JPH04309912A - Image pickup device with optical low-pass filter - Google Patents

Image pickup device with optical low-pass filter

Info

Publication number
JPH04309912A
JPH04309912A JP3103124A JP10312491A JPH04309912A JP H04309912 A JPH04309912 A JP H04309912A JP 3103124 A JP3103124 A JP 3103124A JP 10312491 A JP10312491 A JP 10312491A JP H04309912 A JPH04309912 A JP H04309912A
Authority
JP
Japan
Prior art keywords
group
pass filter
optical low
lens
refractive power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3103124A
Other languages
Japanese (ja)
Other versions
JP2921163B2 (en
Inventor
Hiroyuki Hamano
博之 浜野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP3103124A priority Critical patent/JP2921163B2/en
Priority to US07/856,675 priority patent/US5568197A/en
Publication of JPH04309912A publication Critical patent/JPH04309912A/en
Application granted granted Critical
Publication of JP2921163B2 publication Critical patent/JP2921163B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/46Systems using spatial filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/203Filters having holographic or diffractive elements

Abstract

PURPOSE:To obtain the image pickup device which is simplified in lens constitution and has the optical low-pass filter by obtaining both low-pass effect and aberration correction effect by properly setting the constitution of the optical low-pass filter when the optical low-pass filter is arranged at an optional position of a photographic lens. CONSTITUTION:The image pickup device has the photographic lens and the optical low-pass filter 1 which is arranged at the optional position on the optical axis of the photographic lens and limits picture information of a specific spatial frequency component; and one surface of the optical low-pass filter 1 is in diffraction grating structure with the low-pass effect and the other surface is in an aspherical surface shape.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は光学的ローパスフィルタ
ーを有した撮像装置に関し、例えばカラー撮影素子を用
いたビデオカメラや電子スチルカメラ等の様に画像を1
次元的且つ離散的に処理するのに好適な光学的ローパス
フィルターを有した撮像装置に関するものである。 【0002】 【従来の技術】従来より画像情報を離散的にサンプリン
グして出力画像を得る例えばCCD等の撮像素子を用い
たビデオカメラ等の撮影レンズにおいては、被写体の撮
影を行なう際、前記撮像素子のもつ限界周波数を超える
空間周波数成分が被写体に含まれていると、該被写体に
本来なかったモワレ縞や、細かい縞模様が濃度にうねり
を持つ太い縞となって現われる所謂ビートなどの現象が
発生してくる。 【0003】即ち、撮影機器によって採取することので
きない周波数成分は画像情報として再現することができ
ず、所謂波形歪み(エイリアジング)と呼ばれる現象が
起きる。 【0004】このエイリアジングを抑制する為、例えば
ビデオカメラ等の撮影レンズでは光学的ローパスフィル
ターを撮影レンズの光路中に配置して被写体からの光束
を、該光学的ローパスフィルターを通過させることで該
光束を複数方向に分離し、その結果撮像面に結像される
1つの点像を複数個の点像に分離している。これにより
被写体の高域の周波数特性を制限してエイリアジングの
影響を抑制している。 【0005】従来より光学的ローパスフィルターとして
は例えば水晶等の一軸性結晶による複屈折を利用したも
のや、あるいは撮影レンズの光路中に回折格子を配置し
、該回折格子の回折効果を利用したものなどが種々用い
られている。 【0006】特に回折格子を用いた光学的ローパスフィ
ルターの場合はプラスチックをモールド化して容易に作
成することができる為、非常に安価に得ることができ、
この為最近のビデオカメラ等の撮影レンズにおいては数
多く用いられている。 【0007】回折格子を利用した光学的ローパスフィル
ターは例えば特開昭53−119063号公報や特開昭
63−287921号公報等で提案されている。 【0008】 【発明が解決しようとする課題】一方、最近の民生用の
ビデオカメラの撮像装置には光学的ローパス効果を有す
ると共に高い光学性能を有し、かつビデオカメラ全体の
小型化に伴ない撮影レンズ全体の小型化を図ったものが
要望されている。 【0009】一般に撮影レンズの光学性能を良好に維持
しつつ、レンズ枚数を削減し、レンズ系全体を小型にす
るには非球面レンズを用いるのが有効である。例えば特
開平2−39011号公報では非球面レンズを用いた小
型の撮影レンズを提案している。 【0010】非球面レンズはプラスチックモールドを用
いて製作すれば比較的容易であるが温湿度等の環境変化
により光学特性が大きく変化してくるという問題点があ
る。 【0011】これに対して非球面レンズをガラスモール
ドを用いて製作すれば温湿度等の環境変化による光学特
性の変動は少なくなるが、使用する硝材が限定されたり
、又面精度を良好に維持する等、製作が難しくなってく
るという問題点がある。 【0012】本発明は光学的ローパスフィルターの構成
を適切に設定することにより、所定のローパス効果が容
易に得られると共に非球面を用いてレンズ枚数を削減し
つつ、高い光学性能を得る際の環境変化による光学特性
の変動が少なく常に高い光学性能を維持することができ
る光学的ローパスフィルターを有した撮像装置の提供を
目的とする。 【0013】 【課題を解決するための手段】本発明の光学的ローパス
フィルターを有した撮像装置は、撮影レンズと該撮影レ
ンズの光軸上の任意の位置に配置した所定の空間周波数
成分の画像情報を制限する光学的ローパスフィルターと
を有し、該光学的ローパスフィルターは一方の面はロー
パス効果を有する回折格子構造より成り、他方の面は非
球面形状より成っていることを特徴としている。 【0014】特に本発明では、前記非球面形状は近軸的
に屈折力が略0であり、又前記光学的ローパスフィルタ
