2O5 were mixed, thoroughly kneaded, dried at 100°C for 15 hours, and then heated at 450°C. After firing for 3 hours, the catalyst (
B-1) was obtained. (II) Evaluation Test For catalysts A-1 to A-23 and B-1 obtained in Examples 1 to 23 and Comparative Example 1, nitrogen oxide catalytic reduction of nitrogen oxide-containing gas was performed under the following test conditions. The removal rate of nitrogen oxides was determined using the following formula. (Test conditions) ■ Gas composition NO 50pp
mNH3 50ppm SO2 100ppm O2 10% H2O 5% N2 Balance ■ Reaction temperature 300℃, 350℃, 40
The 0°C results are shown in Table 1.

【発明の効果】以上詳細に説明したように、本発明に係
る窒素酸化物接触還元用触媒は、NH3存在下において
排気ガス中の窒素酸化物を効率良く接触還元することが
できるなど、本発明は優れた特有の効果を有する。
Effects of the Invention As explained in detail above, the catalyst for catalytic reduction of nitrogen oxides according to the present invention can efficiently catalytically reduce nitrogen oxides in exhaust gas in the presence of NH3, etc. has excellent unique effects.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】下記組成式で表されるゼオライト中のイオ
ンMの一部または全部を、Ti4+、Zr4+およびS
n4+からなる群より選ばれた金属イオンでイオン交換
してなるゼオライト(A)に、V、Cr、Mn、Fe、
Co、Ni、Cu、Zn、Nb、MoおよびWからなる
群より選ばれた少なくとも一種の金属の酸化物(B)を
担持させてなることを特徴とするNH3による窒素酸化
物接触還元用触媒。MA〔(AlO2)X(SiO2)
Y〕・ZH2O〔式中、イオンMはアルカリ金属イオン
、アルカリ土類金属イオンまたは水素イオン、nA=X
(n:イオンMの価数)、Y/X≧5である。〕【請求
項2】下記組成式で表されるゼオライトまたは該ゼオラ
イト中のイオンMの一部または全部を、Ti4+、Zr
4+およびSn4+からなる群より選ばれた金属イオン
でイオン交換してなるゼオライト(A)に、TiO2、
ZrO2およびSnO2からなる群より選ばれた少なく
とも一種の金属酸化物を担持させてなるゼオライト(C
)に、V、Cr、Mn、Fe、Co、Ni、Cu、Zn
、Nb、MoおよびWからなる群より選ばれた少なくと
も一種の金属酸化物(B)を担持させてなることを特徴
とするNH3による窒素酸化物接触還元用触媒。MA〔
(AlO2)X(SiO2)Y〕・ZH2O〔式中、M
はアルカリ金属イオン、アルカリ土類金属イオンおよび
水素イオンからなる群より選ばれたイオン、nA=X(
n:イオンMの価数)、Y/X≧5である。〕
Claim 1: Some or all of the ions M in the zeolite represented by the following compositional formula are replaced by Ti4+, Zr4+ and S
Zeolite (A) formed by ion exchange with metal ions selected from the group consisting of n4+, V, Cr, Mn, Fe,
A catalyst for catalytic reduction of nitrogen oxides by NH3, characterized in that it supports an oxide (B) of at least one metal selected from the group consisting of Co, Ni, Cu, Zn, Nb, Mo and W. MA [(AlO2)X(SiO2)
Y]・ZH2O [where ion M is an alkali metal ion, alkaline earth metal ion or hydrogen ion, nA=X
(n: valence of ion M), Y/X≧5. [Claim 2] A zeolite represented by the following compositional formula or a part or all of the ions M in the zeolite are replaced by Ti4+, Zr
Zeolite (A) formed by ion exchange with metal ions selected from the group consisting of 4+ and Sn4+, TiO2,
Zeolite (C
), V, Cr, Mn, Fe, Co, Ni, Cu, Zn
A catalyst for catalytic reduction of nitrogen oxides by NH3, characterized in that it supports at least one metal oxide (B) selected from the group consisting of , Nb, Mo and W. MA [
(AlO2)X(SiO2)Y]・ZH2O [wherein, M
is an ion selected from the group consisting of alkali metal ions, alkaline earth metal ions and hydrogen ions, nA=X(
n: valence of ion M), Y/X≧5. ]
JP3164094A 1991-04-08 1991-04-08 Catalyst for reducing nitrogen oxide Pending JPH04310240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3164094A JPH04310240A (en) 1991-04-08 1991-04-08 Catalyst for reducing nitrogen oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3164094A JPH04310240A (en) 1991-04-08 1991-04-08 Catalyst for reducing nitrogen oxide

Publications (1)

Publication Number Publication Date
JPH04310240A true JPH04310240A (en) 1992-11-02

Family

ID=15786656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3164094A Pending JPH04310240A (en) 1991-04-08 1991-04-08 Catalyst for reducing nitrogen oxide

Country Status (1)

Country Link
JP (1) JPH04310240A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1057321C (en) * 1996-05-31 2000-10-11 中国科学院山西煤炭化学研究所 Catalyst for preparing heavy hydrocarbon from synthesized gas and preparation method
WO2007074599A1 (en) * 2005-12-26 2007-07-05 N.E. Chemcat Corporation Denitrification catalyst, honeycomb structure type denitrification catalyst, and method of denitrification with the same
JP2018202403A (en) * 2017-05-31 2018-12-27 古河電気工業株式会社 Reduction catalyst structure for automobile, exhaust gas treatment device for automobile, catalyst molded body and method for producing reduction catalyst structure for automobile
JP2018202400A (en) * 2017-05-31 2018-12-27 古河電気工業株式会社 Reduction catalyst structure for automobile and method for producing the same and exhaust gas treatment device for automobile

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1057321C (en) * 1996-05-31 2000-10-11 中国科学院山西煤炭化学研究所 Catalyst for preparing heavy hydrocarbon from synthesized gas and preparation method
WO2007074599A1 (en) * 2005-12-26 2007-07-05 N.E. Chemcat Corporation Denitrification catalyst, honeycomb structure type denitrification catalyst, and method of denitrification with the same
JP2007167803A (en) * 2005-12-26 2007-07-05 Ne Chemcat Corp Denitration catalyst, honeycomb structure type denitration catalyst and denitration method using it
JP4617253B2 (en) * 2005-12-26 2011-01-19 エヌ・イーケムキャット株式会社 NOx removal catalyst, honeycomb structure type NOx removal catalyst, and NOx removal method using the same
JP2018202403A (en) * 2017-05-31 2018-12-27 古河電気工業株式会社 Reduction catalyst structure for automobile, exhaust gas treatment device for automobile, catalyst molded body and method for producing reduction catalyst structure for automobile
JP2018202400A (en) * 2017-05-31 2018-12-27 古河電気工業株式会社 Reduction catalyst structure for automobile and method for producing the same and exhaust gas treatment device for automobile

Similar Documents

Publication Publication Date Title
EP0532024B1 (en) Catalyst for catalytic reduction of nitrogen oxide
EP0614692A1 (en) Catalysts and methods for denitrization
WO2006006702A1 (en) Catalyst for purifying exhaust gas containing organic nitrogen compound and method for purifying such exhaust gas
JP2558568B2 (en) Catalyst for catalytic reduction of nitrogen oxides
US6171566B1 (en) Selective catalytic reduction for the removal of nitrogen oxides and catalyst body thereof
JPH0549943A (en) Oxidizing catalyst
JPH0576762A (en) Catalyst for catalytic reduction of nitrogen oxide
JP2516516B2 (en) Catalyst for catalytic reduction of nitrogen oxides
JPH04310240A (en) Catalyst for reducing nitrogen oxide
CN110961145A (en) Symbiotic composite molecular sieve with CHA/AFX structure, preparation method thereof and SCR application thereof
JP2558566B2 (en) Catalyst for catalytic reduction of nitrogen oxides
JPH05245372A (en) Catalyst for catalytic reduction of nitrogen oxides
CN1043296A (en) Titanyl compound with stability property
CN106984300A (en) A kind of vanadium titanium oxide catalyst and its production and use
JPH0549931A (en) Catalyst for catalytic reduction of nitrogen oxide
JPH05178611A (en) Production of zeolite containing metal
JPH0256250A (en) Catalyst for removing nitrogen oxide in exhaust gas
JPH08150324A (en) Method for catalytically reducing nitrogen oxide
JPH07114965B2 (en) Nitrogen oxide catalytic reduction catalyst
JPH05317650A (en) Catalyst for catalytic reduction of nitrogen oxide
EP3962644A2 (en) Methods of preparation of metal exchanged zeolites
JPH02187130A (en) Method for nitrogen oxide removal
CN110961147A (en) AEI/RTH structure symbiotic composite molecular sieve, preparation method and SCR application thereof
CN110961146A (en) Symbiotic composite molecular sieve with CHA/RTH topological structure, preparation method thereof and SCR application thereof
CN111001436A (en) Intergrowth composite molecular sieve with AEI/KFI structure, preparation method thereof and SCR application thereof