JPH04309614A - Flow response gate for irrigation channel - Google Patents

Flow response gate for irrigation channel

Info

Publication number
JPH04309614A
JPH04309614A JP10047691A JP10047691A JPH04309614A JP H04309614 A JPH04309614 A JP H04309614A JP 10047691 A JP10047691 A JP 10047691A JP 10047691 A JP10047691 A JP 10047691A JP H04309614 A JPH04309614 A JP H04309614A
Authority
JP
Japan
Prior art keywords
water
water level
gate
float
downstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10047691A
Other languages
Japanese (ja)
Other versions
JP2514866B2 (en
Inventor
Kunikazu Aragata
荒ヶ田 国和
Kouji Shitami
広司 下見
Hirokatsu Uchida
内田 浩勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokoku Kogyo Co Ltd
Original Assignee
Hokoku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokoku Kogyo Co Ltd filed Critical Hokoku Kogyo Co Ltd
Priority to JP10047691A priority Critical patent/JP2514866B2/en
Publication of JPH04309614A publication Critical patent/JPH04309614A/en
Application granted granted Critical
Publication of JP2514866B2 publication Critical patent/JP2514866B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Barrages (AREA)

Abstract

PURPOSE:To flow water to downstream side in proper quantities by adjusting the opening of a gate, which is provided at a branch of an irrigation channel, according to the level and quantity of water on the downstream side. CONSTITUTION:A gate body 40 is provided transversely to an irrigation channel, and the inside of a float chamber 47 in which a float 84 connected to the gate body 40 is connected to an irrigation channel on the upstream side of the gate body 40 through an water supply port 52. Further it is connected to a retarding basin 48 provided in the irrigation channel on the downstream side of the gate body 40 through an exit port 55a. An water level detecting float 57 under which a bottleneck valve 59 is provided in series is floated on the retarding basin 48 so that the bottleneck valve 59 can be moved back and forth freely toward the exit port 55a, and the water level detecting float 57 is suspended from an arm for water level detecting float 67 which is rotated in connection with the gate body 40. Thus, as flow delivered from the exit port 55a is varied, the float 84 is moved up and down, and the arm for water level detecting float 67 is moved to move the position of the water level detecting float 57. When a series of these operations are balanced at a pre-set level, the gate body is stopped.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、河川から用水路に取水
し、または、用水路から分水するための、自然力を利用
した用水路用流量応答ゲートに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow response gate for an irrigation canal that utilizes natural forces to take water from a river to an irrigation canal or divert water from an irrigation canal.

【0002】0002

【従来技術】古来からの水田の潅漑方法は、自然の水位
差を利用して一定量の水を絶え間なく掛ける、いわゆる
自然分水であり、水路の最小流量は最大流量の半分程度
であった。近年、畑地潅漑に伴ってポンプ潅漑が普及し
てくると、水路から強引に取水するため、各箇所で水の
過不足が起き、特に、畑地潅漑だけが対象となる冬期に
おいてはその傾向が甚だしくなっている。また、冬期に
おいては水資源が枯渇しているので、畑地潅漑のために
流量が最大流量の数十分の一に激減し、水路内の水流が
静水同様となって湖沼において起ることが知られていた
セイシュが水路で起るようになった。このため、十分間
程度の周期で水面が昇降し分水に支障を来すようになり
、また、下流において著しく水の過不足が起きる原因と
もなっている。
[Prior art] The traditional method of irrigating rice fields is so-called natural water diversion, in which a fixed amount of water is continuously applied using natural water level differences, and the minimum flow rate of the canal was about half of the maximum flow rate. . In recent years, as pump irrigation has become more widespread in conjunction with farmland irrigation, water is forcibly taken from canals, causing water shortages and excesses in various locations, and this tendency is especially severe in the winter when only farmland irrigation is used. It has become. In addition, in winter, when water resources are depleted, the flow rate decreases dramatically to a few tenths of the maximum flow rate for irrigation of fields, and it is known that the water flow in canals becomes similar to still water, which occurs in lakes and marshes. Seishes that were previously hidden can now be found in waterways. For this reason, the water surface rises and falls at intervals of about ten minutes, causing problems with water diversion, and also causing significant water shortages and excesses downstream.

【0003】そこで、図6に示すように、出願人は下流
の水位を一定に保持するための取水用ゲート1を提案し
ている。この装置は水路2に設けた扉体3の側方に、扉
体3を操作するためのフロート室4(フロート5)を区
画した制御装置室6を設け、フロート室4下流側に水位
検知槽7を設置し、導水口8を介してゲート1の下流側
水路と連通している。フロート室4上流側にはゲート1
の上流側水路と連通する通水口9が開けられている。そ
して、水位検知槽7には浮体10が浮かべられ下方に流
量調節弁11を連設し制御水位を設定できるようにされ
ている(特願昭63−326668号参照)。
[0003] Therefore, as shown in FIG. 6, the applicant has proposed a water intake gate 1 for keeping the downstream water level constant. This device is equipped with a control device room 6 on the side of a gate body 3 provided in a waterway 2, which is divided into a float chamber 4 (float 5) for operating the gate body 3, and a water level detection tank on the downstream side of the float chamber 4. 7 is installed, and communicates with the downstream water channel of the gate 1 via a water inlet 8. There is a gate 1 on the upstream side of float chamber 4.
A water inlet 9 communicating with the upstream waterway is opened. A floating body 10 is floated in the water level detection tank 7, and a flow rate control valve 11 is connected to the bottom thereof so that a control water level can be set (see Japanese Patent Application No. 63-326668).

【0004】また、分水用ゲートとして、図7に示すよ
うにフロート室4には小径の導水口8を有し、フロート
室4上流側に越流堰12を設けた、上流水位を一定にす
るためのゲート13が特開平3−39513号公報に開
示されている。なお、流量が少ない場合においては特に
流量の変化が大きくなるので、基本的には上記と同じく
上流水位を一定に保持するが、図8に示すように、大径
の越流堰14と小径の越流堰15とを高さを変えて連接
し制御装置室6内に設けたゲートを利用すれば、上流水
位の変化を一定の限度内において許容し、下流の分水工
のために最低の流量を流すことができる。
In addition, as a water diversion gate, as shown in FIG. 7, the float chamber 4 has a small-diameter water inlet 8, and an overflow weir 12 is provided on the upstream side of the float chamber 4 to keep the upstream water level constant. A gate 13 for this purpose is disclosed in Japanese Unexamined Patent Publication No. 3-39513. Note that when the flow rate is low, the change in flow rate becomes particularly large, so basically the upstream water level is maintained constant as described above, but as shown in Figure 8, a large diameter overflow weir 14 and a small diameter overflow weir 14 are used. By connecting the overflow weir 15 at different heights and using a gate installed in the control equipment room 6, changes in the upstream water level can be allowed within a certain limit, and the minimum required for the downstream diversion works can be used. Flow rate can flow.

【0005】ところが、図6に示す取水ゲート1と下流
の分水工との間は十分距離があるのが普通であり、二点
間の水位差は流量によって異なり、取水ゲート1の直下
流の水位を一定にすると、流水量が多い場合には下流の
分水工地点において水が溢れる。このほか、セイシュや
湿害を防止するために水位は低めに押さえる必要があり
、更に水の使用量の変化が大きいということや、水路2
の貯溜能力を増加させるためにも、予め水位を適当に低
くしておく必要がある。従って、流水量の変化に応じて
、一々人為的に水位を設定し直さななければならないと
言う課題があった。
However, there is usually a sufficient distance between the intake gate 1 and the downstream diversion works shown in FIG. 6, and the water level difference between the two points varies depending on the flow rate. If the water level is kept constant, if the flow rate is large, water will overflow at the downstream diversion site. In addition, the water level needs to be kept low to prevent seiche and moisture damage, and the amount of water used fluctuates greatly, and the waterway 2
In order to increase the storage capacity of the water, it is necessary to lower the water level appropriately in advance. Therefore, there was a problem in that the water level had to be manually reset every time the flow rate changed.

【0006】また、図7に示す上流の水位を一定に保持
する方式のものは、下流における水の使用量に関係なく
、当該分水工の都合によって水を流下させるシステムで
あるので、下流において水の著しい過不足が生じ、水不
足に悩む一方で、水が無駄なると言う課題があった。 なお、図8に示すように流量が少ない場合には、ゲート
上流の水位の変化を一定の限度内において許容し、一定
の開度を保持する機能を付加したゲートが使用された事
があるが、ほぼ一定の流量を流すので水不足は勿論解消
されたが、下流の事情を考慮得せずに水を送るので水の
過剰傾向に拍車を掛けると言う課題があった。
[0006] Furthermore, the system that maintains the upstream water level constant as shown in Figure 7 is a system that allows water to flow down depending on the circumstances of the diversion works, regardless of the amount of water used downstream. There was a significant surplus and shortage of water, and while we were worried about water shortages, we also had the problem of water being wasted. As shown in Figure 8, when the flow rate is low, gates have been used that allow changes in the water level upstream of the gate within a certain limit and maintain a constant opening. Of course, the problem of water shortages was solved because a nearly constant flow rate was flowed, but the problem was that water was sent without taking into account downstream conditions, which accelerated the tendency to overwater.

【0007】上記の従来技術の課題は、上流か下流のい
ずれか一方の事情を重視しすぎる事に起因している。従
って、上流と下流の両方の事情を総合的に把握し得る新
たな指標として、各々の分水工間の水位差を一定に保持
するゲートが提案されており(特願平2ー20840号
参照)、いわゆるクリーク地帯の長時間洪水を貯溜する
排水路において有効である。図9に示すように、このゲ
ート16はその側方の制御装置室6内のフロート室4上
流側に、上部にガイド板17を固着した水位検知フロー
ト18が浮かべられ、また、水位差検知フロート19が
設けられており、扉体3を支持するアーム軸20にリン
クアーム21が取付けられバー22を介してガイド板1
7と連係するL字形状のL形アーム23と連結されてい
る。
[0007] The problem with the prior art described above is due to the fact that too much emphasis is placed on either the upstream or downstream circumstances. Therefore, a gate that maintains the water level difference between each diversion works at a constant level has been proposed as a new indicator that can comprehensively grasp the situation both upstream and downstream (see Japanese Patent Application No. 2-20840). ), it is effective in drainage channels that store floodwater for a long time in so-called creek areas. As shown in FIG. 9, this gate 16 has a water level detection float 18 with a guide plate 17 fixed to its upper part floating on the upstream side of the float chamber 4 in the control device chamber 6 on the side thereof, and a water level difference detection float 18. 19, a link arm 21 is attached to an arm shaft 20 that supports the door body 3, and a link arm 21 is attached to the guide plate 1 via a bar 22.
It is connected to an L-shaped arm 23 that is connected to the L-shaped arm 7.