ーを前記撮影レンズの開口絞りの近傍に配置したことを
特徴としている。 【0015】 【実施例】図1は本発明の実施例1の光学系の要部概略
図である。 【0016】本実施例では撮影レンズとして全体として
5つのレンズ群より成る所謂5群ズームレンズを用い、
光学的ローパスフィルターを撮影レンズの開口絞りの近
傍に配置して、所定のローパス効果を得ている。 【0017】同図において3は合焦機能を有する正の屈
折力の第1群、4は変倍機能を有する負の屈折力の第2
群、5は変倍に伴なう像面変動を補正する第3群、6は
第3群5からの光束を略アフォーカル光束として射出さ
せる第4群、1は光学的ローパスフィルター、2は開口
絞りであり、通過光量を制御している。7は結像用の第
5群である。 【0018】本実施例の撮影レンズは第2群4と第3群
5を矢印の如く移動させて広角端から望遠端への変倍を
行なっている。光学的ローパスフィルター1は開口絞り
2の近傍に配置している。 【0019】本実施例の光学的ローパスフィルター1は
図2に示すように一方の面1aはローパス効果を発揮す
る断面形状が3角形状、鋸歯形状若しくは台形状の回折
格子又は位相型の回折格子より成り、他方の面1bは良
好なる収差補正を行ない高い光学性能を得る為の非球面
より成っている。又このときの非球面形状は近軸的には
屈折力が略0となっている。 【0020】尚、ここで屈折力が略0とは全系の焦点距
離をfとしたとき50fより大きい焦点距離を有するも
のをいう。 【0021】このように本実施例では光学的ローパスフ
ィルターの一方の面を回折格子とし、ローパス効果を得
ると共に他方の面に非球面を施すことにより撮影レンズ
を構成するときのレンズ枚数、特に結像用の第5群のレ
ンズ枚数を例えば3〜5枚程度で構成し、これにより球
面収差やコマ収差等の諸収差を良好に補正することがで
きるようにしている。 【0022】又、このときの非球面をその近軸屈折力が
略0となるようにして光学的ローパスフィルターをプラ
スチックモールドで成形したときの、温湿度等の環境変
化に伴なうピント移動等の光学特性の変動を少なくして
いる。 【0023】図5は図1のズームタイプを用いた後述す
る数値実施例1のレンズ断面図である。図3は本発明に
係る光学的ローパスフィルターの像分離の原理を示した
説明図である。同図において8は光学的ローパスフィル
ター、9は撮像面である。 【0024】光学的ローパスフィルター8による撮像面
9上の像分離幅をδ、該光学的ローパスフィルター8の
プリズム角及び屈折率を夫々θ及びn、光学的ローパス
フィルター8と撮像面9との間隔をLとすると、像分離
幅δは次式で表わされる。 【0025】 δ=2Ltan(n−1)θ      ‥‥‥‥(1
)但し、簡単の為、同図においては第5群7は省略して
いる。 【0026】単板式カラー撮像素子から得られる再生像
の偽色信号を除去する為に、光学的ローパスフィルター
8による像分離幅δは色分離ストライプフィルターのピ
ッチの略1/2が適当である。 【0027】しかしながら光学的ローパスフィルターを
ズームレンズ内に配置した場合は、レンズの動きの妨げ
とならない位置に配置しなければならない為、ズーミン
グによって撮像面に対する光学的ローパスフィルターの
見かけ上の位置は変化することになる。 【0028】即ち、ズーミングにおいてズームレンズが
広角端の位置にあるときの像分離幅δは適当であっても
望遠端にあるときの該像分離幅δは不適当となる場合が
ある。従ってズーミングに伴なって要求される像分離幅
δの変化が最小になる所に光学的ローパスフィルター8
を配置する必要がある。 【0029】本実施例では変倍部より像面側の開口絞り
の近傍に配置し、変倍をしてもローパス効果による像分
離幅が一定となるようにしている。 【0030】図4は本発明の実施例2の光学系の要部概
略図である。本実施例では撮影レンズとして全体として
4つのレンズ群より成るズームレンズを用い、図1の実
施例1と同様の光学的ローパスフィルターを撮影レンズ
の開口絞りの近傍に配置して図1の実施例1と同様に所
定のローパス効果と収差補正効果を得ている。 【0031】図4において43は固定の正の屈折力の第
1群、44は変倍機能を有する負の屈折力の第2群、1
は光学的ローパスフィルターで実施例1と同様の形状よ
り成っている。2は開口絞り、45は固定の正の屈折力
の第3群、46は変倍に伴なう像面変動の補正と合焦機
能を有する第4群である。 【0032】本実施例では第2群44と第4群46を矢
印の如く移動させて広角端から望遠端への変倍を行なっ
ている。そして第4群46を光軸上移動させてフォーカ
スを行なっている。 【0033】本実施例においても図1の実施例1と同様
に光学的ローパスフィルターの他方の面に非球面を施す
ことによりレンズ枚数を削減し、特に第3群45のレン
ズ枚数を少なくし、レンズ系全体を簡素にしている。 【0034】本実施例では光学的ローパスフィルターを
変倍の際の移動する第4群よりも物体側に配置している
。このため光学的ローパスフィルターと撮像面との間の
光学的距離は変倍により変化し、ローパス効果が変動し
てくる。 【0035】そこで本実施例では各レンズ群の屈折力や
主点間隔そして移動条件等の諸定数を適切に設定するこ
とにより、撮像面上における像分離幅の変化が実用上問
題とないように小さくしている。 【0036】図6は図4のズームレンズを用いた後述す
る数値実施例3のレンズ断面図である。 【0037】次に本発明の数値実施例を示す。数値実施
例においてRiは物体側より順に第i番目のレンズ面の
曲率半径、Diは物体側より第i番目のレンズ厚及び空
気間隔、Niとνiは各々物体側より順に第i番目のレ
ンズのガラスの屈折率とアッベ数である。 【0038】非球面形状は光軸方向にX軸、光軸と垂直
方向にH軸、光の進行方向を正としRを近軸曲率半径、
A,B,C,D,Eを各々非球面係数としたとき【00
39】 【数1】 なる式で表わしている。 数値実施例  1       F= 1〜7.6       FNO=
1:2.04〜2.25     2ω= 48.0°
〜 6.6°    R 1=   6.898   
  D 1=  0.166    N 1=1.80
518     ν 1= 25.4    R 2=
   3.480     D 2=  0.833 
   N 2=1.51633     ν 2= 6
4.1    R 3= −13.260     D
 3=  0.027               
                   R 4=  
 3.156     D 4=  0.500   
 N 3=1.60311     ν 3= 60.
7    R 5=  13.219     D 5
= 可変                     
               R 6=   5.2
79     D 6=  0.111    N 4
=1.77250     ν 4= 49.6   
 R 7=   1.232     D 7=  0
.381                     
             R 8=  −1.710
     D 8=  0.111    N 5=1
.77250     ν 5= 49.6    R
 9=   1.325     D 9=  0.3
19    N 6=1.84666     ν 6
= 23.8    R10=4306.543   
  D10= 可変                
                    R11= 
 −2.083     D11=  0.111  
  N 7=1.77250     ν 7= 49
.6    R12=  −5.425     D1
2= 可変                    
                R13=   2.
071     D13=  0.583    N 
8=1.51633     ν 8= 64.1  
  R14=  −2.284     D14=  
0.208                    
              R15=  非球面  
   D15=  0.138    N 9=1.4
9171     ν 9= 57.4    R16
=  格子面     D16=  0.138   
                         
      R17=  絞り       D17=
  0.28                   
                R18=   1.
057     D18=  0.458    N1
0=1.48749     ν10= 70.2  
  R19=   4.070     D19=  
0.104                    
              R20=   5.02
3     D20=  0.111    N11=
1.76182     ν11= 26.5    
R21=   0.919     D21=  0.
804                      
            R22=   3.354 
    D22=  0.291    N12=1.
60311     ν12= 60.7    R2
3=  −2.018  【0040】 【表1】 第15面非球面 R0 =  ∞            B = −7
.896×10−2C = −2.886×10−2 
   D = −7.533×10−3数値実施例  
2       F= 1〜7.6       FNO=
1:2.04〜2.25     2ω= 48.0°
〜 6.6°    R 1=   7.843   
  D 1=  0.166    N 1=1.80
518     ν 1= 25.4    R 2=
   3.578     D 2=  0.833 
   N 2=1.51633     ν 2= 6
4.1    R 3= −14.766     D
 3=  0.027               
                   R 4=  
 3.392     D 4=  0.500   
 N 3=1.69680     ν 3= 55.
5    R 5=  15.466     D 5
= 可変                     
               R 6=   5.0
28     D 6=  0.111    N 4
=1.77250     ν 4= 49.6   
 R 7=   1.225     D 7=  0
.381                     
             R 8=  −1.696
     D 8=  0.111    N 5=1
.77250     ν 5= 49.6    R
 9=   1.308     D 9=  0.3
19    N 6=1.84666     ν 6
= 23.8    R10=1009.983   
  D10= 可変                
                    R11= 
 −2.084     D11=  0.111  
  N 7=1.77250     ν 7= 49
.6    R12=  −5.427     D1
2= 可変                    
                R13=   2.
060     D13=  0.583    N 
8=1.51633     ν 8= 64.1  
  R14=  −2.298     D14=  
0.208                    
              R15=  非球面  
   D15=  0.138    N 9=1.4
9171     ν 9= 57.4    R16
=  格子面     D16=  0.138   
                         
      R17=  絞り       D17=
  0.28                   
                R18=   1.
078     D18=  0.458    N1
0=1.51633     ν10= 64.1  
  R19=   3.759     D19=  
0.129                    
              R20=   4.80
7     D20=  0.111    N11=
1.80518     ν11= 25.4    
R21=   0.924     D21=  0.
762                      
            R22=   3.096 
    D22=  0.291    N12=1.
60311     ν12= 60.7    R2
3=  −2.024  【0041】 【表2】 第15面非球面 R0 =  ∞            B = −7
.815×10−2C = −2.924×10−2 
   D = −6.632×10−3数値実施例  
3       F= 1〜5.75      FNO=
1:2.05〜2.61     2ω= 50.4°
〜 9.4°    R 1=   9.759   
  D 1=  0.132    N 1=1.80
518     ν 1= 25.4    R 2=
   2.884     D 2=  0.500 
   N 2=1.60311     ν 2= 6
0.7    R 3=  −9.827     D
 3=  0.029               
                   R 4=  
 2.312     D 4=  0.323   
 N 3=1.71999     ν 3= 50.
3    R 5=   7.262     D 5
= 可変                     
               R 6=  19.6
40     D 6=  0.088    N 4
=1.78590     ν 4= 44.2   
 R 7=   0.820     D 7=  0
.347                     
             R 8=  −1.194
     D 8=  0.088    N 5=1
.51823     ν 5= 59.0    R
 9=   1.194     D 9=  0.2
64    N 6=1.80518     ν 6
= 25.4    R10= −75.158   
  D10= 可変                
                    R11= 
 格子面     D11=  0.147    N
 7=1.49171     ν 7= 57.4 
   R12=  非球面     D12=  0.
147                      
            R13=  絞り     
  D13=  0.18             
                      R14
=   2.707     D14=  0.323
    N 8=1.60311     ν 8= 
60.7    R15=  −5.323     
D15= 可変                  
                  R16=   
3.297     D16=  0.102    
N 9=1.84666     ν 9= 23.8
    R17=   1.304     D17=
  0.426    N10=1.51633   
  ν10= 64.1    R18=  −2.4
78     D18=  0.022       
                         
  R19=   4.565     D19=  
0.220    N11=1.51633     
ν11= 64.1    R20=    ∞   
   【0042】 【表3】 第12面非球面 R0 =  ∞            B =  4
.701×10−2C =  2.482×10−2 
   D = −1.341×10−2【0043】 【発明の効果】本発明によれば光学的ローパスフィルタ
ーの構成を前述の如く適切に設定することにより、所定
のローパス効果が容易に得られると共に非球面を用いて
レンズ枚数を削減しつつ高い光学性能を得る際の環境変
化による光学特性の変動が少なく常に高い光学性能を維
持することができる光学的ローパスフィルターを有した
撮像装置を達成することができる。
Detailed Description of the Invention [0001] The present invention relates to an imaging device having an optical low-pass filter, and is used to capture images, such as a video camera or an electronic still camera using a color imaging element. 1
The present invention relates to an imaging device having an optical low-pass filter suitable for dimensional and discrete processing. [0002] Conventionally, in a photographing lens of a video camera or the like that uses an image sensor such as a CCD to obtain an output image by discretely sampling image information, when photographing a subject, the image pickup If an object contains spatial frequency components that exceed the limit frequency of the element, phenomena such as moire fringes that were not originally present in the object or so-called beat, where fine stripes appear as thick stripes with undulations in density, may occur. It will occur. That is, frequency components that cannot be collected by photographing equipment cannot be reproduced as image information, resulting in a phenomenon called waveform distortion (aliasing). In order to suppress this aliasing, an optical low-pass filter is placed in the optical path of the photographing lens of a video camera, etc., and the light flux from the subject is passed through the optical low-pass filter. The light beam is separated into a plurality of directions, and as a result, one point image formed on the imaging surface is separated into a plurality of point images. This limits the high frequency characteristics of the subject and suppresses the effects of aliasing. Conventional optical low-pass filters include those that utilize the birefringence of a uniaxial crystal such as quartz, or those that utilize the diffraction effect of a diffraction grating placed in the optical path of a photographic lens. etc. are used in various ways. Especially in the case of an optical low-pass filter using a diffraction grating, it can be easily made by molding plastic, so it can be obtained at a very low cost.
For this reason, it is widely used in the photographic lenses of recent video cameras and the like. [0007] Optical low-pass filters using diffraction gratings have been proposed, for example, in Japanese Patent Application Laid-Open No. 119063/1982 and Japanese Patent Application Laid-open No. 287921/1982. [Problems to be Solved by the Invention] On the other hand, recent imaging devices for consumer video cameras have optical low-pass effects and high optical performance, and as video cameras have become smaller as a whole, There is a demand for a photographic lens that is designed to be more compact as a whole. In general, it is effective to use an aspherical lens to reduce the number of lenses and downsize the entire lens system while maintaining good optical performance of the photographic lens. For example, Japanese Patent Application Laid-Open No. 2-39011 proposes a compact photographic lens using an aspherical lens. Although it is relatively easy to manufacture an aspherical lens using a plastic mold, there is a problem in that its optical characteristics change greatly due to environmental changes such as temperature and humidity. On the other hand, if an aspherical lens is manufactured using a glass mold, fluctuations in optical properties due to environmental changes such as temperature and humidity will be reduced, but the glass material to be used will be limited and it will be difficult to maintain good surface precision. There is a problem in that it becomes difficult to manufacture. [0012] The present invention makes it possible to easily obtain a predetermined low-pass effect by appropriately setting the configuration of an optical low-pass filter, and to reduce the number of lenses by using an aspheric surface, while improving the environment in which high optical performance is obtained. An object of the present invention is to provide an imaging device having an optical low-pass filter that can always maintain high optical performance with little variation in optical characteristics due to changes. Means for Solving the Problems An imaging device having an optical low-pass filter of the present invention includes a photographing lens and an image of a predetermined spatial frequency component placed at an arbitrary position on the optical axis of the photographing lens. The optical low-pass filter is characterized in that one surface is made of a diffraction grating structure having a low-pass effect, and the other surface is made of an aspherical shape. In particular, the present invention is characterized in that the aspherical shape has a refractive power of approximately 0 paraxially, and the optical low-pass filter is disposed near the aperture stop of the photographing lens. Embodiment FIG. 1 is a schematic diagram of the main parts of an optical system according to Embodiment 1 of the present invention. In this embodiment, a so-called 5-group zoom lens consisting of 5 lens groups as a whole is used as a photographing lens.
An optical low-pass filter is placed near the aperture stop of the photographic lens to obtain a predetermined low-pass effect. In the figure, numeral 3 denotes a first group with positive refractive power that has a focusing function, and numeral 4 denotes a second group with negative refractive power that has a variable magnification function.
The group 5 is a third group that corrects image plane fluctuations due to zooming, 6 is a fourth group that emits the light beam from the third group 5 as a substantially afocal light beam, 1 is an optical low-pass filter, and 2 is an optical low-pass filter. It is an aperture stop and controls the amount of light passing through it. 7 is a fifth group for imaging. The photographic lens of this embodiment changes the magnification from the wide-angle end to the telephoto end by moving the second group 4 and the third group 5 as shown by the arrows. An optical low-pass filter 1 is placed near an aperture stop 2. As shown in FIG. 2, the optical low-pass filter 1 of this embodiment has one surface 1a having a triangular, sawtooth, or trapezoidal cross-sectional shape or a phase-type diffraction grating that exhibits a low-pass effect. The other surface 1b is an aspheric surface for good aberration correction and high optical performance. Further, the aspherical shape at this time has a refractive power of approximately 0 in the paraxial direction. [0020] Here, the refractive power of approximately 0 refers to a lens having a focal length greater than 50 f, where f is the focal length of the entire system. As described above, in this embodiment, one surface of the optical low-pass filter is used as a diffraction grating to obtain a low-pass effect, and the other surface is provided with an aspherical surface, thereby reducing the number of lenses when constructing the photographic lens, especially the optical resolution. The number of lenses in the fifth lens group for images is, for example, about 3 to 5, so that various aberrations such as spherical aberration and coma can be corrected well. [0022] Also, when an optical low-pass filter is molded using a plastic mold with the aspherical surface having a paraxial refractive power of approximately 0, focus shift due to environmental changes such as temperature and humidity, etc. This reduces fluctuations in optical properties. FIG. 5 is a cross-sectional view of a lens in Numerical Example 1, which will be described later, using the zoom type shown in FIG. FIG. 3 is an explanatory diagram showing the principle of image separation of the optical low-pass filter according to the present invention. In the figure, 8 is an optical low-pass filter, and 9 is an imaging surface. The image separation width on the imaging surface 9 by the optical low-pass filter 8 is δ, the prism angle and refractive index of the optical low-pass filter 8 are θ and n, respectively, and the distance between the optical low-pass filter 8 and the imaging surface 9 is When L is the image separation width δ, the image separation width δ is expressed by the following equation. δ=2Ltan(n-1)θ ‥‥‥‥(1
) However, for the sake of simplicity, the fifth group 7 is omitted in the figure. In order to remove false color signals from a reproduced image obtained from a single-plate color image sensor, the image separation width δ of the optical low-pass filter 8 is suitably approximately 1/2 the pitch of the color separation stripe filter. However, when an optical low-pass filter is placed inside a zoom lens, it must be placed in a position that does not interfere with the movement of the lens, so the apparent position of the optical low-pass filter relative to the imaging surface changes due to zooming. I will do it. That is, in zooming, even if the image separation width δ is appropriate when the zoom lens is at the wide-angle end, the image separation width δ may be inappropriate when it is at the telephoto end. Therefore, the optical low-pass filter 8
need to be placed. In this embodiment, the lens is disposed near the aperture stop on the image plane side of the magnification changing section, so that the image separation width due to the low-pass effect remains constant even when the magnification is changed. FIG. 4 is a schematic diagram of the main parts of an optical system according to a second embodiment of the present invention. In this example, a zoom lens consisting of four lens groups as a whole is used as the photographic lens, and an optical low-pass filter similar to that in Example 1 of FIG. 1 is placed near the aperture stop of the photographic lens. Similar to No. 1, a predetermined low-pass effect and aberration correction effect are obtained. In FIG. 4, 43 is a first group having a fixed positive refractive power, 44 is a second group having a negative refractive power and has a variable power function;
is an optical low-pass filter having the same shape as in the first embodiment. 2 is an aperture stop, 45 is a third group having a fixed positive refractive power, and 46 is a fourth group having a focusing function and correcting image plane fluctuations due to zooming. In this embodiment, the second lens group 44 and the fourth lens group 46 are moved as shown by the arrows to change the magnification from the wide-angle end to the telephoto end. Focusing is performed by moving the fourth group 46 on the optical axis. In this embodiment as well, as in the first embodiment shown in FIG. 1, the number of lenses is reduced by providing an aspherical surface on the other surface of the optical low-pass filter, and in particular, the number of lenses in the third group 45 is reduced. The entire lens system is simplified. In this embodiment, the optical low-pass filter is placed closer to the object than the fourth group that moves during zooming. Therefore, the optical distance between the optical low-pass filter and the imaging surface changes due to zooming, and the low-pass effect changes. Therefore, in this embodiment, various constants such as the refractive power, principal point spacing, and movement conditions of each lens group are appropriately set so that changes in the image separation width on the imaging surface do not pose a practical problem. I'm keeping it small. FIG. 6 is a cross-sectional view of a lens according to Numerical Example 3, which will be described later, using the zoom lens shown in FIG. Next, numerical examples of the present invention will be shown. In the numerical examples, Ri is the radius of curvature of the i-th lens surface from the object side, Di is the thickness and air gap of the i-th lens from the object side, and Ni and νi are the curvature radius of the i-th lens from the object side, respectively. These are the refractive index and Abbe number of glass. The aspherical shape has an X axis in the optical axis direction, an H axis in a direction perpendicular to the optical axis, and a paraxial radius of curvature R with the direction of light traveling as positive.
When A, B, C, D, and E are each aspherical coefficients, 00
39] [Equation 1] Numerical Example 1 F= 1~7.6 FNO=
1:2.04~2.25 2ω=48.0°
~ 6.6° R 1 = 6.898
D1=0.166 N1=1.80
518 ν 1= 25.4 R 2=
3.480 D2= 0.833
N2=1.51633 ν2=6
4.1 R3=-13.260D
3=0.027
R4=
3.156 D4= 0.500
N 3 = 1.60311 ν 3 = 60.
7 R 5 = 13.219 D 5
= variable
R6=5.2
79 D 6 = 0.111 N 4
=1.77250 ν 4= 49.6
R7=1.232 D7=0
.. 381
R8=-1.710
D8=0.111 N5=1
.. 77250 ν 5= 49.6 R
9= 1.325 D 9= 0.3
19 N 6=1.84666 ν 6
= 23.8 R10=4306.543
D10= variable
R11=
−2.083 D11= 0.111
N7=1.77250 ν7=49
.. 6 R12=-5.425 D1
2 = variable
R13=2.
071 D13= 0.583 N
8=1.51633 ν 8=64.1
R14= -2.284 D14=
0.208
R15= Aspherical surface
D15=0.138 N9=1.4
9171 ν 9= 57.4 R16
= Lattice plane D16= 0.138

R17= Aperture D17=
0.28
R18=1.
057 D18= 0.458 N1
0=1.48749 ν10=70.2
R19= 4.070 D19=
0.104
R20=5.02
3 D20= 0.111 N11=
1.76182 ν11= 26.5
R21=0.919 D21=0.
804
R22=3.354
D22=0.291 N12=1.
60311 ν12= 60.7 R2
3= -2.018 [Table 1] 15th aspherical surface R0 = ∞ B = -7
.. 896×10−2C = −2.886×10−2
D = −7.533×10−3 Numerical example
2 F= 1~7.6 FNO=
1:2.04~2.25 2ω=48.0°
~ 6.6° R 1 = 7.843
D1=0.166 N1=1.80
518 ν 1= 25.4 R 2=
3.578 D2= 0.833
N2=1.51633 ν2=6
4.1 R3=-14.766 D
3=0.027
R4=
3.392 D4= 0.500
N3=1.69680 ν3=55.
5 R 5 = 15.466 D 5
= variable
R6=5.0
28 D 6 = 0.111 N 4
=1.77250 ν 4= 49.6
R7=1.225 D7=0
.. 381
R8=-1.696
D8=0.111 N5=1
.. 77250 ν 5= 49.6 R
9= 1.308 D 9= 0.3
19 N 6=1.84666 ν 6
= 23.8 R10=1009.983
D10= variable
R11=
-2.084 D11= 0.111
N7=1.77250 ν7=49
.. 6 R12=-5.427 D1
2 = variable
R13=2.
060 D13= 0.583 N
8=1.51633 ν 8=64.1
R14= -2.298 D14=
0.208
R15= Aspherical surface
D15=0.138 N9=1.4
9171 ν 9= 57.4 R16
= Lattice plane D16= 0.138

R17= Aperture D17=
0.28
R18=1.
078 D18= 0.458 N1
0=1.51633 ν10=64.1
R19= 3.759 D19=
0.129
R20=4.80
7 D20= 0.111 N11=
1.80518 ν11= 25.4
R21=0.924 D21=0.
762
R22=3.096
D22=0.291 N12=1.
60311 ν12= 60.7 R2
3= -2.024 [Table 2] 15th aspherical surface R0 = ∞ B = -7
.. 815×10−2C = −2.924×10−2
D = −6.632×10−3 Numerical example
3 F= 1~5.75 FNO=
1:2.05~2.61 2ω=50.4°
~9.4° R1=9.759
D1=0.132 N1=1.80
518 ν 1= 25.4 R 2=
2.884 D2= 0.500
N2=1.60311 ν2=6
0.7 R3=-9.827D
3=0.029
R4=
2.312 D4= 0.323
N 3 = 1.71999 ν 3 = 50.
3 R 5 = 7.262 D 5
= variable
R6=19.6
40 D 6 = 0.088 N 4
=1.78590 ν 4= 44.2
R7=0.820 D7=0
.. 347
R8=-1.194
D 8 = 0.088 N 5 = 1
.. 51823 ν 5= 59.0 R
9= 1.194 D 9= 0.2
64 N 6=1.80518 ν 6
= 25.4 R10 = -75.158
D10= variable
R11=
Lattice plane D11= 0.147 N
7=1.49171 ν 7=57.4
R12=Aspherical surface D12=0.
147
R13= Aperture
D13=0.18
R14
= 2.707 D14 = 0.323
N 8=1.60311 ν 8=
60.7 R15=-5.323
D15= variable
R16=
3.297 D16= 0.102
N9=1.84666 ν9=23.8
R17= 1.304 D17=
0.426 N10=1.51633
ν10= 64.1 R18= -2.4
78 D18 = 0.022

R19= 4.565 D19=
0.220 N11=1.51633
ν11= 64.1 R20= ∞
[Table 3] 12th aspherical surface R0 = ∞ B = 4
.. 701×10-2C = 2.482×10-2
D=-1.341×10-2 [Effects of the Invention] According to the present invention, by appropriately setting the configuration of the optical low-pass filter as described above, a predetermined low-pass effect can be easily obtained. To achieve an imaging device having an optical low-pass filter capable of always maintaining high optical performance with little fluctuation in optical characteristics due to environmental changes when obtaining high optical performance while reducing the number of lenses using an aspheric surface. Can be done.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】  本発明の実施例1の光学系の要部概略図[Figure 1] Schematic diagram of the main parts of the optical system of Example 1 of the present invention


図2】  図1の光学的ローパスフィルターの要部断面
[
Figure 2: Cross-sectional view of essential parts of the optical low-pass filter in Figure 1

【図3】  図1の光学的ローパスフィルターの光学作
用の説明図
[Figure 3] An explanatory diagram of the optical action of the optical low-pass filter in Figure 1

【図4】  本発明の実施例2の光学系の要部概略図[Fig. 4] Schematic diagram of the main parts of the optical system of Example 2 of the present invention


図5】  本発明の数値実施例1のレンズ断面図
[
Fig. 5 Lens sectional view of Numerical Example 1 of the present invention

【図6
】  本発明の数値実施例2のレンズ断面図
[Figure 6
] Lens sectional view of numerical example 2 of the present invention

【図7】 
 本発明の数値実施例1の広角端の諸収差図
[Figure 7]
Various aberration diagrams at the wide-angle end of Numerical Example 1 of the present invention

【図8】 
 本発明の数値実施例1の中間の諸収差図
[Figure 8]
Intermediate aberration diagrams of Numerical Example 1 of the present invention

【図9】  
本発明の数値実施例1の望遠端の諸収差図
[Figure 9]
Various aberration diagrams at the telephoto end of Numerical Example 1 of the present invention

【図10】 
 本発明の数値実施例2の広角端の諸収差図
[Figure 10]
Various aberration diagrams at the wide-angle end of Numerical Example 2 of the present invention

【図11】
  本発明の数値実施例2の中間の諸収差図
[Figure 11]
Intermediate various aberration diagrams of numerical example 2 of the present invention

【図12】
  本発明の数値実施例2の望遠端の諸収差図
[Figure 12]
Various aberration diagrams at the telephoto end of Numerical Example 2 of the present invention

【図13
】  本発明の数値実施例3の広角端の諸収差図
[Figure 13
] Various aberration diagrams at the wide-angle end of Numerical Example 3 of the present invention

【図1
4】  本発明の数値実施例3の中間の諸収差図
[Figure 1
4] Intermediate various aberration diagrams of numerical example 3 of the present invention

【図1
5】  本発明の数値実施例3の望遠端の諸収差図
[Figure 1
5] Various aberration diagrams at the telephoto end of Numerical Example 3 of the present invention

【符号の説明】[Explanation of symbols]

1    光学的ローパスフィルター 2    開口絞り 3    第1群 4    第2群 5    第3群 6    第4群 7    第5群 8    回折格子 9    撮像面 43  第1群 44  第2群 45  第3群 46  第4群 1. Optical low-pass filter 2 Aperture diaphragm 3 1st group 4 2nd group 5 3rd group 6 4th group 7 5th group 8 Diffraction grating 9 Imaging surface 43 1st group 44 2nd group 45 3rd group 46 4th group

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】  撮影レンズと該撮影レンズの光軸上の
任意の位置に配置した所定の空間周波数成分の画像情報
を制限する光学的ローパスフィルターとを有し、該光学
的ローパスフィルターは一方の面はローパス効果を有す
る回折格子構造より成り、他方の面は非球面形状より成
っていることを特徴とする光学的ローパスフィルターを
有した撮像装置。
Claim 1: A photographing lens; an optical low-pass filter disposed at any position on the optical axis of the photographic lens for limiting image information of a predetermined spatial frequency component; An imaging device having an optical low-pass filter, characterized in that one surface is made of a diffraction grating structure having a low-pass effect, and the other surface is made of an aspherical shape.
【請求項2】  前記非球面形状は近軸的に屈折力が略
0であることを特徴とする請求項1の光学的ローパスフ
ィルターを有した撮像装置。
2. An imaging device having an optical low-pass filter according to claim 1, wherein the aspherical shape has a paraxial refractive power of approximately zero.
【請求項3】  前記光学的ローパスフィルターを前記
撮影レンズの開口絞りの近傍に配置したことを特徴とす
る請求項2の光学的ローパスフィルターを有した撮像装
置。
3. The imaging device having an optical low-pass filter according to claim 2, wherein the optical low-pass filter is arranged near an aperture stop of the photographing lens.
【請求項4】  前記撮影レンズは物体側より順に合焦
機能を有する正の屈折力の第1群、変倍機能を有する負
の屈折力の第2群、変倍に伴う像面変動を補正する第3
群、該第3群からの光束を略アフォーカル光束とする第
4群そして結像用の第5群の5つのレンズ群を有してい
ることを特徴とする請求項1の光学的ローパスフィルタ
ーを有した撮像装置。
4. The photographing lens includes, in order from the object side, a first group with a positive refractive power having a focusing function, a second group with a negative refractive power having a variable power function, and a second group with a negative refractive power having a variable power function, and a second group with a negative refractive power having a variable power function, and a second group with a negative refractive power that corrects image plane fluctuations due to variable power. 3rd to do
2. The optical low-pass filter according to claim 1, comprising five lens groups: a lens group, a fourth group that makes the light beam from the third group a substantially afocal light beam, and a fifth group for imaging. An imaging device having:
【請求項5】  前記撮影レンズは物体側より順に正の
屈折力の第1群、変倍機能を有する負の屈折力の第2群
、正の屈折力の第3群そして変倍に伴う像面変動の補正
と合焦機能を有する第4群の4つのレンズ群を有してい
ることを特徴とする請求項1の光学的ローパスフィルタ
ーを有した撮像装置。
5. The photographing lens includes, in order from the object side, a first group having a positive refractive power, a second group having a negative refractive power having a variable power function, a third group having a positive refractive power, and an image forming unit that is attached to an image due to the variable power. 2. An imaging device having an optical low-pass filter according to claim 1, further comprising a fourth lens group having a surface variation correction and focusing function.
JP3103124A 1991-04-08 1991-04-08 Imaging device having optical low-pass filter Expired - Fee Related JP2921163B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3103124A JP2921163B2 (en) 1991-04-08 1991-04-08 Imaging device having optical low-pass filter
US07/856,675 US5568197A (en) 1991-04-08 1992-03-24 Camera apparatus having an optical low-pass filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3103124A JP2921163B2 (en) 1991-04-08 1991-04-08 Imaging device having optical low-pass filter

Publications (2)

Publication Number Publication Date
JPH04309912A true JPH04309912A (en) 1992-11-02
JP2921163B2 JP2921163B2 (en) 1999-07-19

Family

ID=14345828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3103124A Expired - Fee Related JP2921163B2 (en) 1991-04-08 1991-04-08 Imaging device having optical low-pass filter

Country Status (2)

Country Link
US (1) US5568197A (en)
JP (1) JP2921163B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0519210A (en) * 1991-07-16 1993-01-29 Fuji Photo Film Co Ltd Optical filter
JP2012063756A (en) * 2010-08-19 2012-03-29 Pentax Ricoh Imaging Co Ltd Retrofocus type wide-angle lens system and optical equipment having the same

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6911638B2 (en) 1995-02-03 2005-06-28 The Regents Of The University Of Colorado, A Body Corporate Wavefront coding zoom lens imaging systems
US20020118457A1 (en) * 2000-12-22 2002-08-29 Dowski Edward Raymond Wavefront coded imaging systems
US20020195548A1 (en) * 2001-06-06 2002-12-26 Dowski Edward Raymond Wavefront coding interference contrast imaging systems
US7218448B1 (en) 1997-03-17 2007-05-15 The Regents Of The University Of Colorado Extended depth of field optical systems
US6122009A (en) * 1995-05-31 2000-09-19 Sony Corporation Image pickup apparatus fabrication method thereof image pickup adaptor apparatus signal processing apparatus signal processing method thereof information processing apparatus and information processing method
US6104432A (en) * 1995-11-10 2000-08-15 Sony Corporation Compact image pickup lens system for a video camera
JP4076242B2 (en) * 1995-12-26 2008-04-16 オリンパス株式会社 Electronic imaging device
JPH09318993A (en) * 1996-05-30 1997-12-12 Canon Inc Solid-state image pickup element camera system, interchangeable lens for photographing and optical accessory
US6111608A (en) * 1996-11-19 2000-08-29 Konica Corporation Electronic camera equipped with low-pass filter and lens system having resolving power
US6639629B1 (en) * 1997-04-25 2003-10-28 Konica Corporation Camera having photographing elements for photoelectrically converting optical image into image signals
US6326998B1 (en) * 1997-10-08 2001-12-04 Eastman Kodak Company Optical blur filter having a four-feature pattern
JP4004117B2 (en) * 1997-10-17 2007-11-07 オリンパス株式会社 Imaging device
US6021005A (en) * 1998-01-09 2000-02-01 University Technology Corporation Anti-aliasing apparatus and methods for optical imaging
US6356379B1 (en) 1998-12-07 2002-03-12 Florida Atlantic University Adjustable opto-acoustical low pass filter and technique
US7006141B1 (en) * 1999-11-23 2006-02-28 Panavision, Inc. Method and objective lens for spectrally modifying light for an electronic camera
US6536898B1 (en) * 2000-09-15 2003-03-25 The Regents Of The University Of Colorado Extended depth of field optics for human vision
US6970201B1 (en) * 2000-09-15 2005-11-29 Panavision, Inc. Method and lens system for modifying the modulation transfer function of light for a camera
US6873733B2 (en) 2001-01-19 2005-03-29 The Regents Of The University Of Colorado Combined wavefront coding and amplitude contrast imaging systems
US6842297B2 (en) 2001-08-31 2005-01-11 Cdm Optics, Inc. Wavefront coding optics
JP2003287675A (en) * 2002-01-22 2003-10-10 Konica Corp Light convergence optical system, optical pickup device, recording and reproducing device, aberration correcting element, and objective
KR20040068438A (en) * 2003-01-25 2004-07-31 삼성전자주식회사 Walking type robot and a moving method thereof
US7405761B2 (en) 2003-10-01 2008-07-29 Tessera North America, Inc. Thin camera having sub-pixel resolution
EP1528797B1 (en) * 2003-10-31 2015-07-08 Canon Kabushiki Kaisha Image processing apparatus, image-taking system and image processing method
US8724006B2 (en) * 2004-01-26 2014-05-13 Flir Systems, Inc. Focal plane coding for digital imaging
CN1934872B (en) * 2004-01-26 2016-08-03 数字光学公司 There is the thin camera of subpixel resolution
US7773143B2 (en) * 2004-04-08 2010-08-10 Tessera North America, Inc. Thin color camera having sub-pixel resolution
US8953087B2 (en) * 2004-04-08 2015-02-10 Flir Systems Trading Belgium Bvba Camera system and associated methods
US8049806B2 (en) * 2004-09-27 2011-11-01 Digitaloptics Corporation East Thin camera and associated methods
JP2009008758A (en) * 2007-06-26 2009-01-15 Fujinon Corp Imaging device, camera module and portable terminal equipment

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH588358A5 (en) * 1975-08-14 1977-05-31 Landis & Gyr Ag
US4105289A (en) * 1976-04-29 1978-08-08 University Patents, Inc. Apparatus and method for image sampling
US4176611A (en) * 1976-07-19 1979-12-04 Nichols Engineering & Research Corp. Method and apparatus for treating waste material
JPS53119063A (en) * 1977-03-26 1978-10-18 Minolta Camera Co Ltd Optical low pass filter
JPS57180313U (en) * 1981-05-13 1982-11-16
JPS5875974A (en) * 1981-10-30 1983-05-07 Nec Corp Image pickup device
JPH0772769B2 (en) * 1984-09-26 1995-08-02 ソニー株式会社 Solid-state imaging device
JP2605703B2 (en) * 1986-12-24 1997-04-30 ソニー株式会社 Imaging device
JPH07119901B2 (en) * 1987-05-21 1995-12-20 キヤノン株式会社 Optical low pass filter
JPH07111514B2 (en) * 1988-04-04 1995-11-29 日本放送協会 Optical low pass filter
JPH0833527B2 (en) * 1988-07-18 1996-03-29 キヤノン株式会社 Imaging system with optical low-pass filter
JPH0239011A (en) * 1988-07-28 1990-02-08 Matsushita Electric Ind Co Ltd Aspherical zoom lens
JPH0833526B2 (en) * 1988-11-28 1996-03-29 キヤノン株式会社 Photographic lens with optical low-pass filter
JPH02150816A (en) * 1988-12-01 1990-06-11 Canon Inc Aspherical single lens
FR2642530A1 (en) * 1989-01-30 1990-08-03 Seiko Epson Corp Focusing mechanism and optical head
JPH02245715A (en) * 1989-03-17 1990-10-01 Hoya Corp Aspherical single lens formed by molding of low dispersion glass
US5270825A (en) * 1989-10-12 1993-12-14 Olympus Optical Co., Ltd. Imaging optical system having a moire elimination effect

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0519210A (en) * 1991-07-16 1993-01-29 Fuji Photo Film Co Ltd Optical filter
JP2012063756A (en) * 2010-08-19 2012-03-29 Pentax Ricoh Imaging Co Ltd Retrofocus type wide-angle lens system and optical equipment having the same

Also Published As

Publication number Publication date
US5568197A (en) 1996-10-22
JP2921163B2 (en) 1999-07-19

Similar Documents

Publication Publication Date Title
JP2921163B2 (en) Imaging device having optical low-pass filter
US7453642B2 (en) Zoom lens system and image pickup apparatus having the same
JP4898410B2 (en) Zoom lens and imaging apparatus having the same
US7688519B2 (en) Zoom lens and image pickup apparatus including the same
US5050972A (en) Zoom lens
JP5339784B2 (en) Zoom lens and imaging apparatus having the same
US7894135B2 (en) Zoom lens and image pickup apparatus including the lens
JP5072474B2 (en) Zoom lens and imaging apparatus having the same
US7715112B2 (en) Zoom lens system and image pickup apparatus including the same
JP4695912B2 (en) Zoom lens and imaging apparatus having the same
JP5072447B2 (en) Zoom lens and imaging apparatus having the same
JP4750458B2 (en) Zoom lens and imaging apparatus having the same
US7545577B2 (en) Zoom lens and image pickup apparatus including the same
US20020063969A1 (en) Zoom lens and optical apparatus using the same
US5363242A (en) Zoom lens of rear focus type
JP2009042269A (en) Zoom lens and imaging apparatus having the same
JP2001350092A (en) Image pickup lens device
JP2011085653A (en) Zoom lens system, imaging apparatus and camera
JPH04358108A (en) Rear focus type zoom lens
US7057828B2 (en) Zoom lens system
JP2014153599A (en) Zoom lens and imaging apparatus including the same
JP2006148662A (en) Method for adjusting imaging device
JP2621454B2 (en) Zoom lens
JP5110128B2 (en) Zoom lens, optical device, and zoom lens manufacturing method
JP4585794B2 (en) Zoom lens and imaging apparatus having the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees