JPH0430977B2 - - Google Patents

Info

Publication number
JPH0430977B2
JPH0430977B2 JP61247349A JP24734986A JPH0430977B2 JP H0430977 B2 JPH0430977 B2 JP H0430977B2 JP 61247349 A JP61247349 A JP 61247349A JP 24734986 A JP24734986 A JP 24734986A JP H0430977 B2 JPH0430977 B2 JP H0430977B2
Authority
JP
Japan
Prior art keywords
carbon black
weight
polyester film
film
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61247349A
Other languages
Japanese (ja)
Other versions
JPS63101432A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP24734986A priority Critical patent/JPS63101432A/en
Publication of JPS63101432A publication Critical patent/JPS63101432A/en
Publication of JPH0430977B2 publication Critical patent/JPH0430977B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は磁気記録用二軸延伸ポリエステルフイ
ルムに関し、更に詳しくは優れた電磁変換性、表
面平坦性及び走行性に加え、光透過率の低い磁気
記録用二軸延伸ポリエステルフイルムに関する。 <従来技術> ポリエステルフイルムは、磁気テープ用途、電
気用途など種々な用途に用いられる。磁気テープ
用途、就中ビデオテープ用途においては、近年、
高密度記録に向い、電磁変換特性を向上させるた
めに平滑なフイルム表面が要求されると共に、デ
ツキにおけるテープの走行性、耐摩耗性及び耐久
性の向上のために摩擦係数の低いことが要求され
ている。これと同時に、これら磁気テープに用い
る強磁性粉末はますます微粉末化している。磁性
粉が微粉末化されると、波長の長い光は磁性粉に
よつて散乱されにくくなり光透過率が高くなる。
このため、非磁性支持体と磁気記録層の光透過率
の差を利用して終端検出を行なう磁気記録媒体で
は、光透過率を下げる必要がある。従来、磁気記
録層中に帯電防止剤、研磨剤等の有色の無機微粉
末を含有させて、光透過率を下げていたが、この
方法は他方で電磁変換特性、ヘツド摩耗等の面で
限界があつた。 そこで、ベースフイルムの光透過率を下げるこ
とが検討され、ポリエステルフイルムにカーボン
ブラツク等の遮光剤を含有させることが提案され
ている。しかし、光透過率を低くするのに充分な
量のカーボンブラツクを用いるとポリエステルフ
イルムの表面が粗面化し、該粗面化に起因して磁
気塗料を塗布後の表面が粗れ、電磁変換特性が悪
化する傾向がある等の問題が新たに生じる。この
問題を改善する方法としてカーボンブラツクの分
散を良くするための分散剤が検討されている。し
かし、フイルム表面の平坦性を満足できるものは
未だ見出されていないのが現状である。 <発明の目的> 本発明者は、表面平坦性が更に改善され、かつ
遮光性に優れた二軸延伸ポリエステルフイルムを
得るべく研究した結果、光吸収能の高い、特定一
次粒径のカーボンブラツクと光学的屈折率の高い
不活性固体微粒子とを組合せて用いると、これら
の相乗作用によつてカーボンブラツク量を少なく
しても充分な遮光性を発現できることを見出し、
本発明に到達した。 本発明の目的は、優れた電磁変換特性、表面平
坦性及び走行性に加え、光透過率の低い磁気記録
用二軸延伸ポリエステルフイルムを提供すること
にある。 <発明の構成・効果> 本発明の目的は、本発明によれば、平均一次粒
径0.04〜0.2μmのカーボンブラツク(A)0.5〜2.5重
量%と平均粒径0.1〜0.5μmの、光学的屈折率1.8
以上の不活性固定微粒子(B)0.05〜2.0重量%を分
散含有せしめた二軸延伸ポリエステルフイルムで
あつて、該フイルムの波長900nmにおける光線
透過率が30%以下であり、かつ表面粗さが0.007
〜0.024μmであることを特徴とする磁気記録用二
軸延伸ポリエステルフイルムによつて達成され
る。 本発明におけるポリエステルとは芳香族ジカル
ボン酸を主たる酸成分とし、脂肪族グリコールを
主たるグルコール成分とするポリエステルであ
る。かかるポリエステルは実質的に線状であり、
そしてフイルム形成性特に溶融成形によるフイル
ム形成性を有する。芳香族ジカルボン酸として
は、例えばテレフタル酸、ナフタレンジカルボン
酸、イソフタル酸、ジフエニルエタンジカルボン
酸、ジフエニルジカルボン酸、ジフエニルエーー
テルジカルボン酸、ジフエニルスルホンジカルボ
ン酸、ジフエニルケトンジカルボン酸、アンスラ
センジカルボン酸等をあげることができる。脂肪
族グリコールとしては、例えばエチレングリコー
ル、トリメチレングリコール、テトラメチレング
リコール、ペンタメチレングリコール、ヘキサメ
チレングリコール、デカメチレングリコールの如
き炭素数2〜10のポリメチレングリコールあるい
はシクロヘキサンジメタノールの如き脂環族ジオ
ール等をあげることができる。 本発明において、ポリエステルとしては例えば
アルキレンテレフタレート及び/又はアルキレン
ナフタレートを主たる構成成分とするものが好ま
しく用いられる。 かかるポリエステルのうちでも例えばポリエチ
レンテレフタレート、ポリエチレンナフタレート
はもちろんのこと、例えば全ジカルボン酸成分の
80モル%以上がテレフタル酸及び/又はナフタレ
ンジカルボン酸であり、全グリコール成分の80モ
ル%以上がエチレングリコールである共重合体が
特に好ましい。その際全酸成分の20モル%以下の
ジカルボン酸は上記芳香族ジカルボン酸であるこ
とができ、また例えばアジピン酸、セバチン酸の
如き脂肪族ジカルボン酸;シクロヘキサン−1,
4−ジカルボン酸の如き脂環族ジカルボン酸等で
あることができる。また、全グリコール成分の20
モル%以下は、エチレングリコール以外の上記グ
リコールであることができ、あるいは例えばハイ
ドロキノン、レゾルシン、2,2−ビス(4−ヒ
ドロキシフエニル)プロパンの如き芳香族ジオー
ル;1,4−ジヒドロキシメチルベンゼンの如き
芳香環を含む脂肪族ジオール;ポリエチレングリ
コール、ポリプロピレングリコール、ポリテトラ
メチレングリコールの如きポリアルキレングリコ
ール(ポリオキシアルキレングリコール)等であ
ることもできる。 また、本発明におけるポリエステルには、例え
ばヒドロキシ安息香酸の如き芳香族オキシ酸;ω
−ヒドロキシカプロン酸の如き脂肪族オキシ酸等
のオキシカルボン酸に由来する成分を、ジカルボ
ン酸成分およびオキシカルボン酸成分の総量に対
し20モル%以下で含有するものも包含される。さ
らに本発明におけるポリエステルには実質的に線
状である範囲の量、例えば全酸成分に対し2モル
%以下の量で、3官能以上のポリカルボン酸又は
ポリヒドロキシ化合物、例えばトリメリツト酸、
ペンタエリスリトール等を共重合したものをも包
含される。 かかるポリエステルとしては、O−クロロフエ
ノール中の溶液として35℃で測定して求めた固有
粘度0.4〜0.8のものが好ましい。 本発明においては、ポリエステル中に平均一次
粒径0.04〜0.2μmのカーボンブラツク(A)を0.5〜
2.5重量%、および平均粒径0.1〜0.5μmの屈折率
1.8以上の不活性固体微粒子(B)を0.05〜2.0重量%
均一に分散含有させる。これにより、カーボンブ
ラツク含有量が少ない場合でも充分な遮光性を得
ることができる。この充分な遮光性を発現する理
由は明瞭ではないが、光学的屈折率の高い不活性
固体微粒子は光散乱能が高く、これと光吸収能の
高いカーボンブラツクとの相乗作用によるものと
考えられる。 このカーボンブラツク(A)は、時に限定はされな
いが、ケツチエンブラツク、サーマルブラツク、
チヤンネルブラツク、フアーネスブラツク、アセ
チレンブラツク等が好ましい。また、カーボンブ
ラツクは凝集が起き易いので分散剤を添加し、ボ
ールミル、サンドミル等により均一分散さてて用
いることが好ましい。分散剤としてはポリビニル
ピロリドンが好ましく用いられる。 カーボンブラツクの平均一次粒径が0.2μmを越
えると、カーボンブラツクによりフイルム表面が
著しく粗れるようになり、好ましくない。またカ
ーボンブラツクの平均一次粒径が0.04μmより小
さくなると、分散剤を使用しても凝集が起き易く
なり、これによる表面粗れが発生して好ましくな
い。これらの点から、カーボンブラツクの平均一
次粒径は0.06〜0.2μmであることが好ましい。 また、カーボンブラツクの添加量が0.5重量%
より少なくなると遮光性が不充分となり、また
2.5重量%を越えると、凝集が発生するようにな
り、更に凹凸が正起され表面が粗くなるので、好
ましくない。カーボンブラツクの添加量は0.7〜
2.0重量%が好ましく、0.8〜1.5重量%が特に好ま
しい。 さらに、光学的屈折率1.8以上の不活性固体微
粒子(B)としては、特に限定はされないが、二酸化
チタン、黒色酸化鉄(四三酸化鉄)、酸化亜鉛、
カドミウムイエロー、リトポン(硫化亜鉛、硫酸
パリウム共沈混合体)などが好ましく例示され
る。かかる不活性固体微粒子の平均粒径は0.10〜
0.50μmの範囲、さらに0.15〜0.40μmの範囲、特
に0.20〜0.35μmの範囲にあると好ましい。 不活性固体微粒子の平均粒径が大きすぎると、
フイルム表面の粗さが大となり、例えば磁気テー
プとしたときの電磁変換特性が悪くなり、またカ
ーボンブラツクとの相乗効果による遮光性向上も
充分でないので、好ましくない。また平均粒径が
小さすぎると、凝集が発生し易くなり、粗大突起
が生じて、例えばテープとしたときにドロツプア
ウト(信号欠落)となる原因になるので、好まし
くない。 本発明においては、カーボンブラツク(A)の含有
量に対する光学的屈折率1.8以上の不活性固体微
粒子(B)の含有量の比(重量比:B/A)が下記式 0.05≦(B/A)≦0.8 を満足することが好ましい。この重量比(B/
A)が大きくなりすぎても、小さくなりすぎて
も、光学的屈折率の高い不活性固体微粒子(B)とカ
ーボンブラツク (A)との相互作用が小さくなるた
めか、充分な遮光性を得るためには(A+B)の
合計の含有量が多くなつてしまい、表面が粗れて
好ましくない。重量比(B/A)は0.1以上0.6以
下が好ましく、0.15以上0.4以下がさらに好まし
い。 本発明においては、ポリエステルフイルムに、
磁気テープとしたときの走行性、耐久性等を賦与
する目的で、カーボンブラツク(A)及び光学的屈折
率1.8以上の不活性固体微粒子(B)の他に、滑剤と
しての不活性粒子(C)を含有させることが好まし
い。かかる不活性粒子は平均粒径0.1〜1.2μmの
ものが好ましく、この量は0.03〜1重量%が好ま
しい。 ここで言う“不活性粒子”はカーボンブラツク
(A)及び光学的屈折率1.8以上の不活性固体微粒子
(B)以外の常温で固体のもの、例えば有機酸の金属
塩、無機物等を意味する。好ましい不活性粒子(C)
としては、二酸化ケイ素(水和物、ケイ藻土、
ケイ砂、石英等を含む)、アルミナ、SiO2
を30重量%以上含有するケイ酸塩(例えば非晶質
或いは結晶質の粘土鉱物、アルミノシリケート化
合物(焼成物や水和物を含む)、温石綿、ジルコ
ン、フライアツシユ等)、Mg、Zn及びZrの酸
化物、Ca及びBaの硫酸塩、Li、Na及びCa
のリン酸塩(1水素塩や2水素塩を含む)、Li、
Na及びKの安息香酸塩、Ca、Ba、Zn及びMn
のテレフタル酸塩、Mg、Ca、Ba、Zn、Cd、
Pb、Sr、Mn、Fe、Co及びNiのチタン酸塩、
Ba及びPbのクロム酸塩、Ca及びMgの炭酸塩、
ガラス(例えばガラス粉、ガラスビーズ等)、
ホタル石、およびZnSが例示される。特に好
ましく用いられるものとして、無水ケイ酸、含水
ケイ酸、酸化アルミニウム、ケイ酸アルミニウム
(焼成物、水和物等を含む)、燐酸1リチウム、燐
酸3リチウム、燐酸ナトリウム、燐酸カルシウ
ム、硫酸バリウム、安息香酸ナトリウム、これら
の化合物の複塩(水和物を含む)、ガラス粉、粘
土(カオリン、ベントナイト、白土等を含む)、
タルク、ケイ藻土等が例示される。 不活性粒子(C)、カーボンブラツク(A)及び不活性
固体微粒子(B)の含有は、それぞれ従来から微粒子
の含有法として知られている方法によつて行なう
ことができる。例えば不活性粒子(C)、カーボンブ
ラツク(A)及び不活性固体微粒子(B)をそれぞれのポ
リエステル製造の反応系例えば反応前、反応中ま
たは反応後に添加することができる。 本発明の二軸延伸ポリエステルフイルムは、そ
の表面粗さ(Ra)が0.007〜0.024μmである必要
がある。この表面粗さ(Ra)が0.024μmを越え
ると、磁気テープとした際の電磁変換特性が悪化
するので好ましくなく、一方0.007μmより小さく
なると、平坦になりすぎて滑り性が悪く、ベース
フイルムの巻取時および加工時にシワが発生した
りするので好ましくない。フイルムの表面粗さ
(Ra)は0.018μm以下0.008μm以上が好ましく、
0.014μm以下0.009μm以上が特に好ましい。 本発明における二軸延伸ポリエステルフイルム
は、波長900nmにおける光線透過率が30%以下
である必要がある。フイルムの光線透過率が高く
なり、遮光性が悪くなると、これを用いて磁気テ
ープとした場合にも光透過率が高くなり、このた
め非磁性支持体と磁気記録層部との光透過率の差
を利用して終端検出を行なう方式では光透過率の
差が小さく、終端検出の検知トラブルを起し易く
なる。波長900nmにおける光線透過率は20%以
下が好ましく、10%以下が特に好ましい。 本発明の二軸延伸ポリエステルフイルムの製造
は、従来から蓄積された製造法に準じて製造する
ことができる。例えば、カーボンブラツク(A)、不
活性固体微粒子(B)及び不活性粒子(C)をそれぞれ所
定量含有するポリエステルを溶融製膜して非晶質
の未延伸フイルムとし、次いで該未延伸フイルム
の二軸方向に延伸し、熱固定し、必要であれば弛
緩熱処理することによつて製造できる。その際、
フイルム表面特性は、例えば不活性固体微粒子
(B)、不活性粒子(C)等の形状、粒径、量等によつ
て、また延伸条件によつて変化するので適宜選択
する。例えば、延伸温度は、1段目延伸温度(例
えば縦方向延伸温度:T1)が(Tg−10)〜(Tg
+45)℃の範囲(但し、Tg:ポリエステルのガ
ラス転移温度)から、2段目延伸温度(例えば横
方向延伸温度:T2)は(T1+10)〜(T1+40)
℃の範囲から選択するとよい。また、延伸倍率は
縦方向の延伸倍率が3.0以上、特に3.5倍以上でか
つ面積倍率が10倍以上、特に12倍以上となる範囲
から選択するとよい。更にまた、熱固定温度は
180〜250℃、更には200〜230℃の範囲から選択す
るとよい。 本発明の二軸延伸ポリエステルフイルムは磁気
記録媒体用、特に高級磁気テープ用として優秀な
特性を有する。 <実施例> 以下、実施例を掲げて本発明を更に説明する。 なお、本発明における種々の物性値及び特性は
以下の如くして測定されたものであり且つ定義さ
れる。 (1) 粒子の平均粒径 (1‐1) カーボンブラツクの平均一次粒径カー
ボンブラツク粉体にクロロホルムを加え、超
音波洗浄機で振動して分散させた後、メツシ
ユにのせて透過型電子顕微鏡で8万倍の倍率
で観察し、一次粒径を読みとり、その平均値
を求める。 (1‐2) カーボンブラツク以外の粒子の平均粒
径 島津製作所CP−50型セントリフユグルパ
テイクル・サイズ・アナライザー
(Centrifugal particle Size Analycer)を
用いて測定した。得れらた遠心沈降曲線を基
に算出した各粒径の粒子とその存在量との累
積曲線から、50マスパーセント(mass
persent)に相当する粒径を読み取り、この
値を上記平均粒子とした(「粒度測定技術」
日刊工業新聞社発行、1975年、頁242〜247参
照)。 (2) 光透過率 島津マルチパーパス自記分光光度計(MPS
−5000)を用い、ベースフイルムの波長900n
mにおける光透過率を測定した。 (3) フイルム表面粗さ(Ra) 中心線平均粗さ:Ra(単位μm)としてJIS
−B0601で定義される値である。(株)小坂研究所
の触針式表面粗さ計(SURFCORDER SE−
30C)を用いて、触針半径:2(μm、測定
圧:0.03g、カツトオフ値:0.25mmの条件下に
フイルム表面粗さ曲線ををかかせ、該フイルム
表面粗さ曲線からその中心線の方向に測定長さ
Lの部分を抜き取り、この抜き取り部分の中心
線をX軸とし、縦倍率の方向をY軸として、粗
さ曲線をY=f(x)で表わしたとき、次の式
で与えられる値(Ra:μm)をフイルム表面
粗さとして定義する。 Ra=1/L∫L 0|f(x)|dx 本発明では、基準長を2.5mmとして5個測定
し、値の大きい方から1個除いた4個の平均値
としてRaを表わした。 (4) 磁気コーテイングフイルムの電磁変換特性
(クロマS/N) フイルム上に、下記組成 Co含有酸化鉄粉末 100重量部 エスレツクA(積水化学製品塩化ビニル−酢酸
ビニル共重合体) 10重量部 ニツポラン2304(日本ポリウレタン製ポリウレ
タンエラストマー) 10重量部 コロネートL(日本ポリウレタン製ポリイソシ
アネート) 5重量部 レシチン 1重量部 メチルエチルケトン 75重量部 メチルイソブチルケトン 75重量部 トルエン 75重量部 添加剤(潤滑剤、シリコン樹脂) 0.15重量部 カーボンブラツク 別途所定量 を持つ磁性粉末塗料をグラビアロールにより塗
布し、ドクターナイフにより磁性塗料層をスム
ージングし、磁性塗料の未だ乾かぬ間に常法に
より磁気配向させ、しかる後オーブンに導いて
乾燥キユアリングする。更にカレンダー加工し
て塗布表面に均一にし、スリツトして約5μの
磁性層を形成した1/2インチ巾の磁気コーテイ
ングテープを作成する。この磁気コーテイング
テープの電磁変換特性(クロマS/N)を下記
の方法において測定する。 市販の家庭用VTRを用いて50%白レベル信
号(100%白レベル信号はピーク;ツー;ピー
クの電圧が0.714ボルトである)に、100%クロ
マレベル信号を重した信号を記録し、その再生
信号をシバソクノイズメーター:タイプ925R
を用いて測定を行なう。クロマS/Nの定義は
シバソクの定義に従い次の通りである。 クロマS/N(dB) =20log{ES(p−p)/EN(rms)} ここでES(p−p)は白レベル信号の再生信
号のピーク ツ ピークの電圧差(p−p)で
ある。 RS(p−p)=0.714V(p−p) また、EN(rms)はクロマレベル信号の再生
信号のピークの電圧の平方根値である。 EN(rms)=AMノイズ実行値電圧(V) (5) ドロツプアウト 上記(4)にて磁性粉末塗料を塗布処理したテー
プ(1/2インチ巾)を市販のドロツプアウトカ
ウンター(例えばシバソクVHO1BZ型)にて
5μsec×10dBのドロツプアウトをカウントし1
分間のカウント数を算出した。 (6) 信号トラブル ポリエステルフイルムをベースとし、常法に
より磁気テープ化し、市販のVHSビデオレコ
ーダにより信号、検知トラブル発生の有′
(○)、無(×)で評価した。 (7) 走行性 前記(4)にて作成したテープを同所に記載の方
法で電磁変換特性を評価すると同時にテープと
走行状態を観察した。 ○……走行状態は良好で問題なし。 △……走行状態に若干斑が見られ、張力も高め
であるが、何とか使用できる。 ×……走行状態が悪く、張力も高く走行に耐え
ない。 実施例 1 エチレングリコール(以下EGと略称する)85
重量部に平均粒径0.58μmの炭酸カルシウム15重
量部を添加した後、混合撹拌を行ないスラリーを
得た。 次にジメチルテレフタレート100重量部とEG70
重量部を酢酸マンガン4水和物0.035重量部を触
媒として常法通りエステル交換を行なつた。その
際、上記で得られた炭酸カルシウムのスラリーを
撹拌下添加した。エステル交換反応終了後、エチ
レングリコール共存下加熱還流されたトリメチル
ホスフエートをジメチルテレフタレートに対し
0.015モル%添加し、さらに、三酸化アンチモン
をジメチルテレフタレートに対し0.030モル%添
加し、1Torr以下の高真空下で重縮合反応を行な
つた。重縮合反応終了後ポリマーを水冷、切断し
て、炭酸カルシウム粒子が分散含有されたポリエ
チレンテレフタレートペレツトを得た[以下、ポ
リエステルという]。 また、炭酸カルシウム粒子のエチレングリコー
ルスラリーの代りに前以つて調製しておいた二酸
化チタン粒子のエチレングリコールスラリーを添
加する以外は上記と同様にエステル交換反応及び
重縮合反応を行ない、二酸化チタン粒子が分散さ
れたポリエチレンテレフタレートペレツトを得た
[以下、ポリエステルという]。 更にまた、ポリエステルの製法において不活
性粒子を添加せずにエステル交換反応及び重縮合
反応を行ない、外部府活性粒子の添加されていな
いポリエチレンテレフタレートペレツトを得た
[以下、ポリエステルという]。 更にまた、炭酸カルシウムのエチレングリコー
ルスラリーの代りに、平均一次粒径(以下、単に
平均粒径という)0.06μmのカーボンブラツクの
エチレングリコールスラリーを添加する以外は上
記と同様にエステル交換反応および重縮合反応を
行ない、カーボンブラツク粒子が分散されたポリ
エチレンテレフタレートペレツトを得た[以下、
ポリエステルという]。 ポリエステル、ポリエステル、ポリエステ
ルおよびポリエステルをカーボンブラツク含
量が1.4重量%に、炭酸カルシウム粒子含量が
0.20重量%に、かつ二酸化チタン粒子含量が0.06
重量%になるように混合してブレンド物Aを得
た。 得られたブレンド物Aを常法により溶融押出し
て未延伸フイルムを得、さらにこの未延伸フイル
ムを縦延伸温度105℃、縦延伸倍率3.4倍、横延伸
温度110℃、横延伸倍率3.6倍で逐次二軸延伸を行
ない、さらに215℃で熱処理を施した。 このようにして得られた厚み14μmのポリエス
テルフイルムの特性を表−1に示す。 この二軸配向ポリエステルフイルムをベースフ
イルムとして前述の方法で1/2インチ巾のビデオ
用テープを作成した。その特性を表−1に示す。 表−1から明らかな如く、ベースフイルムの波
長900nmでの光透過率が低く、テープ化後の信
号検知トラブルを発生していない。更にベースフ
イルムの表面粗さも低く、テープの電磁変換特性
も良好で、ドロツプアウトも少なく、総合評価と
しても良好であつた。 実施例 2、3 カーボンブラツクの含有量、二酸化チタン
(TiO2)の含有量を表−1に示すように変更し、
更に炭酸カルシウムの代りに平均粒径0.55μmの
カオリンクレーを使用する以外は、実施例1と同
様にして厚み14μmの二軸延伸ポリエステルフイ
ルムを得、さらにビデオ用磁気記録テープを得
た。この特性は表−1に示す。 表−1から明らかな如く、ベースフイルムの光
透過率が低く、表面粗さも低く、磁気テープとし
ても電気変換特性が良好であり、ドロツプアウト
の少なく、走行性もよく、総合評価としも良好で
あつた。 比較例 1、2 ポリエステル、、、の混合比率を変え
ること以外は実施例1と同様の方法で厚み14μm
の二軸延伸ポリエステルフイルムを得、さらにビ
デオ用磁気記録テープを得た。この特性は表−1
に示す。 表−1から明らかな如く、光学的屈折率の高い
不活性固体微粒子を使用しない比較例1において
は、カーボンブラツクの含有量を増加させること
により光透過率は低下するが、ベースフイルムの
表面粗さが粗くなり、テープとしても電磁変換特
性が悪く、ドロツプアウトも多く、総合評価不良
であつた。 またカーボンブラツクと光学的屈折率の高い不
活性固体微粒子であるTiO2との添加量比を1.33
と高くした比較例2においては、ベースフイルム
の表面粗さは低いが、光透過率が高く、テープと
しても電磁変換特性は信号トラブル発生が多く、
総合評価不良であつた。 実施例 4 光学的屈折率の高い不活性固体微粒子として
TiO2の代りに酸化亜鉛を使用し、さらに不活性
粒子として炭酸カルシウムとカオリンクレーの2
種類を使用する以外は実施例2と同様にして厚み
14μmの二軸延伸ポリエステルフイルムを得、さ
らに1/2インチ巾磁気記録テープを得た。この特
性を表−1に示す。 表−1から明らかな如く、ベースフイルムの光
透過率は低く、表面粗さも低いレベルであり、テ
ープとしても電磁変換特性が良好であり、信号ト
ラブルも少なく、総合評価として良好であつた。 【表】
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a biaxially stretched polyester film for magnetic recording, and more specifically, it has excellent electromagnetic conversion properties, surface flatness, and runnability, as well as low light transmittance. This invention relates to a biaxially stretched polyester film for magnetic recording. <Prior Art> Polyester films are used in various applications such as magnetic tape applications and electrical applications. In recent years, in magnetic tape applications, especially video tape applications,
Suitable for high-density recording, a smooth film surface is required to improve electromagnetic conversion characteristics, and a low coefficient of friction is required to improve tape runnability, abrasion resistance, and durability on decks. ing. At the same time, the ferromagnetic powder used in these magnetic tapes is becoming increasingly finer. When the magnetic powder is pulverized, light with a long wavelength is less likely to be scattered by the magnetic powder, resulting in higher light transmittance.
For this reason, in a magnetic recording medium in which termination is detected using the difference in light transmittance between the nonmagnetic support and the magnetic recording layer, it is necessary to lower the light transmittance. Conventionally, colored inorganic fine powders such as antistatic agents and abrasives were included in the magnetic recording layer to reduce light transmittance, but this method had limitations in terms of electromagnetic conversion characteristics, head wear, etc. It was hot. Therefore, attempts have been made to lower the light transmittance of the base film, and it has been proposed to incorporate a light shielding agent such as carbon black into the polyester film. However, if a sufficient amount of carbon black is used to lower the light transmittance, the surface of the polyester film will become rough, and this roughening will cause the surface after applying the magnetic paint to become rough, resulting in electromagnetic conversion characteristics. New problems arise, such as the tendency for conditions to worsen. As a method to improve this problem, dispersants for improving the dispersion of carbon black are being studied. However, at present, no film has yet been found that can satisfy the flatness of the film surface. <Purpose of the Invention> As a result of research to obtain a biaxially oriented polyester film with further improved surface flatness and excellent light-shielding properties, the present inventor has developed a carbon black with a specific primary particle size that has high light absorption ability. We discovered that when used in combination with inert solid fine particles with a high optical refractive index, sufficient light-shielding properties can be expressed even with a small amount of carbon black due to their synergistic effect.
We have arrived at the present invention. An object of the present invention is to provide a biaxially stretched polyester film for magnetic recording that has excellent electromagnetic characteristics, surface flatness, and runnability, as well as low light transmittance. <Structures and Effects of the Invention> According to the present invention, an object of the present invention is to combine 0.5 to 2.5% by weight of carbon black (A) with an average primary particle size of 0.04 to 0.2 μm and an optical Refractive index 1.8
A biaxially stretched polyester film containing 0.05 to 2.0% by weight of the above inert fixed fine particles (B) dispersed therein, the film has a light transmittance of 30% or less at a wavelength of 900 nm and a surface roughness of 0.007.
This is achieved by a biaxially stretched polyester film for magnetic recording, which is characterized by a thickness of ~0.024 μm. The polyester in the present invention is a polyester containing an aromatic dicarboxylic acid as a main acid component and an aliphatic glycol as a main glycol component. Such polyester is substantially linear;
It also has film-forming properties, particularly film-forming properties by melt molding. Examples of aromatic dicarboxylic acids include terephthalic acid, naphthalenedicarboxylic acid, isophthalic acid, diphenylethanedicarboxylic acid, diphenyldicarboxylic acid, diphenyl ether dicarboxylic acid, diphenylsulfonedicarboxylic acid, diphenylketonedicarboxylic acid, and anthracene. Examples include dicarboxylic acids. Examples of aliphatic glycols include polymethylene glycols having 2 to 10 carbon atoms such as ethylene glycol, trimethylene glycol, tetramethylene glycol, pentamethylene glycol, hexamethylene glycol, and decamethylene glycol, or alicyclic diols such as cyclohexanedimethanol. etc. can be given. In the present invention, polyesters containing, for example, alkylene terephthalate and/or alkylene naphthalate as main constituents are preferably used. Among such polyesters, for example, polyethylene terephthalate, polyethylene naphthalate, etc.
Particularly preferred are copolymers in which 80 mol% or more of the glycol component is terephthalic acid and/or naphthalene dicarboxylic acid, and 80 mol% or more of the total glycol component is ethylene glycol. In this case, the dicarboxylic acids accounting for up to 20 mol% of the total acid component can be the above-mentioned aromatic dicarboxylic acids; for example, aliphatic dicarboxylic acids such as adipic acid and sebacic acid; cyclohexane-1,
It can be an alicyclic dicarboxylic acid such as 4-dicarboxylic acid. In addition, 20% of the total glycol content
Up to mol% can be of the above glycols other than ethylene glycol, or of aromatic diols such as hydroquinone, resorcinol, 2,2-bis(4-hydroxyphenyl)propane; of 1,4-dihydroxymethylbenzene. Aliphatic diols containing an aromatic ring such as; polyalkylene glycols (polyoxyalkylene glycols) such as polyethylene glycol, polypropylene glycol, and polytetramethylene glycol can also be used. In addition, the polyester in the present invention includes, for example, an aromatic oxyacid such as hydroxybenzoic acid;
Also included are those containing a component derived from an oxycarboxylic acid such as an aliphatic oxyacid such as -hydroxycaproic acid in an amount of 20 mol % or less based on the total amount of the dicarboxylic acid component and the oxycarboxylic acid component. Furthermore, the polyester in the present invention contains a trifunctional or higher functional polycarboxylic acid or a polyhydroxy compound, such as trimellitic acid, in an amount within a substantially linear range, for example, an amount of 2 mol % or less based on the total acid components.
Copolymerized products such as pentaerythritol are also included. Such a polyester preferably has an intrinsic viscosity of 0.4 to 0.8 as measured at 35° C. as a solution in O-chlorophenol. In the present invention, carbon black (A) with an average primary particle size of 0.04 to 0.2 μm is added to polyester from 0.5 to 0.5 μm.
2.5% by weight, and a refractive index with an average particle size of 0.1-0.5μm
0.05-2.0% by weight of inert solid fine particles (B) of 1.8 or more
Uniformly disperse and contain. Thereby, sufficient light-shielding properties can be obtained even when the carbon black content is small. The reason for this sufficient light-shielding ability is not clear, but it is thought that inert solid particles with a high optical refractive index have a high light-scattering ability, and this is due to a synergistic effect between this and carbon black, which has a high light-absorbing ability. . This carbon black (A) may be used, but is not limited to, buttocket black, thermal black,
Channel black, furnace black, acetylene black, etc. are preferred. Furthermore, since carbon black tends to aggregate easily, it is preferable to add a dispersant and uniformly disperse it using a ball mill, sand mill, etc. before use. Polyvinylpyrrolidone is preferably used as the dispersant. If the average primary particle size of the carbon black exceeds 0.2 .mu.m, the surface of the film will become extremely rough due to the carbon black, which is undesirable. Furthermore, if the average primary particle size of carbon black is smaller than 0.04 μm, agglomeration tends to occur even if a dispersant is used, which is undesirable because surface roughness occurs. From these points, it is preferable that the average primary particle size of carbon black is 0.06 to 0.2 μm. In addition, the amount of carbon black added is 0.5% by weight.
If the amount is less, the light shielding property will be insufficient, and
If it exceeds 2.5% by weight, agglomeration will occur, and the surface will become rough due to unevenness, which is not preferable. The amount of carbon black added is 0.7~
2.0% by weight is preferred, and 0.8-1.5% by weight is particularly preferred. Furthermore, the inert solid fine particles (B) having an optical refractive index of 1.8 or higher include, but are not particularly limited to, titanium dioxide, black iron oxide (triiron tetroxide), zinc oxide,
Preferred examples include cadmium yellow, lithopone (zinc sulfide and pallium sulfate co-precipitated mixture), and the like. The average particle size of such inert solid fine particles is 0.10~
It is preferably in the range of 0.50 μm, more preferably in the range of 0.15 to 0.40 μm, particularly in the range of 0.20 to 0.35 μm. If the average particle size of the inert solid particles is too large,
This is undesirable because the surface roughness of the film becomes large, which deteriorates the electromagnetic conversion characteristics when used as a magnetic tape, and the synergistic effect with carbon black does not sufficiently improve light-shielding properties. Furthermore, if the average particle size is too small, agglomeration tends to occur, resulting in coarse protrusions, which may cause dropouts (missing signals) when used as a tape, for example, which is undesirable. In the present invention, the ratio of the content of inert solid fine particles (B) having an optical refractive index of 1.8 or more to the content of carbon black (A) (weight ratio: B/A) is expressed by the following formula: 0.05≦(B/A )≦0.8. This weight ratio (B/
Even if A) becomes too large or too small, sufficient light-shielding properties can be obtained, probably because the interaction between the inert solid fine particles (B), which has a high optical refractive index, and the carbon black (A) becomes small. Therefore, the total content of (A+B) increases, which is undesirable because the surface becomes rough. The weight ratio (B/A) is preferably 0.1 or more and 0.6 or less, more preferably 0.15 or more and 0.4 or less. In the present invention, in the polyester film,
In addition to carbon black (A) and inert solid fine particles (B) with an optical refractive index of 1.8 or more, inert particles (C ) is preferably included. Such inert particles preferably have an average particle diameter of 0.1 to 1.2 μm, and the amount thereof is preferably 0.03 to 1% by weight. The “inert particles” mentioned here are carbon black.
(A) and inert solid fine particles with an optical refractive index of 1.8 or more
It means things other than (B) that are solid at room temperature, such as metal salts of organic acids, inorganic substances, etc. Preferred inert particles (C)
As silicon dioxide (hydrate, diatomaceous earth,
(including silica sand, quartz, etc.), alumina, silicates containing 30% by weight or more of SiO2 (e.g., amorphous or crystalline clay minerals, aluminosilicate compounds (including calcined products and hydrates), warm asbestos, zircon, fly ash, etc.), oxides of Mg, Zn and Zr, sulfates of Ca and Ba, Li, Na and Ca
phosphates (including monohydrogen salts and dihydrogen salts), Li,
Benzoate of Na and K, Ca, Ba, Zn and Mn
Terephthalates, Mg, Ca, Ba, Zn, Cd,
Pb, Sr, Mn, Fe, Co and Ni titanates,
Ba and Pb chromate, Ca and Mg carbonate,
glass (e.g. glass powder, glass beads, etc.),
Examples include fluorite and ZnS. Particularly preferably used are anhydrous silicic acid, hydrated silicic acid, aluminum oxide, aluminum silicate (including calcined products, hydrates, etc.), monolithium phosphate, trilithium phosphate, sodium phosphate, calcium phosphate, barium sulfate, Sodium benzoate, double salts of these compounds (including hydrates), glass powder, clay (including kaolin, bentonite, clay, etc.),
Examples include talc and diatomaceous earth. Inclusion of inert particles (C), carbon black (A), and inert solid fine particles (B) can be carried out by methods conventionally known as methods for containing fine particles. For example, inert particles (C), carbon black (A) and inert solid fine particles (B) can be added to the reaction system for producing the respective polyester, for example before, during or after the reaction. The biaxially stretched polyester film of the present invention needs to have a surface roughness (Ra) of 0.007 to 0.024 μm. If the surface roughness (Ra) exceeds 0.024 μm, the electromagnetic conversion characteristics when used as a magnetic tape will deteriorate, which is undesirable. On the other hand, if it becomes less than 0.007 μm, the surface roughness will become too flat, resulting in poor slipperiness and Wrinkles may occur during winding and processing, which is undesirable. The surface roughness (Ra) of the film is preferably 0.018 μm or less and 0.008 μm or more,
Particularly preferred is 0.014 μm or less and 0.009 μm or more. The biaxially stretched polyester film in the present invention must have a light transmittance of 30% or less at a wavelength of 900 nm. If the light transmittance of the film increases and its light shielding properties deteriorate, the light transmittance will also increase when it is used to make a magnetic tape, and as a result, the light transmittance between the nonmagnetic support and the magnetic recording layer will decrease. In the method of detecting the end using the difference, the difference in light transmittance is small, and detection troubles are likely to occur when detecting the end. The light transmittance at a wavelength of 900 nm is preferably 20% or less, particularly preferably 10% or less. The biaxially stretched polyester film of the present invention can be manufactured according to conventional manufacturing methods. For example, a polyester containing predetermined amounts of carbon black (A), inert solid particles (B), and inert particles (C) is melted and formed into an amorphous unstretched film, and then the unstretched film is It can be produced by biaxially stretching, heat setting, and if necessary, relaxation heat treatment. that time,
Film surface properties are, for example, inert solid particles.
They vary depending on the shape, particle size, amount, etc. of (B), inert particles (C), etc., and also depending on the stretching conditions, so they are selected appropriately. For example, the stretching temperature is such that the first stage stretching temperature (for example, longitudinal stretching temperature: T 1 ) is (Tg−10) to (Tg
+45)°C (however, Tg: glass transition temperature of polyester), the second-stage stretching temperature (for example, transverse stretching temperature: T 2 ) is (T 1 +10) to (T 1 +40)
It is recommended to select from the range of ℃. Further, the stretching ratio is preferably selected from a range in which the stretching ratio in the longitudinal direction is 3.0 times or more, particularly 3.5 times or more, and the area magnification is 10 times or more, especially 12 times or more. Furthermore, the heat fixing temperature is
It is preferable to select from the range of 180 to 250°C, more preferably 200 to 230°C. The biaxially stretched polyester film of the present invention has excellent properties for use in magnetic recording media, especially high-grade magnetic tapes. <Examples> The present invention will be further explained below with reference to Examples. Note that various physical property values and characteristics in the present invention were measured and defined as follows. (1) Average particle size of particles (1-1) Average primary particle size of carbon black Add chloroform to carbon black powder, disperse it by vibration with an ultrasonic cleaner, then place it on a mesh and examine it under a transmission electron microscope. Observe at a magnification of 80,000 times, read the primary particle size, and calculate the average value. (1-2) Average particle size of particles other than carbon black Measured using a Shimadzu CP-50 Centrifugal particle size analyzer. From the cumulative curve of particles of each particle size and their abundance calculated based on the obtained centrifugal sedimentation curve, 50 mass percent (mass
persent), and this value was taken as the above average particle size ("Particle Size Measurement Technology").
Published by Nikkan Kogyo Shimbun, 1975, pp. 242-247). (2) Light transmittance Shimadzu multi-purpose self-recording spectrophotometer (MPS)
-5000) and base film wavelength 900n.
The light transmittance at m was measured. (3) Film surface roughness (Ra) Center line average roughness: JIS as Ra (unit: μm)
- This is the value defined in B0601. Kosaka Laboratory Co., Ltd.'s stylus-type surface roughness meter (SURFCORDER SE-
30C), draw a film surface roughness curve under the conditions of stylus radius: 2 (μm, measurement pressure: 0.03g, cutoff value: 0.25mm), and calculate the center line from the film surface roughness curve. When a part of measurement length L is extracted in the direction, the center line of this extracted part is taken as the X axis, the direction of vertical magnification is taken as the Y axis, and the roughness curve is expressed as Y=f(x), the following formula is used. The given value (Ra: μm) is defined as the film surface roughness. Ra=1/L∫ L 0 |f(x)|dx In the present invention, the reference length is 2.5 mm, and 5 pieces are measured. (4) Electromagnetic conversion characteristics of magnetic coating film (chroma S/N) 100 parts by weight of Co-containing iron oxide powder with the following composition was applied on the film. Sekisui Chemical (vinyl chloride-vinyl acetate copolymer) 10 parts by weight Nituporan 2304 (polyurethane elastomer manufactured by Nippon Polyurethane) 10 parts by weight Coronate L (polyisocyanate manufactured by Nippon Polyurethane) 5 parts by weight lecithin 1 part by weight methyl ethyl ketone 75 parts by weight methyl isobutyl ketone 75 parts by weight Toluene 75 parts by weight Additives (lubricant, silicone resin) 0.15 parts by weight Carbon black A predetermined amount of magnetic powder paint is applied separately using a gravure roll, and the magnetic paint layer is smoothed with a doctor knife to remove any remaining magnetic paint. While it is still drying, it is magnetically oriented using a conventional method, and then brought to an oven for dry curing.Furthermore, it is calendered to make it uniform on the coated surface, and then slit to form a 1/2 inch wide magnetic layer with a thickness of about 5μ. A coating tape is prepared.The electromagnetic conversion characteristics (chroma S/N) of this magnetic coating tape are measured using the following method.Using a commercially available home VTR, a 50% white level signal (100% white level signal is the peak; 2; the peak voltage is 0.714 volts), record the signal with a 100% chroma level signal, and measure the playback signal using a noise meter: Type 925R.
Perform measurements using The definition of chroma S/N is as follows according to Shibasoku's definition. Chroma S/N (dB) = 20log {ES (p-p) / EN (rms)} Here, ES (p-p) is the peak-to-peak voltage difference (p-p) of the reproduced signal of the white level signal. be. RS (p-p) = 0.714V (p-p) EN (rms) is the square root value of the peak voltage of the reproduced signal of the chroma level signal. EN (rms) = AM noise effective value voltage (V) (5) Dropout Apply the tape (1/2 inch width) coated with magnetic powder paint in (4) above to a commercially available dropout counter (for example, Shibasoku VHO1BZ). type)
Count the dropout of 5 μsec x 10 dB and calculate 1
The number of counts per minute was calculated. (6) Signal troubles Polyester film is used as a base, and it is made into a magnetic tape using conventional methods, and it is possible to detect signal and detection troubles using a commercially available VHS video recorder.
It was evaluated as (○) and none (x). (7) Running properties The electromagnetic conversion characteristics of the tape prepared in (4) above were evaluated using the method described therein, and at the same time, the tape and running conditions were observed. ○...Running condition is good and there are no problems. △...There are some irregularities in the running condition and the tension is high, but it can be used somehow. ×... The running condition is poor and the tension is too high to withstand running. Example 1 Ethylene glycol (hereinafter abbreviated as EG) 85
After adding 15 parts by weight of calcium carbonate having an average particle size of 0.58 μm to the parts by weight, mixing and stirring were performed to obtain a slurry. Next, 100 parts by weight of dimethyl terephthalate and EG70
The weight part was transesterified in a conventional manner using 0.035 weight part of manganese acetate tetrahydrate as a catalyst. At that time, the calcium carbonate slurry obtained above was added under stirring. After the transesterification reaction is complete, trimethyl phosphate heated under reflux in the presence of ethylene glycol is mixed with dimethyl terephthalate.
0.015 mol % was added, and further, 0.030 mol % of antimony trioxide was added to dimethyl terephthalate, and a polycondensation reaction was carried out under a high vacuum of 1 Torr or less. After the polycondensation reaction was completed, the polymer was cooled with water and cut to obtain polyethylene terephthalate pellets containing calcium carbonate particles dispersed therein (hereinafter referred to as polyester). In addition, the transesterification reaction and polycondensation reaction were carried out in the same manner as above, except that a previously prepared ethylene glycol slurry of titanium dioxide particles was added instead of the ethylene glycol slurry of calcium carbonate particles, and titanium dioxide particles were Dispersed polyethylene terephthalate pellets were obtained (hereinafter referred to as polyester). Furthermore, in the method for producing polyester, transesterification and polycondensation reactions were carried out without adding inert particles to obtain polyethylene terephthalate pellets to which no externally active particles were added (hereinafter referred to as polyester). Furthermore, transesterification and polycondensation were carried out in the same manner as above, except that instead of the ethylene glycol slurry of calcium carbonate, an ethylene glycol slurry of carbon black with an average primary particle size (hereinafter simply referred to as average particle size) of 0.06 μm was added. The reaction was carried out to obtain polyethylene terephthalate pellets in which carbon black particles were dispersed [hereinafter referred to as
called polyester]. Polyester, polyester, polyester and polyester with a carbon black content of 1.4% by weight and a calcium carbonate particle content of
0.20% by weight, and titanium dioxide particle content 0.06
Blend A was obtained by mixing in such a manner as to achieve the same weight percentage. The obtained blend A was melt-extruded by a conventional method to obtain an unstretched film, and this unstretched film was sequentially stretched at a longitudinal stretching temperature of 105°C, a longitudinal stretching ratio of 3.4 times, a transverse stretching temperature of 110°C, and a transverse stretching ratio of 3.6 times. Biaxial stretching was performed and further heat treatment was performed at 215°C. Table 1 shows the properties of the 14 μm thick polyester film thus obtained. Using this biaxially oriented polyester film as a base film, a 1/2 inch wide video tape was prepared by the method described above. Its characteristics are shown in Table-1. As is clear from Table 1, the light transmittance of the base film at a wavelength of 900 nm is low, and no signal detection trouble occurred after tape formation. Furthermore, the surface roughness of the base film was low, the electromagnetic conversion characteristics of the tape were good, there were few dropouts, and the overall evaluation was good. Examples 2 and 3 The content of carbon black and the content of titanium dioxide (TiO 2 ) were changed as shown in Table 1,
Furthermore, a biaxially stretched polyester film having a thickness of 14 μm was obtained in the same manner as in Example 1, except that kaolin clay having an average particle size of 0.55 μm was used instead of calcium carbonate, and a magnetic recording tape for video was also obtained. This characteristic is shown in Table-1. As is clear from Table 1, the base film has low light transmittance, low surface roughness, good electrical conversion characteristics as a magnetic tape, little drop-out, good runnability, and has a good overall evaluation. Ta. Comparative Examples 1 and 2 A thickness of 14 μm was prepared in the same manner as in Example 1 except for changing the mixing ratio of polyester.
A biaxially stretched polyester film was obtained, and a video magnetic recording tape was also obtained. This characteristic is shown in Table-1
Shown below. As is clear from Table 1, in Comparative Example 1, which does not use inert solid particles with a high optical refractive index, the light transmittance decreases by increasing the carbon black content, but the surface roughness of the base film decreases. The tape became rough, had poor electromagnetic characteristics as a tape, had many dropouts, and received a poor overall evaluation. In addition, the ratio of the amount of carbon black to TiO 2 , which is an inert solid fine particle with a high optical refractive index, was set at 1.33.
In Comparative Example 2, which had a high surface roughness, the surface roughness of the base film was low, but the light transmittance was high, and the electromagnetic conversion characteristics as a tape caused many signal troubles.
The overall evaluation was poor. Example 4 As inert solid fine particles with high optical refractive index
Zinc oxide was used instead of TiO2 , and calcium carbonate and kaolin clay were added as inert particles.
The thickness was measured in the same manner as in Example 2 except for using the type.
A 14 μm biaxially stretched polyester film was obtained, and a 1/2 inch wide magnetic recording tape was also obtained. This characteristic is shown in Table-1. As is clear from Table 1, the light transmittance of the base film was low, the surface roughness was also at a low level, the tape had good electromagnetic conversion characteristics, few signal troubles, and the overall evaluation was good. 【table】

Claims (1)

【特許請求の範囲】 1 平均一次粒径0.04〜0.2μmのカーボンブラツ
ク(A)0.5〜2.5重量%と平均粒径0.1〜0.5μmの、光
学的屈折率1.8以上の不活性固体微粒子(B)0.05〜
2.0重量%を分散含有せしめた二軸延伸ポリエス
テルフイルムであつて、該フイルムの波長900n
mにおける光線透過率が30%以下でありかつ表面
粗さが0.007〜0.024μmであることを特徴とする
磁気記録用二軸延伸ポリエステルフイルム。 2 カーボンブラツク(A)に対する光学的屈折率
1.8以上の不活性固体微粒子(B)の重量比(B/A)
が0.05〜0.8である特許請求の範囲第1項記載の
ポリエスエルフイルム。 3 光学的屈折率1.8以上の不活性固体微粒子(B)
が二酸化チタンである特許請求の範囲第1項記載
のポリエステルフイルム。 4 光学的屈折率1.8以上の不活性固体微粒子(B)
が黒色酸化鉄、酸化亜鉛、リトポンのいずれかで
ある特許請求の範囲第1項記載のポリエステルフ
イルム。
[Claims] 1. 0.5 to 2.5% by weight of carbon black (A) with an average primary particle size of 0.04 to 0.2 μm and inert solid fine particles (B) with an optical refractive index of 1.8 or more and an average particle size of 0.1 to 0.5 μm. 0.05~
A biaxially oriented polyester film containing 2.0% by weight dispersed, the film having a wavelength of 900n.
A biaxially stretched polyester film for magnetic recording, characterized in that it has a light transmittance in m of 30% or less and a surface roughness of 0.007 to 0.024 μm. 2 Optical refractive index for carbon black (A)
Weight ratio (B/A) of inert solid fine particles (B) of 1.8 or more
The polyester film according to claim 1, wherein 0.05 to 0.8. 3 Inert solid fine particles with an optical refractive index of 1.8 or more (B)
The polyester film according to claim 1, wherein is titanium dioxide. 4 Inert solid fine particles with an optical refractive index of 1.8 or more (B)
The polyester film according to claim 1, wherein is any one of black iron oxide, zinc oxide, and lithopone.
JP24734986A 1986-10-20 1986-10-20 Biaxially orientated polyester film Granted JPS63101432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24734986A JPS63101432A (en) 1986-10-20 1986-10-20 Biaxially orientated polyester film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24734986A JPS63101432A (en) 1986-10-20 1986-10-20 Biaxially orientated polyester film

Publications (2)

Publication Number Publication Date
JPS63101432A JPS63101432A (en) 1988-05-06
JPH0430977B2 true JPH0430977B2 (en) 1992-05-25

Family

ID=17162088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24734986A Granted JPS63101432A (en) 1986-10-20 1986-10-20 Biaxially orientated polyester film

Country Status (1)

Country Link
JP (1) JPS63101432A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY127653A (en) 1996-05-16 2006-12-29 Toray Industries Biaxially stretched polyester film for forming container and method of producing the film
TW202228972A (en) * 2021-01-29 2022-08-01 南亞塑膠工業股份有限公司 Black polyester film and method for manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6343931A (en) * 1986-08-12 1988-02-25 Diafoil Co Ltd Polyester film for magnetic recording medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6343931A (en) * 1986-08-12 1988-02-25 Diafoil Co Ltd Polyester film for magnetic recording medium

Also Published As

Publication number Publication date
JPS63101432A (en) 1988-05-06

Similar Documents

Publication Publication Date Title
US4761327A (en) Biaxially oriented aromatic polyester film
KR930005779B1 (en) Polyester film for magnetic medium
KR910006149B1 (en) Polyester base film for magnetic record media
EP0659810B1 (en) A biaxially oriented film of polyethylene-2,6-naphthalenedicarboxylate
JPH06182952A (en) Laminated polyester film for magnetic recording medium
JP2650928B2 (en) Biaxially oriented polyester film
JPH0358583B2 (en)
EP1270669B1 (en) Biaxially oriented, unidirectionally long polyethylene-2,6-naphthalate film and magnetic tape therefrom
JPH0756689B2 (en) Biaxially stretched polyester film
US5529832A (en) Biaxially oriented laminated polyester film
JPH0430977B2 (en)
JPH0458818B2 (en)
US5045379A (en) Polyester film for high density magnetic recording medium
JPH0367628B2 (en)
EP0710547B1 (en) Biaxially oriented laminated polyester film
JPH0367867B2 (en)
JP2675216B2 (en) Polyethylene-2,6-naphthalate film
JPH0518327B2 (en)
JPH0460424B2 (en)
JPH07249218A (en) Polyester film for magnetic recording medium
JPH07119293B2 (en) Biaxially oriented polyester film
JPH01126340A (en) Biaxially oriented polyester film
JPH0358581B2 (en)
JP3227843B2 (en) Polyester film
KR100277051B1 (en) 2-Axis Orientated Laminated Polyester Film