【0008】ガイド板17は上下部に同形の溝24を形
成し、溝内の固定された軸25で位置決めされ、また、
垂直な縦溝26が形成されており、ガイド板17の中央
には、調整溝27を有する下端を傾斜させた矩形板28
が上下動自在に設けられ、縦溝26に有する浮動軸29
によって移動可能とされている。また、水位差検知フロ
ート19はばね30を介してロープ31と連結され、ロ
ープ31は調整溝27に誘導されて水平方向に移動可能
な係合軸32に巻回されている。ゲート16の下流水位
の変動はフロート5および水位差検知フロート19が昇
降することによってL形アーム23およびロープ31を
介してガイド板17に作用する。ガイド板17は上流水
位を検知する水位検知フロート18に連結されいるので
、この均衡を溝24および調整溝27の形状によって整
合させている。
The guide plate 17 has grooves 24 of the same shape formed in the upper and lower parts thereof, and is positioned by a fixed shaft 25 in the groove.
A vertical groove 26 is formed in the center of the guide plate 17, and a rectangular plate 28 with an inclined lower end and an adjustment groove 27 is formed in the center of the guide plate 17.
A floating shaft 29 is provided in the vertical groove 26 so as to be movable up and down.
It is said that it can be moved by. Further, the water level difference detection float 19 is connected to a rope 31 via a spring 30, and the rope 31 is guided by the adjustment groove 27 and wound around an engagement shaft 32 that is movable in the horizontal direction. Fluctuations in the water level downstream of the gate 16 act on the guide plate 17 via the L-shaped arm 23 and the rope 31 as the float 5 and the water level difference detection float 19 move up and down. Since the guide plate 17 is connected to a water level detection float 18 that detects the upstream water level, this balance is adjusted by the shapes of the grooves 24 and the adjustment grooves 27.

【0009】[0009]

【発明が解決しようとする課題】ところで、いわゆるク
リーク地帯の排水路においては、洪水中における排水は
ポンプに限定されるので、水路に洪水を貯溜する計画に
なっている。従って、そのような水路においては、水位
は自然条件によって決まるものであるから、目標とする
水位の設定は不可能である。従って、貯溜形の水路にお
いて公平を期すためには、従来技術のように各々の分水
工間の水位差を一定に保持するシステム以外に方法はな
い。しかし洪水の貯溜の必要のない用水路および用排兼
用水路においては、下流における水の使用量の変化に応
じて、現実には或る程度水位の変動を許容する必要があ
るが、目標として設定される水位自体が消失する訳では
ない。従って、水位差によらなくても、下流水位に基づ
いて操作する事が可能である。また、水路の途中に設け
られたゲートを開閉するには、上流と下流の両方の事情
を考慮する必要があるが、下流の方の事情を重視しなけ
れば、水の過不足は解消しないので、自ずから軽重の度
合いは決まっている。
[Problems to be Solved by the Invention] By the way, in drainage canals in so-called creek areas, drainage during floods is limited to pumps, so plans have been made to store flood water in the waterways. Therefore, in such waterways, it is impossible to set a target water level because the water level is determined by natural conditions. Therefore, in order to ensure fairness in reservoir-type waterways, there is no other way than to maintain a constant water level difference between each diversion facility, as in the prior art. However, in irrigation canals and dual-purpose canals that do not require flood storage, it is actually necessary to allow some degree of water level fluctuation in response to changes in water usage downstream, but this is not the goal. This does not mean that the water level itself disappears. Therefore, it is possible to operate based on the downstream water level without depending on the water level difference. In addition, in order to open and close a gate installed in the middle of a waterway, it is necessary to consider both upstream and downstream circumstances, but if we do not focus on the downstream circumstances, the problem of water surplus and shortage will not be resolved. , the degree of lightness and weight is naturally determined.

【0010】しかしながら、上記ゲートを連設したとき
には一様に水位を昇降させ貯溜機能を負担させるもので
あり、通常十数kmにも及ぶ水路の全区間に配したとき
、ゲート下流の水の使用量の変化に追随するためには、
途中の自然分水、ポンプ分水または分水工の設置箇所に
よって水位変動の差違があるので、ある程度水位の変動
を許容し全体的に所要の貯溜機能があれば差し支えない
が、従来技術においては各分水工の実情に適合しない箇
所が出来、分水が困難になる分水工がでると言う課題が
あった。また、水位差を基準にして作動するので、誤差
があれば各区間の誤差が累積する。従って、各分水工間
の水位差を厳密に保持するために、溝形状の異なるガイ
ド板17を設けるなど著しく構造が複雑になり、経費が
高くなると言う課題があった。本発明は、流水量に合わ
せて下流水位を決定するように扉体を作動するようにす
る用水路用流量応答ゲートを提供することを目的とする
However, when the above-mentioned gates are installed in series, they raise and lower the water level uniformly and take on the storage function, and when they are installed over the entire section of a waterway that is usually over 10 km long, the use of water downstream of the gates is limited. In order to follow changes in quantity,
Since there are differences in water level fluctuations depending on the installation location of natural water diversion, pump water diversion, or water diversion work, there is no problem as long as water level fluctuations are allowed to some extent and the overall required storage function is provided, but with conventional technology, There were problems in that there were parts that did not suit the actual situation of each diversion works, and some diversion works became difficult to divert water. Also, since it operates based on the water level difference, if there is an error, the error in each section will accumulate. Therefore, in order to strictly maintain the water level difference between the water diversion works, guide plates 17 with different groove shapes are provided, resulting in a significantly complicated structure and an increase in costs. An object of the present invention is to provide a flow rate response gate for an irrigation canal that operates a gate body to determine a downstream water level in accordance with the flow rate.

【0011】[0011]

【課題を解決するための手段】本発明は、上記目的を達
成するために、水路を横断させて設けた扉体と、該扉体
と連動するフロートとを有し、該フロートを収納するフ
ロート室内は、小さな補水口を介して扉体の上流側水路
と連通させると共に、漏洩口および比較的に大きな流出
口を介して扉体の下流側水路に設けた遊水池と連通され
、前記遊水池に水位検知フロートを浮かべ、該水位検知
フロートに連設した狭窄弁を前記流出口に進退自在に臨
ませ、前記扉体と連動して回動する水位検知フロート用
アームに、前記水位検知フロートをばねを介して懸垂さ
せたことを特徴とする。なお、水位検知フロート用アー
ムは扉体の下端が、最大の用水量(以下、計画用水量と
言う。)を流して堰上げを全くしないと仮定した場合の
水位(以下、計画用水位と言う。)に等しい高さの状態
(以下、計画開度と言う。)において最も水位検知フロ
ート用滑車に近付くように固着するのが良い。また、水
位検知フロート用アームの長さと回動角は、下流の分水
口位置の水位が適当になるように選択されている。以下
においては、上記のアームの長さと回動角によって、ゲ
ートの開度毎に決められた下流の分水工位置の水位を計
画分水位と称する事とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention has a gate body provided across a waterway, a float interlocking with the gate body, and a float housing the float. The interior of the room is communicated with the water channel on the upstream side of the door body through a small water replenishment port, and is also communicated with a water reservoir provided in the water channel on the downstream side of the gate body via a leakage port and a relatively large outlet. A water level detection float is floated on the water level detection float, a constriction valve connected to the water level detection float is made to face the outlet so as to be movable forward and backward, and the water level detection float is mounted on a water level detection float arm that rotates in conjunction with the door body. It is characterized by being suspended via a spring. The water level detection float arm is designed to measure the water level (hereinafter referred to as the planned water level) when the lower end of the door body is assumed to flow the maximum amount of water (hereinafter referred to as the planned water amount) and not to raise the dam at all. ) (hereinafter referred to as the planned opening degree), it is best to fix it so that it is closest to the water level detection float pulley. Furthermore, the length and rotation angle of the water level detection float arm are selected so that the water level at the downstream water diversion location is appropriate. In the following, the water level at the downstream diversion work position determined for each gate opening based on the arm length and rotation angle described above will be referred to as the planned diversion water level.

【0012】チェックゲートにおいては上流の分水工に
対する保護対策が必要である。従って第二に、分水に支
障を来さない限度内において許容し得る下限の水位(以
下、許容下限水位と言う。)と上限の水位(以下、許容
上限水位と言う。)を設定するため、許容下限水位の高
さに上記の補水口を設定し、許容上限水位よりも僅かに
低い位置にクレストを有する水理学上の堰を構成する注
水槽を介して上流水路とフロート室を連通させる、と言
う手段を用いる。なお、堰のクレストの長さが流出口の
大きさに比して十分に大きくする事は勿論である。
[0012] At the check gate, protection measures are required for the upstream diversion works. Therefore, secondly, to set the allowable lower limit water level (hereinafter referred to as the permissible lower limit water level) and upper limit water level (hereinafter referred to as the permissible upper limit water level) within the limits that do not interfere with water diversion. , the above-mentioned water replenishment port is set at the height of the allowable lower limit water level, and the upstream waterway and the float chamber are communicated through a water injection tank that constitutes a hydraulic weir and has a crest slightly lower than the allowable upper limit water level. , is used. It goes without saying that the length of the crest of the weir should be sufficiently larger than the size of the outlet.

【0013】流量が多い場合には許容される水位変動の
幅が小さいが、多種類の用途に供される場合には、流量
が多くても流量の変化が大きい場合がある。そのような
場合には、分水工を流量の変化から保護する必要が生ず
る。また、流量が極端に少ない場合には、セイシュの発
生を抑えるために、許容上限水位を流量に応じて、低く
せざるを得ず、また流量の変化が大きくなるので、貯溜
機能を増加させる事が望ましい。従ってそのような、使
用条件が厳しい場合に備えて、第三に、ゲートと連動し
て回動する補水口用アームと注水槽用アームにより、そ
れぞれ補水筒と注水槽を懸垂する、と言う手段を用いる
[0013] When the flow rate is large, the permissible range of water level fluctuation is small, but when used for a variety of purposes, even if the flow rate is high, the variation in the flow rate may be large. In such cases, it becomes necessary to protect the diversion works from changes in flow rate. In addition, when the flow rate is extremely low, in order to suppress the occurrence of seiche, the allowable upper limit water level must be lowered according to the flow rate, and since the change in flow rate becomes large, it is necessary to increase the storage function. is desirable. Therefore, in preparation for such severe usage conditions, the third method is to suspend the water replenisher cylinder and the water tank by means of a water refill port arm and a water tank arm that rotate in conjunction with the gate. Use.

【0014】[0014]

【作用】水の使用量に大きな変化がなければ、流出口が
狭窄弁により半ば狭窄されて、流出口からの流出量と補
水口からの流入量が均衡し、扉体は静止している。しか
し、下流における水の使用量が変化して、下流の分水口
位置の水位が変動すれば、その影響は上流のゲートの直
下流の水位に波及する。従って下流における水の使用量
が増加すれば、水位検知フロートが下降し流出口が狭窄
されて、フロート室内の水位が上昇して扉体が開くので
、下流の分水口位置の水位は元に戻る。このとき、流出
口に狭窄弁が嵌合しても漏洩口からわずかにフロート室
内の水が遊水池に流出するので、扉体が必要以上に開く
ことはない。また、下流における水の使用量が減少した
場合に扉体が閉じて、下流の分水口位置の水位が元に戻
る事は言うまでもない。従って、下流の水位に即応する
ので下流域で長時間にわたり著しく水が過不足する事は
あり得ない。また、均衡状態における下流の分水工位置
における水位は、扉体の開度、ひいては流量によって異
なるが、計画開度に近い状態においては、下流の分水工
地点の水位は計画用水位に近く、アームの長さと回動角
が当該分水工の実情に応じて設定できるので、流量が少
なくなれば下流の分水工位置の水位は自動的に適当に低
くなる。また、各分水工位置の計画分水位は、各分水に
よる流量変化や地域差のその分水工の実情に応じて決め
ることができ、分水に支障を来すことはない。
[Operation] If there is no major change in the amount of water used, the outflow port is partially narrowed by the constriction valve, the amount of outflow from the outflow port and the amount of inflow from the water replenishment port are balanced, and the door body remains stationary. However, if the amount of water used downstream changes and the water level at the downstream water diversion location fluctuates, the effect will spread to the water level immediately downstream of the upstream gate. Therefore, if the amount of water used downstream increases, the water level detection float will lower and the outlet will be narrowed, the water level in the float chamber will rise and the door will open, and the water level at the downstream water diversion location will return to its original level. . At this time, even if the constriction valve is fitted to the outflow port, a small amount of water in the float chamber flows out from the leakage port into the retarding basin, so the door body does not open more than necessary. Moreover, it goes without saying that when the amount of water used downstream decreases, the door body closes and the water level at the downstream water diversion location returns to its original level. Therefore, since it immediately responds to the water level downstream, it is impossible for the downstream area to have a significant surplus or shortage of water for a long period of time. In addition, the water level at the downstream diversion work location in an equilibrium state varies depending on the opening degree of the gate body and ultimately the flow rate, but in a state close to the planned opening degree, the water level at the downstream diversion work location is close to the planned water level. Since the length and rotation angle of the arm can be set according to the actual situation of the diversion works, if the flow rate decreases, the water level at the downstream diversion work position will automatically be appropriately lowered. In addition, the planned water level for each diversion work location can be determined according to the actual circumstances of the diversion work, such as changes in flow rate due to each diversion and regional differences, without causing any problems with water diversion.

【0015】さらに、下流における水の使用量が増加し
、下流の分水工位置の水位が低下すれば、上記のように
、その上流のゲートが開いて下流の水位は正常に戻るが
、その変わりに上流の水位が低下する。その影響は次々
に上流の各ゲートに波及するので、通常は上流の全ての
区間に貯溜されていた水が少しずつ利用される。従って
、一分水工の受ける水位の偏りは小さく、その時間は極
めて短い。また、最終的には取水ゲートからの取水量が
増加するので、時間がたてば全区間の水位が正常に戻る
。しかし、水の使用量の増加が異常であれば、上流から
の補給が追い着かないので、上流の水位が相当に大きく
低下する事もあるが、上流水位が補水口に近付けば、補
水口からフロート室への流入量が激減し、一方、下流の
水位が低いために狭窄弁によって流出口が全閉される場
合に備え、流出口の一部を切り欠いた漏洩口等からの流
出があるので、ゲート開度が小さくなって、上流水位は
実情に応じて設定された許容下限水位以上に保たれる。 従って、上流における分水には支障がない。また、この
ように上流の水位が許容下限水位になって、下流に送ら
れる水が不足すれば、当然不足する区間の貯溜量も消費
され、その影響は必要に応じて次々に下流に波及し得る
ので、上流と下流の全区間の貯溜量を利用できる。 従って、計画分水位と許容下限水位の差は小さくて済む
Furthermore, if the amount of water used downstream increases and the water level at the downstream diversion works falls, the upstream gate will open and the downstream water level will return to normal, as described above. Instead, the water level upstream will drop. The effect spreads to each upstream gate one after another, so normally the water stored in all upstream sections is used little by little. Therefore, the unevenness of the water level received by the one-way diversion works is small, and the period of time is extremely short. Additionally, the amount of water intake from the water intake gate will eventually increase, so the water level in all sections will return to normal over time. However, if there is an abnormal increase in the amount of water used, replenishment from upstream cannot keep up, and the water level upstream may drop considerably. In case the flow into the float chamber is drastically reduced and the downstream water level is low, the outflow is completely closed by a constriction valve, so there is an outflow from a leakage port, etc., where a part of the outflow is cut out. Therefore, the gate opening degree becomes smaller and the upstream water level is maintained at or above the allowable lower limit water level set according to the actual situation. Therefore, there is no problem with water diversion upstream. In addition, if the water level upstream reaches the lower limit of permissible water level and there is a shortage of water sent downstream, the storage capacity in the area where the shortage occurs will naturally be consumed, and the impact will spread downstream as necessary. Therefore, the storage capacity of the entire upstream and downstream sections can be used. Therefore, the difference between the planned water level and the allowable lower limit water level can be small.

【0016】また、下流における水の使用量が減少すれ
ば、その上流のゲートが閉じるので、上流の水位は上昇
する。その影響は次々に上流に向かって波及するので、
通常は上流の各区間に少しずつ貯溜される。従って、上
流の一区間の水位の偏りは小さく、またその時間も短い
。また、最終的には取水ゲートからの取水量が減少する
ので、時間がたてば全区間の水位が正常に戻る。しかし
、水の使用量の減少が異常であれば、上流のゲートが閉
じる暇がないので、上流の水位が許容上限水位に達し、
注水槽からフロート室に水が流入してゲートが開き、上
流水位は許容上限水位に保たれる。その影響は必要に応
じて次々に下流に波及し得るので、上流と下流の全区間
に水を蓄える事ができる。また、万一貯溜仕切れなかっ
た場合には、後述の通り最下流の排水ゲートが開いて、
余分な水は排水路に捨てられる。従って、安全上の問題
はないので、極端な異常事態を対象にする必要は毛頭な
いので、許容上限水位と計画分水位の差も小さくて済む
[0016] Furthermore, if the amount of water used downstream decreases, the upstream gate closes, and the upstream water level rises. The influence spreads upstream one after another,
Normally, a small amount is stored in each section upstream. Therefore, the deviation in water level in one section upstream is small and the time period is short. Additionally, the amount of water intake from the water intake gate will eventually decrease, so the water level in all sections will return to normal over time. However, if the decrease in water usage is abnormal, there will be no time for the upstream gate to close, and the upstream water level will reach the permissible upper limit water level.
Water flows into the float chamber from the water injection tank, the gate opens, and the upstream water level is maintained at the allowable upper limit water level. The effect can spread downstream one after another as needed, so water can be stored in the entire upstream and downstream section. In addition, in the event that the reservoir cannot be partitioned off, the most downstream drainage gate will open as described below.
Excess water is dumped into the drain. Therefore, since there is no safety problem, there is no need to target extremely abnormal situations, and the difference between the allowable upper limit water level and the planned water level can be small.

【0017】次は、許容上限水位と許容下限水位の問題
について説明する。流量が多い場合には、許容下限水位
および許容上限水位と計画分水位の水位差を小さくすれ
ば、当該ゲートの上流の水位の変動は少なくなるので、
直上流の分水に支障は来さない事は勿論であるが、その
影響は下流の各区間に少しずつ分散してするので、下流
における分水にも支障はない。また、流量が少なくなれ
ば、注水槽の位置が徐々に低くなるので、セイシュの発
生は抑えられる。また、流量が少ない程、流量の変動が
激しくなるので、注水槽の下降量よりも補水口の下降量
が大きくなるようにすれば、貯溜機能も増加させられる
Next, the problem of the allowable upper limit water level and the allowable lower limit water level will be explained. When the flow rate is high, if the water level difference between the allowable lower limit water level, allowable upper limit water level, and planned water level is reduced, fluctuations in the water level upstream of the gate concerned will be reduced.
Of course, there will be no problem with the water diversion immediately upstream, but since the influence will be dispersed little by little to each downstream section, there will be no problem with the water diversion downstream. Furthermore, as the flow rate decreases, the position of the water injection tank gradually becomes lower, thereby suppressing the occurrence of seiche. Furthermore, the lower the flow rate, the more severe the fluctuation in the flow rate becomes, so if the amount of descent of the water filler port is made greater than the amount of descent of the water tank, the storage function can also be increased.

【0018】また、分水手段、分水箇所によって異なる
ゲート開度の特性を必要とする場合には水位検知フロー
ト用アームの長さと回動角を決めるだけで良い。
[0018] Furthermore, if different gate opening characteristics are required depending on the water diversion means and water diversion locations, it is sufficient to simply determine the length and rotation angle of the water level detection float arm.

【0019】[0019]

【実施例】本発明の実施例を添付図面に基づいて説明す
る。先ず、本発明の主眼は、水路全体の管理を合理化す
るところに有るので水路全体の構成について説明する。 図1に示すように、河川32の側岸に取水ゲート33が
設けられ、その下流に断面矩形状のコンクリート製の水
路34が連設されている。水路34の主要な分水工の直
下流にはチェックゲート35がそれぞれ設置され、水路
34の下流端は、上流水位を一定に保持する排水ゲート
36を介して排水路37に接続されている。実施例では
、ラディアルゲートを使用しているが本発明はゲートの
操作装置に係るものであるから、設置条件によってはロ
ーラゲートでも良い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described with reference to the accompanying drawings. First, since the main purpose of the present invention is to streamline the management of the entire waterway, the configuration of the entire waterway will be explained. As shown in FIG. 1, a water intake gate 33 is provided on the side bank of a river 32, and a concrete waterway 34 having a rectangular cross section is connected downstream thereof. Check gates 35 are installed immediately downstream of the main diversion works of the water channel 34, and the downstream end of the water channel 34 is connected to a drainage channel 37 via a drain gate 36 that maintains the upstream water level constant. In the embodiment, a radial gate is used, but since the present invention relates to a gate operating device, a roller gate may be used depending on the installation conditions.

【0020】図2から図4に示すように、チェックゲー
ト(以下、ゲートと云う)35には、水路34の両側に
おいて回動自在に支持された水平なゲート軸38に一対
のゲートアーム39が固着され、その上流端にゲート軸
38を中心とする円弧状の扉体40が固着されて水路3
4を横断している。ゲートアーム39の下流端近くに、
一対のガイドレール41が固着され、これにカウンター
ウエイト42の軸が緩く嵌合されて、懸垂ボルト43に
より懸垂されて、高さと重さが調節自在となるように装
着されている。また、ゲートアーム39の下流端近くの
下方にストッパー44が設けられている。
As shown in FIGS. 2 to 4, the check gate (hereinafter referred to as gate) 35 has a pair of gate arms 39 attached to a horizontal gate shaft 38 rotatably supported on both sides of the water channel 34. An arcuate door body 40 centered on the gate shaft 38 is fixed to the upstream end of the waterway 3.
It crosses 4. Near the downstream end of the gate arm 39,
A pair of guide rails 41 are fixed, and the shaft of a counterweight 42 is loosely fitted thereto, and suspended by suspension bolts 43, so that the height and weight are adjustable. Further, a stopper 44 is provided below near the downstream end of the gate arm 39.

【0021】水路34の側方には制御装置室45が設け
られ、扉体40の上流の水路34と連通された静水池4
6の下流にフロート室47が設けられ、その下流の遊水
池48が扉体40の下流の水路34に連通されている。
A control device room 45 is provided on the side of the water channel 34, and a still water pond 4 is connected to the water channel 34 upstream of the door body 40.
A float chamber 47 is provided downstream of the float chamber 6 , and a retarding pond 48 downstream of the float chamber 47 is communicated with the water channel 34 downstream of the door body 40 .

【0022】また、フロート室47内の上流側に補水装
置49の補水管50が開口し、その他端は静水池46内
の水中に直立し、その外側の補水筒51に緩く嵌合され
て、補水筒51の上端は大気中に開口されている。また
、補水筒51の側方に小さな補水口52が穿たれている
。また、補水筒51の下端にはダストシール53が装着
され、補水口52の側方は防塵防波筒54に囲まれてい
る。
Further, a water replenishment pipe 50 of the water replenishment device 49 opens on the upstream side of the float chamber 47, and the other end stands upright in the water in the still water pond 46, and is loosely fitted into a water replenishment pipe 51 outside of the water replenishment pipe 50. The upper end of the refill cylinder 51 is open to the atmosphere. Further, a small water replenishment port 52 is bored on the side of the water refill cylinder 51. Further, a dust seal 53 is attached to the lower end of the water filler tube 51, and the side of the water filler port 52 is surrounded by a dustproof and waveproof tube 54.

【0023】また、フロート室47の下流側に排水管5
5が開口し、その先端は垂直方向に配した管の中間部に
連接されT字形状になっており、この管の両端は上下と
もに遊水池48内の水中に開口している。また、排水管
55の上方の流出口55aの大きさは上述の補水口52
に比して十分に大きくされている。また、流出口55a
の直上の水面に水位制御装置56の水位検知フロート5
7が浮かべられ、その中心を貫通する連結棒58の下方
に狭窄弁59が固着され、狭窄弁59の下方にパッキン
60が排水管55の下方の鉛直部分内に位置して連結棒
58に固着されて、排水管55の鉛直部分下方が閉塞さ
れている。流出口55aには一部を切り欠かいて、漏洩
口61が形成されている。漏洩口61はフロート室47
や排水管55の何処に穿ってもかまはないが、本実施例
においては、狭窄弁59の昇降によって塵芥が外れる効
果も有する。漏洩口61の大きさは、上流の水位が許容
下限水位以下にならない程度の速度で、扉体40が閉じ
ればよいので、大して大きくはないが、上述の狭窄弁5
9の流出口55aに対する狭窄が無意味にならず、また
狭窄弁59の昇降が小さくて済むように、流出口55a
は十分に大きくされている。
Furthermore, a drain pipe 5 is provided downstream of the float chamber 47.
5 is open, and its tip is connected to the middle part of a vertically arranged pipe to form a T-shape, and both the upper and lower ends of this pipe are open into the water in the retarding basin 48. Further, the size of the outlet 55a above the drain pipe 55 is the same as that of the water replenishment port 52.
It is sufficiently large compared to . In addition, the outlet 55a
The water level detection float 5 of the water level control device 56 is placed directly above the water surface.
7 is floated, a constriction valve 59 is fixed below the connecting rod 58 passing through the center, and a packing 60 is located below the constrictive valve 59 in the vertical portion below the drain pipe 55 and is fixed to the connecting rod 58. As a result, the lower vertical portion of the drain pipe 55 is closed. A leak port 61 is formed by cutting out a portion of the outflow port 55a. The leak port 61 is the float chamber 47
It does not matter where the drain pipe 55 is bored, but in this embodiment, the lifting and lowering of the constriction valve 59 also has the effect of removing the garbage. The size of the leakage port 61 is not very large, since the door body 40 only needs to be closed at a speed that does not cause the upstream water level to fall below the allowable lower limit water level.
In order to prevent the constriction of the outlet port 55a of No. 9 from becoming meaningless and to reduce the vertical movement of the constriction valve 59, the outlet port 55a is
is large enough.

【0024】また、水位制御装置56の連結棒58の上
端に固着された水位補正装置62のばね63の上端に水
位検知フロート用ロープ64が固着され、これが水位検
知フロート用滑車65に懸架され、その他端は水平に回
動自在に支持された回動軸66に固着された水位検知フ
ロート用アーム67の先端の水位検知フロート用ピン6
8に固着されている。また、上記の回動軸66に固着さ
れた小ギヤ69とゲート軸38に固着された大ギヤ70
が噛み合わされ、水位検知フロート用ピン68の位置は
、上記において定義した計画開度k、即ち、ゲート35
の扉体40の下端が上記の計画用水位wに等しい開度に
おいて、最も水位検知フロート用滑車65に近付くよう
になっている。
Further, a water level detection float rope 64 is fixed to the upper end of the spring 63 of the water level correction device 62 fixed to the upper end of the connecting rod 58 of the water level control device 56, and this rope 64 is suspended on a water level detection float pulley 65. The other end is a pin 6 for a water level detection float at the tip of an arm 67 for a water level detection float fixed to a rotation shaft 66 that is rotatably supported horizontally.
It is fixed to 8. Also, a small gear 69 fixed to the rotation shaft 66 and a large gear 70 fixed to the gate shaft 38
are engaged, and the position of the water level detection float pin 68 is at the planned opening degree k defined above, that is, the gate 35
The lower end of the door body 40 is closest to the water level detection float pulley 65 at an opening degree equal to the above-mentioned planned water level w.

【0025】図5は、計画開度kと計画用水位wの場合
の流量を100としたゲート35の開度または流量の百
分率と水位の関係を示すものであるが、大文字A,D,
Eはゲートの開度、小文字b,c,f,gは流量との関
係を示す。曲線Aは下流の分水位工位置の水位をあらゆ
る流量の場合に計画用水位wにする場合における、ゲー
ト35の直下流の水位を示す曲線であるが、本実施例に
おいても計画開度kの状態においては、下流の分水工位
置の水位が計画用水位wになるように、水位検知フロー
ト57は図5の■の状態、即ちゲート35の開度が計画
開度kで、水路34の水位が上下流共に計画用水位wの
状態において、水位検知フロート57が装着されている
。しかし、上記の通り流量が少ない場合には、適当に水
位が低い方が良いので、ゲート35の上流の分水工につ
いても流量毎に計画用水位wよりも適当に低く、計画分
水位が曲線bのように決定されている。曲線cは流量毎
の下流の分水工における分水のための最低の水位を示す
。ゲート35の全閉状態における実際の分水工位置の水
位、点■が曲線cと計画用水位wの中間の高さよりも適
当に低い位置に設定されている。また中間の流量の状態
において、実際の分水工位置の水位、点fが計画用水位
wと曲線cの中間の高さよりも適当に低いい位置に設定
され、この状態ににおけるゲート35の直下流の水位、
点gが計算され、最後に上記の算定された下流の水位と
上記の曲線bから、ゲート35の開度が算定されて、点
■が算定されている。水位検知フロート用アーム67の
長さと回動角は、上記の点■、■および■を通り、曲線
Dを描くように決定されている。上記の曲線Dから逆算
された下流の分水工位置の水位をゲート35の開度毎に
示した曲線を以下計画分水位と称する事とする。
FIG. 5 shows the relationship between the opening degree of the gate 35 or the percentage of flow rate and the water level, where the flow rate is 100 when the planned opening degree k and the planned water level w are used.
E indicates the opening degree of the gate, and lowercase letters b, c, f, and g indicate the relationship with the flow rate. Curve A is a curve showing the water level immediately downstream of the gate 35 when the water level at the downstream diversion level is set to the planned water level w for any flow rate. In this state, the water level detection float 57 is in the state of ■ in FIG. The water level detection float 57 is attached when the water level is at the planned water level w both upstream and downstream. However, as mentioned above, when the flow rate is low, it is better to keep the water level appropriately low, so for the diversion works upstream of the gate 35, the planned water level should be appropriately lower than the planned water level w for each flow rate, so that the planned diversion water level is curved. It is determined as shown in b. Curve c shows the minimum water level for diversion in the downstream diversion works for each flow rate. The actual water level at the diversion work position when the gate 35 is fully closed, point 2, is set at a position appropriately lower than the midpoint height between the curve c and the planned water level w. In addition, in a state of intermediate flow rate, the water level at the actual diversion work position, point f, is set at a position appropriately lower than the height midway between the planned water level w and the curve c, and in this state, the water level at the actual diversion work position, point f, is downstream water level,
Point g is calculated, and finally, the opening degree of the gate 35 is calculated from the calculated downstream water level and the curve b, and point (2) is calculated. The length and rotation angle of the water level detection float arm 67 are determined so as to draw a curve D passing through the above points ■, ■, and ■. The curve showing the water level at the downstream diversion work position calculated from the above curve D for each degree of opening of the gate 35 will be hereinafter referred to as the planned diversion water level.

【0026】なお、ここで取水ゲート33について述べ
ておく。上記の構成のほか既成の技術を用いて、水位検
知フロートを小径の孔でもって外水に通ずる水位検知フ
ロート室に収納した構成とし、河川の増水中においては
水位検知フロート室内にサイフォンでもって注水し、洪
水が去ればサイフォンブレーカーによってサイフォンが
切れて注水が止むようにされて、河川32の洪水中には
開かないようにされている。
The water intake gate 33 will now be described. In addition to the above configuration, using existing technology, the water level detection float is housed in a water level detection float chamber that communicates with outside water through a small diameter hole, and when the river water is rising, water is injected into the water level detection float chamber using a siphon. However, once the flood has subsided, a siphon breaker turns off the siphon and stops water injection, so it will not open during flooding of the river 32.

【0027】本題に戻り、ゲート35の上流の分水工の
計画分水位から適当な間隔をもって、許容下限水位w1
と許容上限水位w2が設定され、上記の補水装置49の
補水口52の高さが許容下限水位w1の高さに調節され
ている。また、フロート室47の上流側に注水装置71
の注水管72が開口し、その他端は静水池46内の水中
に直立し、その外側のガイドパイプ73に緩く嵌合され
、その上方に水理学上の堰からなる注水槽74が固着さ
れ、その上端の高さは許容上限水位w2よりも僅かに低
くされ、その周長は流出口55aに比して十分に大きく
されている。また、ガイドパイプ73の下端にはダスト
シール75が装着され、注水槽74の外側は防塵防波筒
76に囲まれている。
Returning to the main topic, the allowable lower limit water level w1 is determined at an appropriate interval from the planned water level of the water diversion work upstream of the gate 35.
A tolerable upper limit water level w2 is set, and the height of the water refilling port 52 of the water refilling device 49 is adjusted to the height of the allowable lower limit water level w1. In addition, a water injection device 71 is provided on the upstream side of the float chamber 47.
The water injection pipe 72 is open, and the other end stands upright in the water in the still water pond 46, and is loosely fitted to the guide pipe 73 on the outside, and above it a water injection tank 74 consisting of a hydraulic weir is fixed, The height of its upper end is made slightly lower than the allowable upper limit water level w2, and its circumference is made sufficiently larger than the outlet 55a. Further, a dust seal 75 is attached to the lower end of the guide pipe 73, and the outside of the water tank 74 is surrounded by a dustproof and waveproof tube 76.

【0028】また本実施例においては、特に条件が厳し
い条件に対処するために、回動軸66に固着された上下
限水位補正装置77の補水筒用アーム78と注水槽用ア
ーム79を固着し、それぞれの先端にピンを介して補水
筒用ロープ80と注水槽用ロープ81を固着し、その途
中にそれぞれ、補水筒用滑車82と注水槽用滑車83が
設けられて、補水筒51と注水槽74が懸垂されている
。それぞれのピンの位置はゲート35が計画開度kにな
った状態において、それぞれの滑車から最も遠くなるよ
うに固着されている。また、計画開度kに近い状態にお
いては、許容下限水位w1および許容上限水位w2と計
画分水位の高低差は小さくされているが、ゲート35の
閉動作に伴う計画分水位wの下降する高さに比して、許
容下限水位w1の下降は適当に大きく、許容上限水位w
2の下降は適当に小さくされて、ゲート35が閉じるに
つれて許容上限水位w2と許容下限水位w1の高低差が
大きくなるようになっている。
Furthermore, in this embodiment, in order to cope with particularly severe conditions, the water replenishment cylinder arm 78 and the water injection tank arm 79 of the upper and lower limit water level correction device 77, which are fixed to the rotation shaft 66, are fixed. , a water replenishment cylinder rope 80 and a water tank rope 81 are fixed to the tip of each via a pin, and a water refill cylinder pulley 82 and a water tank pulley 83 are provided in the middle, respectively, to connect the water refill cylinder 51 and the water tank rope 81. A water tank 74 is suspended. The position of each pin is fixed so that it is farthest from each pulley when the gate 35 is at the planned opening degree k. In addition, in a state close to the planned opening degree k, the difference in height between the allowable lower limit water level w1, allowable upper limit water level w2, and the planned diversion water level is small; Compared to this, the drop in the allowable lower limit water level w1 is appropriately large, and the drop in the allowable upper limit water level w1 is appropriately large.
2 is appropriately reduced, and as the gate 35 closes, the height difference between the allowable upper limit water level w2 and the allowable lower limit water level w1 increases.

【0029】また、フロート室47内にフロート84が
収納され、その下部は密閉されて密閉部85が形成され
、その上方の導水部86内の底面に可撓管87が開口し
、その他端はゲート35の下流の遊水池48内に開口し
ている。可撓管87の長さはフロート84の運動を制約
しないよう十分に大きくされている。またフロート84
の頂面は覆われているが、通気口88が穿たれている。 最上流のゲート35の密閉部85の高さは、後述の自重
による偏心力のトルクよりも、僅かに密閉部85の空中
への露出によるトルクが小さくなるようにされているが
、その下流のゲート35の密閉部85の上端は、これよ
りも適当に低くされている。なお、取水ゲート33にお
ける密閉部85の高さは、計画開度kの状態において計
画用水位wの高さにされる。
A float 84 is housed in the float chamber 47, the lower part of which is sealed to form a sealed part 85, a flexible tube 87 is opened at the bottom of the water guide part 86 above the sealed part 85, and the other end is closed. It opens into the reservoir 48 downstream of the gate 35. The length of the flexible tube 87 is made sufficiently large so as not to restrict the movement of the float 84. Also float 84
Although the top surface of is covered, a vent hole 88 is bored. The height of the sealing part 85 of the most upstream gate 35 is set so that the torque due to exposure of the sealing part 85 to the air is slightly smaller than the torque of eccentric force due to its own weight, which will be described later. The upper end of the sealing portion 85 of the gate 35 is set appropriately lower than this. Note that the height of the sealed portion 85 in the water intake gate 33 is set to the height of the planned water level w in the state of the planned opening degree k.

【0030】また、フロート84の上端には、連動装置
89の懸垂棒90が固着され、その上端に装着されたロ
ーラー91が、ゲート35のゲート軸38に固着されて
上流に向けて突き出されたフロートアーム92の先端の
インボリュート溝92a内に嵌合されている。また、フ
ロート室47の底面に固着された一対のガイド棒93が
直立し、これがフロート84に固着されたガイド管94
に緩く嵌合され、フロート室47とフロート84の間の
すき間は極力小さくされている。
Furthermore, a suspension rod 90 of an interlocking device 89 is fixed to the upper end of the float 84, and a roller 91 attached to the upper end is fixed to the gate shaft 38 of the gate 35 and protrudes upstream. It is fitted into an involute groove 92a at the tip of the float arm 92. Also, a pair of guide rods 93 fixed to the bottom surface of the float chamber 47 stand upright, and this guide tube 93 fixed to the float 84
The gap between the float chamber 47 and the float 84 is made as small as possible.

【0031】次は構成の詳細について説明する。本発明
においては上流と下流の水位差を利用してゲート35を
操作するので、上流と下流の水位差が小さくなると流量
調節は不可能となる。また何時までも流量調節を続けて
いると、洪水になった場合に上流の水位が不必要に上昇
する。従って、これらの事を総合的に勘案して流量調節
停止開度が設定されている。上記のゲート35のガイド
レール41は流量調節停止開度の状態において、鉛直に
なるように固着されている。また、カウンターウエイト
42の重さは、フロート室47内とフロート84内の水
位が等しければ、ゲート35が確実に閉じるように適当
に軽くされている。また、当該ゲート35の上流と下流
の水位差は上流のゲート35の曲線cと当該ゲートの曲
線bの高低差であるから、流量調節停止開度の状態にお
ける上下流の水位差は簡単に計算によって求められる。 従って、フロート84の平面積は、内外の水位差がその
水位差になれば、ゲート35が確実に開くように十分に
大きくされている。また、カウンターウエイト42の高
さは、上記の流量調節停止開度以下のあらゆる開度にお
いて、ゲート35が確実に開く限度内において、極力高
くされている。
Next, the details of the configuration will be explained. In the present invention, the gate 35 is operated using the difference in water level between upstream and downstream, so if the difference in water level between upstream and downstream becomes small, flow rate adjustment becomes impossible. Furthermore, if flow rate adjustment continues indefinitely, the water level upstream will rise unnecessarily in the event of a flood. Therefore, the flow rate adjustment stop opening degree is set by comprehensively taking these things into consideration. The guide rail 41 of the gate 35 is fixed so as to be vertical when the flow rate is adjusted and stopped. Further, the weight of the counterweight 42 is set to be appropriately light so that the gate 35 can be reliably closed if the water levels in the float chamber 47 and the float 84 are equal. In addition, since the water level difference between the upstream and downstream of the gate 35 is the height difference between the curve c of the upstream gate 35 and the curve b of the gate, the upstream and downstream water level difference in the state of flow adjustment stop opening can be easily calculated. It is determined by Therefore, the planar area of the float 84 is made large enough to ensure that the gate 35 opens when the water level difference between the inside and outside reaches the water level difference. Further, the height of the counterweight 42 is set as high as possible within a limit that allows the gate 35 to open reliably at all opening degrees below the above-mentioned flow rate adjustment stop opening degree.

【0032】また、最下流の排水ゲート36は、設置箇
所の状況によりラディアルゲートの設置が許されない場
合にはローラゲートが使用される。しかし、いずれにし
ても、その設定水位は直上流のゲート35において予定
された計画分水位よりもやや高く設定される。
Further, as the most downstream drainage gate 36, a roller gate is used when installation of a radial gate is not permitted due to the situation at the installation location. However, in any case, the set water level is set slightly higher than the planned water level scheduled at the gate 35 immediately upstream.

【0033】次は作用について説明する。上気のように
ゲート35が作動するためには、その上流と下流の水位
差が必要であるので、水位検知フロート57が人為的に
装着された状態、即ちゲート35の開度が計画開度kで
、上流と下流の水位が共に計画用水位wに等しい状態は
実在しない。しかし、上流と下流における水の使用量に
変化がなければ、流量調節停止開度以下の状態において
は、下流の分水工位置と直下流の水位が、それぞれ図5
の曲線bと曲線cに示す水位となり、流出口55aが狭
窄弁59により半ば狭窄され、その流出量と補水口52
からの流入量が均衡し、ゲート35は静止している。
Next, the operation will be explained. In order for the gate 35 to operate like the upper air, there needs to be a difference in water level between the upstream and downstream sides, so when the water level detection float 57 is artificially attached, the opening of the gate 35 is the planned opening. k, there is no real state in which both the upstream and downstream water levels are equal to the planned water level w. However, if there is no change in the amount of water used upstream and downstream, the downstream diversion work position and the water level immediately downstream will be lower than the flow control stop opening as shown in Figure 5, respectively.
The water level becomes as shown by curve b and curve c, and the outflow port 55a is partially narrowed by the constriction valve 59, and the outflow amount and the water replenishment port 52
The amount of inflow from the gate 35 is balanced and the gate 35 is stationary.

【0034】水路34における寸法を、例えば、幅3m
、勾配1/2000、および当該ゲートと下流の分水工
間の距離を1000mとした場合、下流における水の使
用量が減少して下流の分水工位置の水位が3cm上昇す
れば、上流のゲート35の直下流の水位は約2cmも上
昇する。また、流出口55aの大きさが十分に大きくさ
れているので、ゲート35の開閉のために動く狭窄弁5
9のストロークは小さく、2cmもあれば十分である。 なお、狭窄弁59に働く水圧とパッキン60に働く水圧
が相殺されるので、狭窄弁59の昇降に伴う抵抗も少な
い。従って、ゲート35の下流分水工位置の水位が3c
m上昇すれば、水位検知フロート57と狭窄弁59が上
昇し、流出口55aに対する狭窄が緩和されるので、フ
ロート室47内の水位が低下し、ゲート35が閉じて開
度が小さくなり、下流の分水工位置の水位は正常に戻る
[0034] The dimensions of the waterway 34 are, for example, 3 m wide.
, the gradient is 1/2000, and the distance between the gate and the downstream diversion work is 1000 m. If the amount of water used downstream decreases and the water level at the downstream diversion work rises by 3 cm, the upstream water will increase. The water level immediately downstream of gate 35 rises by about 2 cm. In addition, since the size of the outflow port 55a is sufficiently large, the stenosis valve 5 that moves to open and close the gate 35
The stroke of No. 9 is small, and 2 cm is sufficient. Note that since the water pressure acting on the stenosis valve 59 and the water pressure acting on the packing 60 cancel each other out, there is little resistance as the stenosis valve 59 moves up and down. Therefore, the water level at the downstream diversion site of gate 35 is 3c.
m rises, the water level detection float 57 and the constriction valve 59 rise, and the constriction on the outflow port 55a is alleviated, so the water level in the float chamber 47 decreases, the gate 35 closes and the opening becomes smaller, and the downstream The water level at the diversion works location will return to normal.

【0035】その結果、ゲート35の場合には、当該ゲ
ートの上流の水位が上昇するが、その影響は次々に上流
のゲート35に波及して、下流の水位が次々に正常に戻
されるので、実際の水位と計画分水位の差は少なく、ま
た一つの区間において水位が正常でないのは短時間であ
る。また最終的には最上流の取水ゲート33に波及して
取水量が減少するので、しばらくたてば水路の全区間の
水位が再び正常に戻る。
As a result, in the case of the gate 35, the water level upstream of the gate rises, but the effect spreads to the upstream gates 35 one after another, and the downstream water level is returned to normal one after another. The difference between the actual water level and the planned water level is small, and the water level in one section is not normal for only a short time. Furthermore, the water intake amount will eventually be reduced by reaching the water intake gate 33 at the most upstream position, so that the water level in the entire section of the waterway will return to normal again after a while.

【0036】また、逆に水の使用量が増加し、下流の分
水工位置の水位が3cm低下すればその上流のゲート3
5の直下流の水位は約2cm低下する。従って水位検知
フロート57と狭窄弁59が下降し流出口55aに対す
る狭窄が強化され、フロート室47内の水位が上昇し、
ゲート35が開いて下流の分水工位置の水位は正常に戻
る。
On the other hand, if the amount of water used increases and the water level at the downstream diversion site drops by 3 cm, the upstream gate 3
The water level immediately downstream of No. 5 will drop by approximately 2 cm. Therefore, the water level detection float 57 and the constriction valve 59 descend, the constriction of the outlet 55a is strengthened, and the water level in the float chamber 47 rises.
The gate 35 opens and the water level at the downstream diversion work position returns to normal.

【0037】その結果、ゲート35の場合には、当該ゲ
ートの上流の水が低下するが、その影響は次々に上流の
ゲート35に波及して、下流の水位が正常に戻されるの
で、実際の水位と計画分水位の差は少なく、また一つの
分水工に影響する時間は短時間である。また、最終的に
は取水ゲート33の取水量が増加するので、時間がたて
ば水路の全区間の水位が正常に戻る。
As a result, in the case of the gate 35, the water upstream of the gate decreases, but the effect spreads to the upstream gates 35 one after another, and the downstream water level returns to normal, so that the actual The difference between the water level and the planned diversion water level is small, and the time that affects one diversion work is short. Furthermore, since the amount of water taken by the water intake gate 33 will eventually increase, the water level in all sections of the waterway will return to normal over time.

【0038】図5の曲線Aに示すように、下流の分水工
位置の水位を、計画用水位wに保持する場合における、
ゲート35の直下流の水位は、正弦曲線に極めて近似し
、また本発明にかかる水位補正装置62も正弦曲線に近
似した曲線が曲線が得られるように構成され、更に水位
検知フロート57がゲート35の開度が計画開度kに等
しく、水路34の水位が上下流とも計画用水位wに等し
い状態において装着されているので、流量が計画用水量
に近い状態においては、下流の分水工位置における水位
は、図5の曲線Bに示すように、計画用水位wに極めて
近く、従って分水に支障は来さない。しかし、流量が少
なくなるにつれて下流の分水工位置の水位が低くなるの
で、セイシュや畑作物に対する湿害も起らない。また、
各分水工位置の水位は各々の分水工の実情に応じて個々
に決められているので、水位が低くても分水に支障を来
す事はあり得ない。以上の作用から、ゲート35を取水
ゲート33として使用できる。
As shown in curve A of FIG. 5, when the water level at the downstream diversion work position is maintained at the planned water level w,
The water level immediately downstream of the gate 35 is very close to a sine curve, and the water level correction device 62 according to the present invention is also configured to obtain a curve that is close to a sine curve. Since the waterway 34 is installed with the opening degree equal to the planned opening degree k and the water level of the waterway 34 both upstream and downstream equal to the planned water level w, when the flow rate is close to the planned water volume, the downstream diversion work position As shown by curve B in FIG. 5, the water level at is extremely close to the planned water level w, so there is no problem with water diversion. However, as the flow rate decreases, the water level at the downstream diversion site becomes lower, so moisture damage to seiche and field crops does not occur. Also,
The water level at each diversion work location is determined individually according to the actual situation of each diversion work, so even if the water level is low, it is unlikely that water diversion will be affected. Due to the above-mentioned effects, the gate 35 can be used as the water intake gate 33.

【0039】水の使用量の増加が異常であれば、ゲート
35の上流の水位が許容下限水位w1に近付くが、補水
筒51の一端が大気中に開口しているので、補水口52
の出口において、その上流と下流の水流が水理学的に遮
断されており、従って、上流の水位が許容下限水位w1
に近付くと、フロート室47内への流入水量が激減し、
一方,たとえ下流の水位が低すぎて狭窄弁59により、
流出口55aが閉塞されていても、漏洩口14からの流
出があるので、ゲート35が閉じて開度が小さくなって
、上流水位は許容下限水位w1の高さに保持される。 この段階になると、下流において水量が不足し、水位が
計画分水位よりも低下し、従って下流水路の貯溜量が利
用される。また、このように水の使用量の変化の影響が
下流に及ぶ場合にも、その一方で影響は上流のゲート3
5にも次々に波及し、最終的には取水ゲート33に達し
て、取水量が増加するので、時間がたてば水路の全区間
の水位が正常に戻る。
If the increase in the amount of water used is abnormal, the water level upstream of the gate 35 approaches the allowable lower limit water level w1, but since one end of the water replenishment cylinder 51 is open to the atmosphere, the water refill port 52
At the outlet, the upstream and downstream water flows are hydraulically blocked, so the upstream water level is below the allowable lower limit water level w1.
As the water approaches the float chamber 47, the amount of water flowing into the float chamber 47 decreases dramatically.
On the other hand, even if the downstream water level is too low and the constriction valve 59
Even if the outflow port 55a is blocked, there is outflow from the leakage port 14, so the gate 35 closes and the opening becomes small, and the upstream water level is maintained at the allowable lower limit water level w1. At this stage, there is a shortage of water downstream and the water level drops below the planned water level, so the storage capacity of the downstream waterway is utilized. Also, even if the impact of changes in water usage is downstream, the impact will be felt at the upstream gate 3.
5, and finally reaches the water intake gate 33, where the amount of water intake increases, so that over time, the water level in all sections of the waterway returns to normal.

【0040】また、水の使用量の減少が異常であれば、
上流の水位が許容上限水位w2まで上昇し、注水槽74
の上端からの越流水がフロート室47内に流入するが、
流出口55aに比して、注水槽74の周長が十分に大き
くされているので、フロート室47内の水位が上昇し、
ゲート35が開いて流下量が増加し、上流水位は許容上
限水位w2の高さに保持される。流下量の増加の影響は
、下流のゲート35に波及して下流の数区間の水位が上
昇して水が貯溜される。また、下流の全区間においても
貯溜仕切れない場合には、最下流の排水ゲート36が開
いて、余分な水は排水路37に捨てられる。また、この
ように水の使用量の変化の影響が下流に及ぶ場合にも、
その一方で影響は次々に上流に波及し、最終的には最上
流の取水ゲート33に達して、取水量が減少するので、
時間がたてば水路の全区間の水位が正常に戻る。
[0040] Also, if the decrease in water usage is abnormal,
The upstream water level rises to the allowable upper limit water level w2, and the water injection tank 74
Overflow water from the upper end flows into the float chamber 47,
Since the circumference of the water filling tank 74 is sufficiently large compared to the outflow port 55a, the water level in the float chamber 47 rises.
The gate 35 opens and the flow rate increases, and the upstream water level is maintained at the allowable upper limit water level w2. The influence of the increase in flow rate spreads to the downstream gate 35, causing the water level in several sections downstream to rise and water to be stored. Further, if the storage cannot be partitioned off in the entire downstream section, the most downstream drainage gate 36 is opened and the excess water is disposed of into the drainage channel 37. Also, when the impact of changes in water usage is felt downstream,
On the other hand, the influence spreads upstream one after another, eventually reaching the most upstream water intake gate 33, and the amount of water intake decreases.
Over time, the water level in all sections of the waterway will return to normal.

【0041】上記の通り、水路の上流と下流の全区間に
わたって、水が余れば貯溜され、水が不足すれば貯溜量
によって補われるので、水の過不足を解消できる。従っ
て即座に分水を開始し、また何時でも分水を停止する事
ができる。また、このように水路の全区間にわたる貯溜
量を利用できるので、全体的に水位の変化が少なくて済
む。従って、流量が多い場合には、流量の変化が少ない
普通の水路においては、補水口52と注水槽74の高さ
は一定で済む。
[0041] As mentioned above, over the entire upstream and downstream sections of the waterway, excess water is stored, and if water is insufficient, it is compensated for by the stored amount, so that excess or deficiency of water can be resolved. Therefore, water diversion can be started immediately and water diversion can be stopped at any time. In addition, since the storage amount over the entire section of the waterway can be utilized in this way, there are fewer changes in the water level overall. Therefore, when the flow rate is large, the heights of the water replenishment port 52 and the water tank 74 may remain constant in a normal waterway where the flow rate does not change much.

【0042】次は、上下限水位補正装置77の作用につ
いて説明する。通常は流量が多い場合には流量の変化が
少ないが、殆どの流量が畑地潅漑に使用されるような場
合には、流量が多くても変化が大きい。また、その中に
水田用水のように、自然分水される分水工が混じってい
ると、水位の変化に弱い。また、水の使用量が激減して
水位が上昇して、セイシュが起る。従って、そのような
場合に備えて、上下限水位補正装置77が用意されてい
るので、流量が多くゲート35の開度が大きい場合には
、注水槽74の上端と補水口52の高低差を少なくする
事ができる。従って、当該分水工の水位の変動は極めて
少ないので、分水には支障を来さない。また水位の変動
が少ないので、一区間における調節機能は少なくなるが
、広範囲の区間に分散して調節されるので、かなりの流
量調節機能が残る。また、流量が少なくなれば、個々の
分水工の分水量も少なくなり、分水工の下流の用水路の
水位も低くなるので、水路34の水位が多少低くなって
も、分水に支障がなくなり、一方、流量が少なくなる程
水の使用量の変化が大きくなり、従って、より大きな流
量調節機能が必要となるが、ゲート35が閉じるにつれ
て、補水口52の高さが低くなるので、流量調節機能が
増加する。また、ゲート35が閉じるにつれて、注水槽
74の高さも低くなるので、流量調節のために異常に水
位が上昇する場合にも、その上昇の程度は小さく、従っ
て如何なる場合にもセイシュは起らない。
Next, the operation of the upper and lower limit water level correction device 77 will be explained. Normally, when the flow rate is high, the change in flow rate is small, but in cases where most of the flow rate is used for field irrigation, even if the flow rate is high, the change is large. In addition, if water is mixed in with water diversion works that naturally divert water, such as water for rice fields, it is vulnerable to changes in water level. In addition, the amount of water used is drastically reduced and the water level rises, causing a seiche. Therefore, in preparation for such a case, an upper and lower limit water level correction device 77 is provided, so that when the flow rate is large and the opening degree of the gate 35 is large, the height difference between the upper end of the water injection tank 74 and the water filler port 52 is corrected. It can be reduced. Therefore, fluctuations in the water level in the water diversion works are extremely small, so there is no problem with water diversion. Also, since the water level fluctuates little, the adjustment function in one section is reduced, but since the adjustment is distributed over a wide range of sections, a considerable flow rate adjustment function remains. In addition, if the flow rate decreases, the amount of water diverted to each diversion works will also decrease, and the water level in the irrigation canal downstream of the diversion works will also decrease, so even if the water level in the canal 34 becomes somewhat low, there will be no problem with water diversion. On the other hand, as the flow rate decreases, the change in the amount of water used increases, and therefore a larger flow rate adjustment function is required. Regulatory function increases. Furthermore, as the gate 35 closes, the height of the water tank 74 also decreases, so even if the water level rises abnormally due to flow rate adjustment, the degree of rise is small, and therefore no seiche occurs in any case. .

【0043】次は洪水の場合の作用について説明する。 水路34の或る区間に洪水が流入すれば、その上流のゲ
ート35は次々に閉じて、最後は取水ゲート33が閉じ
て取水量が減少するが、取水ゲート33の最大の開度は
計画開度kであり、取水ゲート33のフロート84の密
閉部85の上端の高さは、計画開度kの状態において、
計画用水位wに等しくされているので、河川32の水位
が計画用水位w以上に上昇しても、閉じる作用には影響
がない。従って、洪水の流入量が更に増加すれば、最後
は全閉状態となり取水は停止される。また、その後本格
的な洪水になれば、サイフォンによって水位検知フロー
ト室に水が注入されるので、取水ゲート33は洪水中は
全閉状態を保つ。また、洪水時になれば各分水工におけ
る分水が停止されるから、全てのゲート35は全閉に近
い状態になるので、上下限水位補正装置77によって注
水槽74の高さは相当に低くされている。従って、洪水
が流入している区間の直下流のゲート35の上流の水位
は、直ちに許容上限水位w2に達してゲート35が開き
、その影響が下流に波及し、各ゲート35が次々に開い
て、最後は排水ゲート36が開いて、洪水の全てが排水
路37に捨てられる。
Next, the operation in the case of a flood will be explained. When floodwaters flow into a certain section of the waterway 34, the upstream gates 35 are closed one after another, and finally the water intake gate 33 is closed, reducing the water intake amount, but the maximum opening of the water intake gate 33 is the same as the planned opening. degree k, and the height of the upper end of the sealed portion 85 of the float 84 of the water intake gate 33 is at the planned opening degree k.
Since it is set equal to the planned water level w, even if the water level of the river 32 rises above the planned water level w, the closing action will not be affected. Therefore, if the inflow of flood water increases further, the system will eventually become fully closed and water intake will be stopped. Further, if a full-scale flood occurs thereafter, water is injected into the water level detection float chamber by a siphon, so that the water intake gate 33 remains fully closed during the flood. In addition, in the event of a flood, water diversion at each diversion works is stopped, so all gates 35 are close to fully closed, so the height of the water injection tank 74 is considerably lowered by the upper and lower limit water level correction device 77. has been done. Therefore, the water level upstream of the gate 35 immediately downstream of the section into which the floodwaters are flowing immediately reaches the allowable upper limit water level w2 and the gate 35 opens, and the influence spreads downstream, and each gate 35 opens one after another. , and finally the drain gate 36 opens and all of the flood water is dumped into the drain 37.

【0044】洪水の流入量が増加すれば、ゲート35の
開度は徐々に大きくなり、水位も高くなる。ゲート35
の開度が流量調節停止開度に達した状態においては、閉
じるために必要な最小限度の偏心力が残っているので、
上流と下流の水位差が数cmあるが、ゲート35の全体
の重心位置が極力高くされているので、ゲート軸38と
重心を結ぶ線と鉛直線の交角は極めて小さい。従って、
更に流量が増加して、ゲート35が開けば、上流と下流
の水位差が徐々に小さくなり、遂には水位差が消失して
、自重によってフロート84内の水を吐き出しながら上
昇し、密閉部85の一部が空中に露出し、ゲートアーム
39が水平となり、ストッパー44に支えられて休止状
態となる。
[0044] As the amount of inflow of flood water increases, the opening degree of the gate 35 gradually increases and the water level also rises. gate 35
When the opening degree reaches the flow rate adjustment stop opening degree, the minimum eccentric force necessary for closing remains.
Although the water level difference between upstream and downstream is several cm, the entire center of gravity of the gate 35 is set as high as possible, so the angle of intersection between the line connecting the gate axis 38 and the center of gravity and the vertical line is extremely small. Therefore,
When the flow rate increases further and the gate 35 is opened, the difference in water level between upstream and downstream gradually decreases, and finally disappears, and the float 84 rises due to its own weight, discharging the water inside the float 84 , and the sealed part 85 A part of the gate arm 39 is exposed in the air, and the gate arm 39 becomes horizontal and rests supported by the stopper 44.

【0045】洪水が去って流量が少なくなれば、水深が
最も小さくなるのは、取水ゲート33の直下流の水位で
あるが、この段階においては取水ゲート33の上流の河
川32の流域が大きいので、その水位はまだ相当に高い
。従って、サイフォンによって水位検知フロート室に注
水中が続けられているので、取水ゲート33は閉じたま
まであるが、その直下流にある最上流のゲート35の位
置の水位はゲート35の中では最も低く、また最上流の
ゲート35のフロート84の密閉部85の高さが最も高
くされているので、洪水が止んで水位が適当に低くなれ
ば、空中に露出した密閉部85の重さによって、先ず最
上流のゲート35が引き降ろされて堰上げが自動的に再
開される。その結果、下流の流量が激減するので、次々
に下流のゲート35が順次に閉じる。この状態において
は、各区間にはまだ多少の洪水が流入しているので、各
々のゲート35の上流の水位は、許容上限水位w2の状
態であり、従って、河川32の水位が低くなって、サイ
フォンによる注水が停止されていても、取水ゲート33
は開かない。しかし、下流において分水が再開され、洪
水だけでは水量が不足して、いずれかの分水工位置の水
位が計画分水位よりも僅かに低くなれば、その上流のゲ
ート35が開いて、その上流の水位が許容上限水位w2
の状態から急速に低下し、計画分水位よりも僅かに低く
なって、その上流のゲートが開き、その影響が次々に上
流に波及して、最後に取水ゲート33が開いて取水が再
開される。
[0045] Once the flood has subsided and the flow rate has decreased, the water depth will be the smallest at the water level immediately downstream of the water intake gate 33, but at this stage the water level of the river 32 upstream of the water intake gate 33 is large. , the water level is still quite high. Therefore, since water continues to be injected into the water level detection float chamber by the siphon, the water intake gate 33 remains closed, but the water level at the most upstream gate 35 immediately downstream is the lowest among the gates 35. In addition, since the height of the sealed part 85 of the float 84 of the gate 35 at the most upstream side is set at the highest level, when the flood stops and the water level drops to an appropriate level, the weight of the sealed part 85 exposed in the air will cause the The most upstream gate 35 is pulled down and weir raising is automatically restarted. As a result, the downstream flow rate is drastically reduced, so the downstream gates 35 are closed one after another. In this state, some flood water is still flowing into each section, so the water level upstream of each gate 35 is at the allowable upper limit water level w2, and therefore the water level of the river 32 is low. Even if water injection by siphon is stopped, water intake gate 33
won't open. However, if water diversion is resumed downstream and the water level is insufficient due to flooding alone, and the water level at any of the diversion works positions becomes slightly lower than the planned water level, the gate 35 upstream will open and The upstream water level is the allowable upper limit water level w2
The water level rapidly decreases from the state of , and becomes slightly lower than the planned water level, and the gates upstream of the water level open, the influence of which spreads upstream one after another, and finally, the water intake gate 33 opens and water intake resumes. .

【0046】次はフロート84の導水部86の作用につ
いて補足する。流量が多くなって、流量調節停止開度に
近い状態になると、上流と下流の水位差が小さくなるの
で、フロート室47内の水位の昇降できる高さも極めて
小さくなり、従って通常の手段ではゲートを十分に大き
く動かす事が出来なくなるが、一方においては扉体40
の下方を通過する流速も小さくなるので、相当に大きく
扉体40が昇降しないと、上流と下流の水位は十分に変
化しない。このように、流量が多い場合には水位の変化
が不十分となりがちであるが、本実施例においては、フ
ロート84の導水部86内に下流側の水路34の水が導
入されている。また上記の通り水路34の水位の変化が
不十分である事が前提であるので、フロート84が昇降
してもフロート84内の水面は僅かしか変わらない。従
ってフロート84が昇降しても、これに働いている作動
力は、下流側の水路34の水位が十分に変化し、その結
果フロート室47内の水位が変化しない限り変わらない
。従って、上下流の水位差が極めて小さくなるまて、流
量を調節できる。
Next, the function of the water guiding portion 86 of the float 84 will be supplemented. When the flow rate increases and reaches a state close to the flow rate adjustment stop opening, the difference in water level between upstream and downstream becomes small, and the height at which the water level in the float chamber 47 can be raised and lowered becomes extremely small. However, on the other hand, the door body 40 cannot be moved sufficiently.
Since the velocity of the flow passing below is also small, unless the door body 40 is moved up and down considerably, the water levels upstream and downstream will not change sufficiently. As described above, when the flow rate is large, the water level tends to change insufficiently, but in this embodiment, water from the water channel 34 on the downstream side is introduced into the water guide section 86 of the float 84. Furthermore, as described above, it is assumed that the water level in the water channel 34 does not change sufficiently, so even if the float 84 goes up and down, the water level inside the float 84 changes only slightly. Therefore, even if the float 84 moves up and down, the operating force acting on it does not change unless the water level in the water channel 34 on the downstream side changes sufficiently, and as a result, the water level in the float chamber 47 changes. Therefore, the flow rate can be adjusted until the water level difference between upstream and downstream becomes extremely small.

【0047】次はフロート室47とフロート84のすき
間の作用について説明する。ゲート35の開閉に際して
、動き始めるまでの抵抗は静止摩擦抵抗であるので比較
的に大きいが、一旦動き始めた後の抵抗は動摩擦抵抗に
変わるので抵抗が半減し、一方、フロート84に働いて
いる作動力は相当に大きくフロート84が昇降しない限
り衰えない。従って、流量が少なくゲートの開度が小さ
い場合には、ゲートが大きく動きすぎて流量の変動が激
変すると言う問題があるが、本実施例においては、フロ
ート84の昇降に伴う上下流方向のフロートの移動をな
くして、フロート室8とフロート84の間のすき間が極
力小さくされているので、フロート84が極めて僅かに
昇降すれば、フロート84の下方とフロート室47とフ
ロート84のすき間の間を水が移動し、従って、水面が
フロート84と反対方向に移動して、フロート84に働
いていた作動力が消失するので、フロート84の一回当
たりの動きが極めて小さくなる。従ってゲート35の動
きが円滑となる。
Next, the effect of the gap between the float chamber 47 and the float 84 will be explained. When opening and closing the gate 35, the resistance until it starts moving is static frictional resistance, which is relatively large, but once it starts moving, the resistance changes to dynamic frictional resistance, so the resistance is halved.On the other hand, the resistance acting on the float 84 The operating force is quite large and does not decline unless the float 84 moves up and down. Therefore, when the flow rate is low and the opening degree of the gate is small, there is a problem that the gate moves too much and the flow rate fluctuates drastically. Since the gap between the float chamber 8 and the float 84 is made as small as possible by eliminating the movement of The water moves, and therefore the water surface moves in the opposite direction to the float 84, and the actuating force acting on the float 84 disappears, so that each movement of the float 84 becomes extremely small. Therefore, the movement of the gate 35 becomes smooth.

【0048】[0048]

【発明の効果】本発明にかかる装置は、水位検知フロー
トを下流側水路と通じる遊水池に設置して、水位検知フ
ロート用アームの長さおよび回動角に対応して狭窄弁を
作動させて扉体を操作するので、下流の水の使用状況に
応じて送水し、また流量に最も適した水位にすることが
でき、なおその水位も個々の分水工の実情に応じた選択
ができ、更に洪水を安全に流下させることができる。し
かも従来のゲートと比べ図9に示すような水理学上のカ
ーブを有する溝を設けたガイド板、矩形板を必要としな
いので構造が極めて簡単である。また、水路の管理も無
人無動力化することができるので、水資源が逼迫し省エ
ネルギーと人手不足が社会的な問題となっている現状に
おいて、誠に時宜を得た発明であると考える。
[Effects of the Invention] The device according to the present invention installs a water level detection float in a reservoir communicating with a downstream waterway, and operates a constriction valve in accordance with the length and rotation angle of the arm for the water level detection float. Since the door body is operated, water can be conveyed according to the downstream water usage status, and the water level can be set to the most suitable level for the flow rate.The water level can also be selected according to the actual situation of each diversion work. Furthermore, floodwaters can flow down safely. Moreover, compared to conventional gates, the structure is extremely simple because it does not require a guide plate or a rectangular plate provided with a groove having a hydraulic curve as shown in FIG. In addition, waterway management can be done unmanned and without power, so we believe this is a truly timely invention in the current situation where water resources are tight and energy conservation and labor shortages are becoming social issues.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明による実施例の水路のその前後を含めた
全体の縦断断面図である。
FIG. 1 is a longitudinal cross-sectional view of the entire waterway including its front and rear parts according to an embodiment of the present invention.

【図2】実施例のチェックゲートの平面図である。FIG. 2 is a plan view of the check gate of the embodiment.

【図3】実施例のチェックゲートの流量の調節を停止し
、或いは開始する限界状態を示す側断面図である。
FIG. 3 is a side cross-sectional view showing a limit state in which the flow rate adjustment of the check gate of the embodiment is stopped or started;

【図4】実施例のチェックゲートの全閉状態を示す側断
面図である。
FIG. 4 is a side sectional view showing the check gate of the embodiment in a fully closed state.

【図5】本発明による実施例のチェックゲートの動作特
性を示すグラフである。
FIG. 5 is a graph showing the operating characteristics of a check gate according to an embodiment of the present invention.

【図6】従来の水路用のゲートを示す側断面図である。FIG. 6 is a side sectional view showing a conventional waterway gate.

【図7】従来の分水の上流水位を一定に保持するゲート
の側断面図である。
FIG. 7 is a side cross-sectional view of a conventional gate that maintains a constant upstream water level of water diversion.

【図8】従来の、ゲート制御装置のフロート室からの流
出機構を示す部分図である。
FIG. 8 is a partial view showing a conventional outflow mechanism from a float chamber of a gate control device.

【図9】従来の各分水工間の水位差を一定に保持するゲ
ートを示す側断面図である。
FIG. 9 is a side sectional view showing a conventional gate that maintains a constant water level difference between each water diversion facility.

【符号の説明】[Explanation of symbols]

34  水路 40  扉体 46  静水池 47  フロート室 48  遊水池 51  補水筒 52  補水口 55a  流出口 57  水位検知フロート 59  狭窄弁 61  漏洩口 63  ばね 67  水位検知フロート用アーム 74  注水槽 78  補水筒用アーム 79  注水槽用アーム 84  フロート w1  許容下限水位 w2  許容上限水位 34 Waterway 40 Door body 46 Still water pond 47 Float chamber 48 Retarding pond 51 Water replenishment cylinder 52 Water replenishment port 55a Outlet 57 Water level detection float 59 Stenosis valve 61 Leak port 63 Spring 67 Water level detection float arm 74 Water tank 78 Arm for water tank 79 Water tank arm 84 Float w1 Allowable lower limit water level w2 Allowable upper limit water level

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  水路を横断させて設けた扉体と、該扉
体と連動するフロートとを有し、該フロートを収納する
フロート室内は、小さな補水口を介して扉体の上流側水
路と連通させると共に、漏洩口および比較的に大きな流
出口を介して扉体の下流側水路に設けた遊水池と連通さ
れ、前記遊水池に水位検知フロートを浮かべ、該水位検
知フロートに連設した狭窄弁を前記流出口に進退自在に
臨ませ、前記扉体と連動して回動する水位検知フロート
用アームに、前記水位検知フロートをばねを介して懸垂
させたことを特徴とする用水路用流量応答ゲート。
Claim 1: It has a gate provided across a waterway and a float interlocked with the door, and the float chamber housing the float is connected to the waterway on the upstream side of the door through a small water supply port. A water level detection float is floated on the water level, and a constriction is connected to the water level detection float. A flow rate response for an irrigation canal, characterized in that a valve is allowed to freely move forward and backward toward the outlet, and the water level detection float is suspended via a spring on a water level detection float arm that rotates in conjunction with the door body. Gate.
【請求項2】  前記補水口は、フロート室内に開口し
扉体の上流側水路に設けた静水池に立設する補水筒の側
壁に許容下限水位の高さに穿設し、前記静水池には、フ
ロート室内と連通する、許容上限水位よりも僅かに低い
高さに上端を有し、比較的に大きな堰からなる注水槽を
設置したことを特徴とする上記請求項1に記載の装置。
2. The water replenishment port is opened in the float chamber and is bored in the side wall of a water replenishment cylinder installed in a still water pond upstream of the door body at a height of the lower limit water level, and is connected to the still water reservoir. 2. The apparatus according to claim 1, further comprising a water injection tank that communicates with the float chamber, has an upper end at a height slightly lower than the allowable upper limit water level, and is comprised of a relatively large weir.
【請求項3】  補水筒と注水槽とが、それぞれ扉体と
連動して回動する補水筒用アームと注水槽用アームによ
り懸垂されたことを特徴とする上記請求項1に記載の装
置。
3. The apparatus according to claim 1, wherein the water refill cylinder and the water tank are suspended by a water tank arm and a water tank arm, respectively, which rotate in conjunction with the door body.
JP10047691A 1991-04-05 1991-04-05 Flow response gate for irrigation canal Expired - Fee Related JP2514866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10047691A JP2514866B2 (en) 1991-04-05 1991-04-05 Flow response gate for irrigation canal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10047691A JP2514866B2 (en) 1991-04-05 1991-04-05 Flow response gate for irrigation canal

Publications (2)

Publication Number Publication Date
JPH04309614A true JPH04309614A (en) 1992-11-02
JP2514866B2 JP2514866B2 (en) 1996-07-10

Family

ID=14274973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10047691A Expired - Fee Related JP2514866B2 (en) 1991-04-05 1991-04-05 Flow response gate for irrigation canal

Country Status (1)

Country Link
JP (1) JP2514866B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010185183A (en) * 2009-02-10 2010-08-26 Ntc Consultants Inc Simplified check gate
US9028170B2 (en) 2001-07-09 2015-05-12 Henry K. Obermeyer Water control apparatus
CN106013017A (en) * 2016-07-08 2016-10-12 中国农业科学院农田灌溉研究所 Self-adaptive triangular weir

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9028170B2 (en) 2001-07-09 2015-05-12 Henry K. Obermeyer Water control apparatus
US9765495B2 (en) 2001-07-09 2017-09-19 Henry K. Obermeyer Water control apparatus
US10370813B2 (en) 2001-07-09 2019-08-06 Henry K. Obermeyer Water control apparatus
JP2010185183A (en) * 2009-02-10 2010-08-26 Ntc Consultants Inc Simplified check gate
CN106013017A (en) * 2016-07-08 2016-10-12 中国农业科学院农田灌溉研究所 Self-adaptive triangular weir
CN106013017B (en) * 2016-07-08 2018-01-26 中国农业科学院农田灌溉研究所 A kind of adaptive triangular-notch weir

Also Published As

Publication number Publication date
JP2514866B2 (en) 1996-07-10

Similar Documents

Publication Publication Date Title
KR0172451B1 (en) Automatic swing fishway apparatus
KR101028841B1 (en) Flood control reservoir buoyancy type floodgate
JPH04309614A (en) Flow response gate for irrigation channel
CN105756179A (en) Debris-retaining and backflow-preventing intercepting well with sewage flow controllable
JP3030803B2 (en) Flow response gate
CN104864160A (en) Pilot-operated type axial hydro-automatic gate
JP2514841B2 (en) Automatic water level control gate
JP2552616B2 (en) Control gate of fishway device and its fish collecting device
JP2002256536A (en) Automatic flow rate adjusting rotary gate used for channel
JP2683930B2 (en) Gate control device that maintains a constant water level difference from a remote point downstream
CN211816095U (en) Turnover gate for hydraulic engineering
JPH06272232A (en) Gate for spillway
JP4055057B2 (en) Downstream water level control device
JP3427324B2 (en) Chain gate device
JPH0340900Y2 (en)
JPH0355308A (en) Automatic water level-regulating gate device
JP2818969B2 (en) Parallel fishway device
JP3516924B2 (en) Upstream water level control gate of waterway
KR20040042669A (en) Apparatus for automatically controlling a water level of dam
JPH0833003B2 (en) Automatic turning weir
JPH0526885B2 (en)
SU940136A1 (en) Regulator of water level in hydroengineering structure pools
JP2582620B2 (en) Upstream water level control gate with automatic operation device
JPS637409A (en) Automatic sluice gate device
KR200381660Y1 (en) Buoyancy type fish way

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees