JPS637409A - Automatic sluice gate device - Google Patents

Automatic sluice gate device

Info

Publication number
JPS637409A
JPS637409A JP14915886A JP14915886A JPS637409A JP S637409 A JPS637409 A JP S637409A JP 14915886 A JP14915886 A JP 14915886A JP 14915886 A JP14915886 A JP 14915886A JP S637409 A JPS637409 A JP S637409A
Authority
JP
Japan
Prior art keywords
water
water level
downstream
gate
float
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14915886A
Other languages
Japanese (ja)
Inventor
Kunikazu Aragata
荒ケ田 國和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokoku Kogyo Co Ltd
Original Assignee
Hokoku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokoku Kogyo Co Ltd filed Critical Hokoku Kogyo Co Ltd
Priority to JP14915886A priority Critical patent/JPS637409A/en
Publication of JPS637409A publication Critical patent/JPS637409A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make easier the construction and maintenance control of various facilities by a method in which a downstream level-change amplifying chamber, a downstream still-water pond leading from the gate to downstream, and a constricted water channel are provided near the gate in such a way as to enable a float to transmit the water level of the downstream level-change amplifying chamber. CONSTITUTION:A gate shaft 4b is rotatably supported on paired gate bearings 4a fixed to the inside of a water channel 3, and a circular skin plate 4d is fixed to the tip of paired arms 4c. An inlet 6 for downstream is provided on just upstream of a constricted part 3a, and a downstream still-water pond 7 connected to the other end is isolated from a downstream level-change amplifying chamber 9 by a downstream level-detecting level 8. The water pressure to a gate 4 is increased as the water level or river 1 rises, and the resistance torque of the gate 4 is increased. It is thus made possible that water is not taken-in at all during the dry season, taken-in excessively during the rainy season, and taken-in a fixed amount during the flood.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、自動的に水路中の通過水流量を一定に制御す
るための自動水門扉装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an automatic water gate device for automatically controlling the flow rate of water passing through a waterway to a constant value.

(従来技術) 本発明の理解の便を図るため、従来の水門扉の用途およ
び従来技術について順次説明する。
(Prior Art) In order to facilitate understanding of the present invention, the uses of conventional water gates and the prior art will be sequentially explained.

水門扉の用途は、所要水jkを通過させる場合と、余剰
水iを通過させる場合の二つがあシ、この目的を達成す
る友めには、堰等が併用される事は勿論であるが、水門
扉自体の機能としては、前者は水門扉の下流、後者は水
門扉の上流の水位を一定に保持する機能が必要である。
Water gates can be used in two ways: to allow the required water jk to pass through, and to allow surplus water i to pass through.Of course, weirs, etc., are also used to achieve this purpose. As for the function of the water gate itself, the former requires the function of maintaining a constant water level downstream of the water gate, and the latter the function of maintaining a constant water level upstream of the water gate.

また、後者については、すでに二十数年以前から、無人
無動力の装置が出現し、敗退したものもあるが、分流を
作り、その水面の昇降を利用する機種は立派に成功し、
広く普及し、−部分の用途の無人無動力化は達成逼れて
いる。
Regarding the latter, unmanned and unpowered devices have already appeared over twenty years ago, and although some have been defeated, models that create diversions and utilize the rise and fall of the water surface have been highly successful.
It has become widespread, and unmanned and unpowered applications are becoming more and more achievable.

しかし、その用途は極めて小テ<、分水をし易くするた
めに水路を堰止げる、いわゆるチエツクゲートおよび降
雨時に水路の余剰水を水路外へ排出する余水吐ゲートに
限定てれ、水門扉の用途の大部分を占める、下流水位全
−定的保持する機能のゲートは、無人無動力化が実現せ
ず、現段階においては、いちいち人為的に操作し、或は
自動化する場合には、フロートによって水位を測定し、
堰を併用して流量全測定し、或は超音波を併用して流速
を測定し、電子機器を用いて流量を計算して、ゲートの
電動機を制御する方法が採られている。
However, its use is extremely small, and is limited to so-called check gates that dam waterways to facilitate water diversion, and spillway gates that discharge excess water from the waterway out of the waterway during rainfall. The gates, which have the function of constantly maintaining the downstream water level, which accounts for most of the uses of water gates, cannot be made unmanned or unpowered, and at present, it is difficult to operate them manually or automatically. measures the water level by a float,
The methods used include measuring the total flow rate using a weir, or measuring the flow velocity using ultrasonic waves, calculating the flow rate using electronic equipment, and controlling the gate motor.

ま友、最近は、上記の二徨類のゲートの機能を併せ持っ
た機能が必要となって来た。すなわち、最近、新規に河
川水を利用する場合は、本川および皮相にダムを築造す
る事が出来ず1派用にダムを築造し、本川または皮相か
ら余剰水量だけを取水して貯留して置く場合が多くなっ
て来たが、このような個所においては、渇水時において
は全く取水せず、豊水時においては余剰水量だけ全取水
し、ざらに洪水時においては取水量を一定に保持する事
が必要となるが、これをゲートの機能面から見ると、豊
水時における機能は、上流水位を一定て保持する機能全
有するゲート(以下、上流水位型と云う)が必要でちゃ
、洪水時においては、下流水位も一定に保持する機能を
有するゲート(以下、下流水位型と云う)が必要となっ
て来7’C,三の腫の云わば上下流水位型においても、
上記の下流水位型と同じく電気的手法が用いられている
が、この場合には、上記のとおり、取水の制限が厳しく
、ま九、設置9個所が人里離れた渓谷である場合が多い
ので、遠隔操作装置をも必要となる事が多い。
Dear friend, recently there has been a need for a function that combines the functions of the above two types of gates. In other words, recently, when newly using river water, it is not possible to build a dam on the main river or the surface, so a dam is built for one branch, and only the surplus water is taken from the main river or the surface and stored. However, in such locations, no water is taken at all during times of drought, only the surplus water is taken in during times of abundance, and the amount of water taken is kept constant during times of flooding. However, if we look at this from the functional aspect of the gate, we need a gate (hereinafter referred to as the "upstream water level type") that has all the functions of maintaining the upstream water level at a constant level during times of high water. Sometimes, a gate with the function of keeping the downstream water level constant (hereinafter referred to as the downstream water level type) is required.
Like the downstream water level type described above, an electrical method is used, but in this case, as mentioned above, water intake restrictions are severe and the nine installation locations are often located in remote valleys. , a remote control device is also often required.

(本発明が解決しようとする問題点) 従来技術においては、第一に、電力施設、電子機器装置
、遠隔操作装置の建設および維持管理に費用と時間がか
かフ過ぎる。第二に、フロートによって水位全測定する
ため、測定精度が低く、水利権をめぐる厳しい社会情勢
に対応し得ていない。また、第三に、従来においては堰
または、超音波音用いて、流量または、流速を測定して
いた几め、堰の設置位置において、大きな損失水頭音生
じて水路勾配が緩くな)、断面が大きく々って建設費が
嵩み、或は超音波測定装置の建設ビ維持管理に費用が嵩
むものでいた。本発明は、主として上記の三点について
の問題解決を図ろうとするものである。
(Problems to be Solved by the Present Invention) In the prior art, firstly, the construction and maintenance of power facilities, electronic devices, and remote control devices are expensive and time consuming. Second, since the entire water level is measured using floats, the measurement accuracy is low and it is not possible to respond to the severe social situation surrounding water rights. Thirdly, in the past, the flow rate or flow velocity was measured using a weir or ultrasonic sound. However, the cost of construction and maintenance of the ultrasonic measuring device is also high. The present invention is primarily intended to solve the above three problems.

上記従来技術で説明したとおり、上流水位型においては
、すでに無人無動力化が実現しているが、そのうち、も
つとも普及しているものは、ゲートの最寄シの位置に設
けた室内に、ゲート上流地点に設けた層頂から流入した
水が、オリスイスから流出し、ゲート下流地点の水路に
合流する分流を作って、上流水位の僅かな変化によって
、室内の水位を大きく変化てせるようにし、その水面に
浮べたフロートによって、ゲートを操作するものである
。しかし、下流水位型の場合においては、ゲート下流の
水位が対象となるので、何等かの工夫を行わなければ1
分流全形成し得ないが、本発明においては、ゲート下流
の水路の一部の水面中を緩やかに挟挿して、限界流を生
じさせて、低い水面を作シ、ここに分流を合流させる手
段と用いて、この種のゲートについても、無人無動力化
を実現し、もって、上記第一の問題点を解決する。
As explained in the prior art section above, unmanned and unpowered systems have already been realized in the upstream water level type, but the most popular type has a gate installed in a room near the gate. The water that flows in from the top of the bed established at the upstream point flows out from the orisuis, creating a branch flow that joins the waterway at the downstream point of the gate, so that a slight change in the upstream water level can cause a large change in the water level in the room. The gate is operated by a float floating on the water surface. However, in the case of the downstream water level type, the target is the water level downstream of the gate, so unless some kind of device is used, 1
Although it is not possible to completely form a diversion, in the present invention, the water surface of a part of the waterway downstream of the gate is gently inserted to create a critical flow to create a low water surface, and the diversion is made to join there. By using this, this type of gate can also be made unmanned and unpowered, thereby solving the first problem mentioned above.

fノ 第二の問題点について、堰長を大きくし、越流水深を極
めて小でクシ穴埋を用いて、水位を低下する事によって
解決する。第三の問題てついてh基本的方針として、上
記の挟挿部を用いて流量を把握し、併せて、挟挿後、再
び緩やかに水面中も拡大する事によって損失水頭を少く
し、問題の解決を図る。
The second problem in f is solved by increasing the length of the weir, making the overflow water depth extremely small, and using comb hole filling to lower the water level. Regarding the third problem, the basic policy is to grasp the flow rate using the above-mentioned clamping part, and at the same time, after the clamping part is inserted, the head loss is reduced by gently expanding into the water surface again, and the problem is solved. Try to find a solution.

(問題を解決するための手段) 上記目的を達成するために1本発明は、河川から導水し
た水路中において、水平軸の周シに揺動自在に設は次、
水路の開閉の之めのゲートと、前記ゲートの近くに設け
られた下流水位変化増巾室と、前記下流水位変化増巾室
の中を下流水位検知堰によって形成きれた、ゲートより
下流の水路と連通している下流水静水池と、前記下流水
位変化増巾室と連通した、前記ゲートより下流の挾搾水
路と、前記下流水位変化増巾室中または前記下流水位変
化増巾室に隣接して設けられ、河川の水位の影響を受け
るように設けた上流水位変化増巾室中であって、前記ゲ
ートの水平軸が延長した部分に装着され、前記いずれか
の変化増巾室の水位の変化を前記ゲートに伝える7a−
1とからなることを特徴とする構成からなる自動水門扉
装置に関する。
(Means for solving the problem) In order to achieve the above object, the present invention has the following features:
A waterway downstream of the gate formed by a gate for opening and closing the waterway, a downstream water level change widening chamber provided near the gate, and a downstream water level detection weir inside the downstream water level change widening chamber. a downstream still water pond communicating with the downstream water level change widening chamber, a squeezed waterway downstream of the gate communicating with the downstream water level change widening chamber, and inside the downstream water level changing widening chamber or adjacent to the downstream water level changing widening chamber. The upstream water level change amplification chamber is installed as a gate and is set up to be affected by the water level of the river, and the gate is attached to the extended portion of the horizontal axis of the gate, and the water level in any of the above change amplification chambers is 7a- transmits the change in to the gate.
1. The present invention relates to an automatic water gate device having a configuration characterized in that: 1.

(作  用) 本発明は上記構成からなるものであるから、水路中の水
位の上下によってフロートが上下し。
(Function) Since the present invention has the above configuration, the float moves up and down depending on the rise and fall of the water level in the waterway.

この動作によりゲートを開閉することができる。This operation allows the gate to be opened and closed.

(実 施 例) 本発明の実施例′5:図面と共に説明する。(Example) Embodiment '5 of the present invention: This will be explained with reference to the drawings.

先ず、第1図、第2図および第3図により、下流水位型
について説明する。
First, the downstream water level type will be explained with reference to FIGS. 1, 2, and 3.

河川1の食中を横断して、十分な高てを有する堰堤2が
設けられ、その上流において、河川1から水路3が分岐
し、その直下流にゲート4が設置され、その上部の水路
3の断面は全面的に遮水壁5によって閉塞され、ゲート
4の設置点の下流の適当な位置に設け、挟挿部 3a 
は水面中が緩やかにせばめられ、丁度限界流を生ずる水
面中に挟挿てれてから、再び緩やかに拡巾され、もっと
も挟挿された部分の水路底は極力低くされている。
A dam 2 with sufficient height is provided across the middle of the river 1, and a waterway 3 branches from the river 1 upstream of the dam 2. A gate 4 is installed immediately downstream of the dam 2, and the waterway 3 above it branches. The cross section of is completely closed by a water-shielding wall 5, and is provided at an appropriate position downstream of the installation point of the gate 4, and the insertion part 3a
The channel is narrowed gently in the water surface, and after it is inserted into the water surface where the critical flow occurs, it is gently widened again, and the bottom of the channel where it is inserted most is made as low as possible.

ゲート4の構成について説明すれば、水路3内に固着さ
れた。−対のゲート軸受″’4a  に−本のゲート軸
 4b゛″が回動自在に支持され、これと−体となった
一対のアーム゛’4c  の先端に水路3の全巾を横断
する円弧状のスキンプレート’4d”が固着され、アー
ム°4c の他端には対重 4e”力;調節自在に装着
され、ゲート4の最大の開度は、ストッパー’ 4 f
 ”によって制限され、ゲート4の上方の水路3の断面
は、全て遮水壁5によって遮断され、その下端に固着さ
れた止水ゴム゛5 a ”の先端がスキンプレート4 
d ”の上流面に栓く圧着されている。
Explaining the structure of the gate 4, it is fixed within the water channel 3. A gate shaft 4b'' is rotatably supported by a pair of gate bearings 4a, and a circle extending across the entire width of the waterway 3 is attached to the tips of a pair of arms 4c that form a body with the gate shaft 4b. An arc-shaped skin plate '4d' is fixed to the other end of the arm 4c, and a counterweight 4e' force is freely adjustable, and the maximum opening degree of the gate 4 is determined by the stopper '4f'.
The cross section of the waterway 3 above the gate 4 is completely blocked by the water barrier wall 5, and the tip of the water barrier rubber "5a" fixed to the lower end of the water barrier wall 5 is restricted by the skin plate 4.
d'' is crimped onto the upstream surface.

挟挿部°゛3a″゛の直上流、すなわち、全、く水面中
が狭められていない部分の水中に、下流水導入口6が開
口し、その他端に接続する下流水静水池7は、下流水位
検知堰8によって、下流水位変化増巾室9と区別せられ
、下流水位変化増巾室9の下部水中に下流水排出孔1a
が開口し、排出管11を通って、挟挿部゛′3a″の水
中に連通している。下流水排出孔10の断面積は、河川
1のものとも急激な減水速度と下流水位変化増巾室9の
大きさを考慮して適当に走られている。また、下流水位
検知堰8の堰長および排出管11の断面積は、下流水排
出孔10の断面積に比して、十分に大きく、そのクレス
の高では所定の計画水位よりも僅かに低く、調節自在に
されている。
A downstream water inlet 6 opens immediately upstream of the clamping part ゛3a'', that is, in a part of the water where the water surface is not completely narrowed, and a downstream water still water pond 7 is connected to the other end. The downstream water level detection weir 8 distinguishes it from the downstream water level change widening chamber 9, and there is a downstream water discharge hole 1a in the lower part of the downstream water level changing widening chamber 9.
The downstream water discharge hole 10 opens and communicates through the discharge pipe 11 into the water in the inserted part ``3a''. It is run appropriately considering the size of the width chamber 9. Also, the weir length of the downstream water level detection weir 8 and the cross-sectional area of the discharge pipe 11 are sufficiently large compared to the cross-sectional area of the downstream water discharge hole 10. The cress height is slightly lower than the predetermined planned water level and is adjustable.

なお、下流水位変化増巾室9内には、上記のゲート軸”
4b’が突出しておυ、フロート軸受12に回動自在に
支持されたフロート軸13がゲート軸 4b と結合さ
れている。
In addition, the above-mentioned gate shaft is located inside the downstream water level change width expansion chamber 9.
4b' protrudes and a float shaft 13 rotatably supported by a float bearing 12 is coupled to the gate shaft 4b.

フロート軸13と一体となっ友リンク14の上端にフロ
ート懸垂ピン15が固着され、これにフロートa垂ロッ
ド16が回動自在に懸垂され、その下端にフロート17
が固着されている。
A float suspension pin 15 is fixed to the upper end of the friend link 14 integrally with the float shaft 13, a float a suspension rod 16 is rotatably suspended from this, and a float 17 is attached to the lower end of the float suspension pin 15.
is fixed.

フロート懸垂ピン15の位置は、フロート軸13の右下
方にあるが、その方向は次のとおりに定められている。
The float suspension pin 15 is located on the lower right side of the float shaft 13, and its direction is determined as follows.

すなわち、ゲート4が全開している時には、ゲート4に
水圧が加わらないので、ゲート4の抵抗トルクは小さい
が、河川1の水位が上昇するにつれて、ゲート4に加わ
る水圧が加わるので、ゲート4の抵抗トルクは大きくな
るが、全開状態と全閉状態におけるフロート軸13と、
フロート懸垂ピン15の水平距離の比率が同じく、両状
態におけるゲート4の抵抗トルクの比率と−致し、ま几
、両状態におけるフロート懸垂ビン15位置の高石の差
が、下流水導入ロ6位置と挟挿部”5 aIの水面の高
さの差(以下、水位差と云う)の半分となるよう、フロ
ート懸垂ピン15の位置は定められている。
That is, when the gate 4 is fully open, no water pressure is applied to the gate 4, so the resistance torque of the gate 4 is small, but as the water level of the river 1 rises, water pressure is applied to the gate 4, so the resistance torque of the gate 4 increases. Although the resistance torque increases, the float shaft 13 in the fully open state and the fully closed state,
The ratio of the horizontal distance of the float suspension pin 15 is the same, and the ratio of the resistance torque of the gate 4 in both conditions is the same. The position of the float suspension pin 15 is determined so as to be half the difference in water surface height (hereinafter referred to as water level difference) between the pincer part "5aI".

フロート17の位置は、ゲート4が全閉状態の時に、も
つとも高くなるが、その時、上端は水路3の下流水導入
ロ6位置の水位に一致するよう構成されている。フロー
ト17の下端については、少し説明を要する。ゲート4
が安定状態を保つためには、フロート17には常時水浸
している部分がなければならない事は勿論であるが、こ
の常時水浸している部分を除いた部分(以下、露出部分
と云う)の高さは、下流水導入ロ6位置と挟挿部I5a
 位置の水位差の半分である。上記構成からして、フロ
ート17の露出部分の下端は、ゲート4が全開状態の時
に、挟挿部”3a゛の水面と等しい高でとなる事は勿論
である。ま几、フロート17は全ての部分が水浸しても
、々お、フロート懸垂ビン15に懸垂されているよう、
十分に重くされている。
The position of the float 17 is naturally high when the gate 4 is in the fully closed state, but at that time, the upper end is configured to match the water level at the downstream water introduction hole 6 position of the water channel 3. The lower end of the float 17 requires a little explanation. gate 4
In order for the float to maintain a stable state, it goes without saying that there must be a part of the float 17 that is constantly submerged in water, but the height of the part excluding this part that is constantly submerged in water (hereinafter referred to as the exposed part) is is the downstream water introduction hole 6 position and the insertion part I5a.
This is half the water level difference between the two locations. Given the above configuration, it goes without saying that the lower end of the exposed portion of the float 17 is at the same height as the water surface of the pincer part "3a" when the gate 4 is fully open. Even if the part is flooded, the float suspension bottle 15 will remain suspended.
It is sufficiently weighted.

対重“” 4 e ”の位置は、フロート170周辺の
水面が上記露出部分の半分の高fK″ある時に、−連の
回動部分が均衡し、静止するよう調節されている。
The position of the relative weight "4e" is adjusted so that when the water surface around the float 170 is at a height fK" which is half the height of the exposed part, the rotating part of the - link is balanced and stands still.

ま友、下流水位型が使用される個所においては、大洪水
の時には、取水をしない方が好ましい場合が多いので、
実施例においては、河川1の取水を再開すべき水位に、
入口゛18a をもって、注水管18が開口し、−旦上
昇し、クレス) ’18b すなわち、最高位部分の内
下面が取水を停止すべき水位に合致してから反転下降し
、その下端の吐出口’18c’が、入口゛18aより、
十分に低い高さで、もって下流水位変化増巾室9内の室
中に開口している。フロート弁19の弁座 f?、  
の周辺は突起し、注水管18の吐出口 18 c ”を
囲み支桿 19b゛に固着され、支桿’19b”は、ヒ
ンヂ19c゛に回動自在に支持され、その他端にフロー
ト部”19d″゛が固着され、下流水位変化増巾室9内
の水面が、下流水位検知堰8のフレストと等しい時に弁
座” 19 a ”は吐出口゛18c と密着されるよ
う、構成されている・ 次に、上記の実施例を応用して上下流水位置の機能とし
た応用例について説明する。上下流水位型においては、
洪水時にも取水が継続される事が望ましいので、注水管
1日およびフロート弁19は、構成から削除する必要が
ある。
Friend, in places where the downstream water level type is used, it is often preferable not to take water in the event of a major flood.
In the example, the water level at which the water intake of river 1 should be resumed is
At the inlet 18a, the water injection pipe 18 opens, rises once, and creases) 18b.In other words, after the inner and lower surfaces of the highest part meet the water level at which water intake should be stopped, it reverses and descends, and the discharge port at the lower end is opened. '18c' is from the entrance '18a'
It opens into the downstream water level change amplification chamber 9 at a sufficiently low height. Valve seat of float valve 19 f? ,
protrudes around the outlet 18c'' of the water injection pipe 18 and is fixed to the support rod 19b'', which is rotatably supported by the hinge 19c'' and has a float portion 19d at the other end. The valve seat "19a" is configured to be in close contact with the discharge port "18c" when the valve seat "19a" is fixed and the water level in the downstream water level change widening chamber 9 is equal to the frest of the downstream water level detection weir 8. Next, an application example will be described in which the above embodiment is applied to function as a function of upstream and downstream water positions. In the upstream and downstream water level type,
Since it is desirable that water intake continues even during a flood, the water injection pipe and float valve 19 need to be removed from the configuration.

次に、付加される構成要素について、第4図および第5
図により説明すると、河川1内の流水中に、上流水導入
口20が開口し、これに接続する上流水静水池21が、
上流水位検知堰・22によって、上流変化増巾室23と
区別きれている。上流水位検知堰22のフレストの高さ
は、所定の河川1の計画水位より僅かに低く、可変とは
されていない。上流水位変化増巾室23の水中には、上
流水排出管24が開口し、その他端は排水管11に接続
されているが、上流水静水池21および上流水位変化増
巾室23は、水路3および、下流水位変化増巾室9から
完全に遮断逼れ、ゲート軸 4 b ”も、水密の構造
をもって隔壁全貫通して、上流水位変化増巾室23の室
中に突出している。−i次、フロート17の空洞部分の
下端および上端に、それぞれ可撓性の通水管25および
通気管26が接続されておフ、他端は下流水位変化増巾
室9内の水中、および空中に開口している。
Next, regarding the added components, see Figures 4 and 5.
To explain with a diagram, an upstream water introduction port 20 opens into flowing water in a river 1, and an upstream water still water pond 21 connected to this,
The upstream water level detection weir 22 distinguishes it from the upstream change width increasing chamber 23 . The height of the frest of the upstream water level detection weir 22 is slightly lower than the planned water level of the predetermined river 1, and is not variable. An upstream water discharge pipe 24 opens underwater in the upstream water level change widening chamber 23, and the other end is connected to the drain pipe 11. The gate shaft 4b has a watertight structure, completely penetrates the partition wall, and protrudes into the upstream water level change amplification chamber 23. A flexible water pipe 25 and a flexible ventilation pipe 26 are connected to the lower and upper ends of the hollow part of the float 17, respectively, and the other end is connected to the water in the downstream water level change amplification chamber 9 and to the air. It's open.

次に、変更される要点について説明すると、先ず、下流
水位検知堰8のフレストの高さは、−定に固定され、す
でに上記において述べたとおり、ゲート軸゛4b′は、
上流水位変化増巾室23内に突出し、これに結合された
フロート軸13の左上方に、フロート懸垂ビン15の位
置が変更され、その定量的な位置は最大の洪水時におい
て取水音読ける状態、いわは全閉状態と、全開状態全基
準にして定められ、また、フロート17も上流水位変化
増巾室23内に懸垂され、その上端の高でも、ゲート4
が全開状態の時に河川1の計画水位に一致するよう定め
られている。対重”4e’の位置は変更しなくて良い。
Next, to explain the points to be changed, first, the height of the frest of the downstream water level detection weir 8 is fixed constant, and as already mentioned above, the gate axis 4b' is
The position of the float suspension bin 15 is changed to the upper left of the float shaft 13 that protrudes into the upstream water level change amplification chamber 23 and is connected to it, and its quantitative position is such that the water intake sound can be read at the time of the maximum flood. The rock is determined based on the fully closed state and the fully open state, and the float 17 is also suspended in the upstream water level change amplification chamber 23, and even at its upper end, the gate 4
The water level is set to match the planned water level of River 1 when the water level is fully open. There is no need to change the position of the weight "4e".

全般的な機能の説明を行う前に、予め、部分的構成によ
って得られる部分的機能について説明する。先ず、挟挿
部’3a  の機能について説明する。第2図において
断面Iは全く挟挿されず、水流が常流となっている下流
水導入ロ6位置の断面を示し、断面■は水面中が挟挿さ
れて、水流が限界流となっている挟挿部゛、3a’の断
面を示し、断面■は再び緩やかに拡巾されて水流が再び
常流となっている断面を示している。
Before explaining the general functions, the partial functions obtained by the partial configuration will be explained in advance. First, the function of the inserting part '3a will be explained. In Figure 2, cross section I shows the cross section at the downstream water introduction hole 6 position where there is no interpolation at all and the water flow is a normal flow, and cross section ■ shows the cross section at the downstream water introduction hole 6 position where the water surface is intercalated and the water flow is a critical flow. The cross section 3a' shows a cross section of the inserted part 3a', and the cross section 3 shows a cross section where the width is gradually widened again and the water flow becomes a regular flow again.

M2図中の各記号は次のとおりである。Each symbol in the M2 diagram is as follows.

h1=断面lの水面から、断面Hの水路底まで、の高嘔
、 hvl:断面Iの流速水頭、 hvl:断面Iから断面■までの間の損失水頭、h2=
断面■の水深、 hγ2:断面■と断面■の間の損失水頭、先ず1、断面
Iと断面■間の水面差について、水理学的に説明する。
h1 = high elevation from the water surface of cross section l to the channel bottom of cross section H, hvl: velocity head of cross section I, hvl: head loss between cross section I and cross section ■, h2 =
Water depth at cross section ■, hγ2: Head loss between cross section ■ and cross section ■, Firstly, the water level difference between cross section I and cross section ■ will be explained from a hydraulic perspective.

断面■の総水類■(は、 H=hl +hvlhγl 限界流においては、水深が総水類の2/3になると云う
周知の法則があるから、 よりて、断面1と断面■の水面の高嘔の差2はで 2中−(2) 上記の(2)式から、水面差2を大きくするには、断面
■の水路底を低くすれば良い事が判るが。
The total water mass of cross section ■■ (is, H = hl + hvlhγl There is a well-known law that says that in a critical flow, the water depth is 2/3 of the total water volume. Therefore, the height of the water surface of cross section 1 and cross section ■ The difference in water level 2 is in 2 - (2) From equation (2) above, it can be seen that in order to increase the water level difference 2, the bottom of the waterway in cross section ■ should be lowered.

いずれにしろ、実在の水路において、断面Iと、断面■
の間に、数十センチメートルの水位差が生じ、両断面間
に内水導入口6に始まり、排出管11を経て、挟挿部゛
r 3 a lに至る分流も発生する。
In any case, in an actual waterway, cross section I and cross section ■
During this period, a water level difference of several tens of centimeters occurs, and a branch flow is also generated between the two cross sections, starting from the internal water inlet 6, passing through the discharge pipe 11, and reaching the inserted part "r3a1".

次に、内水導入口6の位置、すなわち、断面lの水位を
一定に制御すれば、断面■を通過する水量を一定になし
得ると云う事について説明する。先ず、断面■におけろ
水流は限界流であるので、水理学的は、その性質は堰と
変りはなく、ゲート4により、断面■の水位を一定に制
御すれば、こ\全通過する水量が一定となる事は勿論で
ある。しかし、断面Hの通過水量が一定であっても、そ
の中には、排出管11からの流量が含まれ、その量は一
定ではないので、断面lと断面■間の流量は若干変化し
、し九がって、断面lと断面■の間の損失水頭hrtが
変化し、ひいては、断面1の水面は一定ではない。
Next, it will be explained that by controlling the position of the internal water inlet 6, that is, the water level of the cross section 1, to be constant, the amount of water passing through the cross section 2 can be made constant. First, since the water flow at cross section ■ is a critical flow, hydraulically its properties are no different from those of a weir, and if the water level at cross section ■ is controlled to a constant level by gate 4, the total amount of water passing through this area will be reduced. Of course, is constant. However, even if the amount of water passing through cross section H is constant, it includes the flow rate from the discharge pipe 11, and that amount is not constant, so the flow rate between cross section l and cross section ■ changes slightly. Therefore, the water head loss hrt between section 1 and section 2 changes, and as a result, the water level at section 1 is not constant.

と云う問題があるが、実用上からすれば、本来。There is a problem, but from a practical point of view, it is normal.

断面lと断面■の間の損失水頭は極めて小さく、数ミリ
メートルに過ぎず、また、排出管11を経由する流量は
、全流量の数十分の−に過ぎない。
The head loss between section 1 and section 2 is extremely small, only a few millimeters, and the flow rate through the discharge pipe 11 is only several tenths of the total flow rate.

したがって、断面I、すなわち、内水導入ロ6位置の水
位を一定に保持すれば、水路3の下流部分の流量を一定
になし得るものである。
Therefore, if the water level at cross section I, that is, the internal water introduction hole 6 position is kept constant, the flow rate in the downstream portion of the water channel 3 can be kept constant.

次に、上記の如く局部的に大きな水位差を生じ、しかも
通過水量を把桿し得ると云う、堰同様の機能を有するに
も拘らず、挟挿部 3a’位置における損失水頭が少い
と云う事全説明する必要があるが、水理掌上の漸拡、す
なわち、再び緩やかに拡巾すれば、挟挿部分において一
旦、流速水頭と化しているエネルギーの殆んどは。
Next, although it has the same function as a weir in that it produces a large local water level difference as described above and can measure the amount of water passing through, the water head loss at the insertion part 3a' position is small. I need to explain the whole thing, but if you gradually widen it on the hydraulic palm, that is, if you widen it slowly again, most of the energy that is once converted into a velocity head at the inserted part will be lost.

再び位置のエネルギーに変じ、第2図に示すとおり、断
面■の水面は再び上昇し、断面■から断面■までの間に
失われる損失水頭は、数十ミリメートルに過ぎない。し
友がって、堰による損失水頭に伴う、或は超音波の使用
に伴う不経済性の問題は解消し得る。
It is converted into potential energy again, and as shown in Figure 2, the water level at cross section (■) rises again, and the loss of water head between cross section (■) and cross section (■) is only a few tens of millimeters. Accordingly, the problems of uneconomical problems associated with head losses due to weirs or with the use of ultrasound can be eliminated.

また、堰8と排出孔IQを組せる事によって堰上流の僅
かな水位変化によって、堰8と排出孔100間の水面が
大きく変化すると云う事象について説明する。この説明
の目的が堰上流、すなわち、水路3および河川1の水位
変化全極めて小ざくし得る事を説明するためである事は
云うまでもない。すなわち、排出孔10の断面積に比し
て堰の長さは極めて大きくされているので、堰上流の水
位が安定している時Q層頂上の越流量は、極めて小さい
。し友がって、水位が僅かに下れば、層頂上の越流量は
なくなジ、塩8ビ排出孔10の間の水面は排出孔10の
下流、−rなわち、具体的に云えば挟挿部’3a  の
水面と同じになる事、換言すれば、堰下流の水位が僅か
に低下すれば堰と排出孔10の間の水面が大きく低下す
る事は勿論である。
Also, by assembling the weir 8 and the discharge hole IQ, a phenomenon in which a slight change in the water level upstream of the weir causes a large change in the water level between the weir 8 and the discharge hole 100 will be explained. It goes without saying that the purpose of this explanation is to explain that the water level changes upstream of the weir, that is, in the waterway 3 and river 1, can all be extremely small. That is, since the length of the weir is extremely large compared to the cross-sectional area of the discharge hole 10, the overflow at the top of the Q layer is extremely small when the water level upstream of the weir is stable. Therefore, if the water level falls slightly, there will be no overflow at the top of the layer, and the water surface between the PVC discharge holes 10 will be downstream of the discharge holes 10, i.e. For example, if the water level becomes the same as the water level at the insertion part '3a, in other words, if the water level downstream of the weir drops slightly, it goes without saying that the water level between the weir and the discharge hole 10 will drop significantly.

堰下流の水位が上昇した場合について説明する。We will explain the case where the water level downstream of the weir rises.

堰8および排出孔10からの流量は、それぞれ、次式に
よって表わされる。
The flow rates from the weir 8 and the discharge hole 10 are respectively expressed by the following equations.

Q = Cs B 、 h 5/2         
  (3)Q =C2、A、 fT戸L(4) ここで、 Q:流量     C2:排出孔の流量C1:堰の流量
係数 A:排出孔の断面積B:堰長     g:重力
の加速度 h:越越流    H:排出孔の入口と出口の水位差 次に、hが僅かにΔhだけ増加した場合に、排出孔上下
流の水位差Hが、いかに変化するかと云う事を計算する
。(3) (4)式の微分量はそれぞれ、 上の二式から ΔH=3−Δh(7) こ\に求めたΔHは、排出孔の上下流の水位差であるが
、Δhが極めて小さいから、排出孔下流の水位差は一定
と見做して差支えないので、ΔHを堰と排出孔の間の水
位変化量と考えて差支えない。
Q = Cs B, h 5/2
(3) Q = C2, A, fT door L (4) Where, Q: Flow rate C2: Flow rate of the discharge hole C1: Flow rate coefficient of the weir A: Cross-sectional area of the discharge hole B: Weir length g: Acceleration of gravity h : Overflow H: Water level difference between the inlet and outlet of the discharge hole Next, when h increases slightly by Δh, how the water level difference H between upstream and downstream of the discharge hole changes will be calculated. (3) The differential amount of equation (4) is obtained from the above two equations as follows: ΔH = 3 - Δh (7) ΔH calculated here is the water level difference between upstream and downstream of the discharge hole, but Δh is extremely small. Therefore, it is safe to assume that the water level difference downstream of the discharge hole is constant, so it is safe to consider ΔH as the amount of water level change between the weir and the discharge hole.

今、h、=1.50mの場合を例にして説明すれば、Z
=1.5073 = CL50m 長らく安定状態にあったので、フロート170周辺、ま
几は、内部の水面は露出部分の半分の高さにあり、ゲー
ト4は静止していた管であるが、Hが、もっとも小さい
のは、下流水位型においては、ゲートが全閉状態のとき
、上下流水位型においては、ゲートが最閉状態のときで
あるが、いずれの場合も最小の■は同じであシ、上記に
おいて説明した構成からして、 H=Z/4=α50/4=I1125mいま、この時の
越流縁に5cmとすれば。
Now, to explain the case of h = 1.50m as an example, Z
= 1.5073 = CL50m Because it had been in a stable state for a long time, the water level around float 170 and inside the tank was half the height of the exposed part, and gate 4 was a stationary tube, but H , is the smallest in the downstream water level type when the gate is fully closed, and in the upstream and downstream water level type when the gate is in the fully closed condition, but the minimum ■ is the same in both cases. , Considering the configuration explained above, H=Z/4=α50/4=I1125m Now, if we assume that the overflow edge at this time is 5 cm.

ΔH=3Xて罰了Δ11=75.0Δh上記計算は1例
ではあるが、堰下流の僅かな上昇によって、堰下流の水
面は大きく上昇する。
ΔH=3X Penalty Δ11=75.0Δh Although the above calculation is just an example, a slight rise downstream of the weir causes the water level downstream of the weir to rise significantly.

したがって、その上昇によってゲート4が操作され、水
面は再び補正されるが、いま、上記の計算と観点を変え
て、堰下流の水位が、どこまで上昇すれば、堰下流の水
位が殆んど、堰下流の水位と殆んど同じになるかと云う
事について計算する。
Therefore, gate 4 is operated due to the rise, and the water level is corrected again, but now, changing the above calculation and viewpoint, how far should the water level downstream of the weir rise? Calculate whether the water level will be almost the same as the water level downstream of the weir.

ΔH=α500−α125−α3757/13H3×α
125 よって、堰下流の水位が当初の越流縁α005mから、
さらに(LOO5771上昇すれば、堰下流の水位は、
堰下流の水位と殆んど等しくなる。要するに、堰の越流
縁の変化が僅か10c!!L程度あれば、堰下流の水位
は50αも動くので、否応なしにゲート開度が補正てれ
、堰下流の水位の変化は10CIF1程度に抑え得る事
が判明した。
ΔH=α500-α125-α3757/13H3×α
125 Therefore, the water level downstream of the weir is from the initial overflow edge α005m,
Furthermore, if LOO5771 rises, the water level downstream of the weir will be
The water level will be almost the same as the water level downstream of the weir. In short, the change in the overflow edge of the weir is only 10c! ! If it is about L, the water level downstream of the weir will move by 50α, so the gate opening degree can be corrected without fail, and it has been found that the change in the water level downstream of the weir can be suppressed to about 10CIF1.

以上によって予備説明を終了したので、下流水位型の機
能について説明する。第1図〜第3図において、河川1
内の水位が低く、下流水静水池7内の水面が下流水位検
知堰8のフレストより低い時には、下流水位変化増巾室
9内の水位は挟挿部”3a゛′の水面と等しいが、フロ
ート17の露出部分の下端は、ゲート4が全開し、水路
5の水位が計画水位の時に、はじめて挟挿部“3&“の
水面と等しい高さとなるので、−連の回動部分に、フロ
ート17の露出部分の半分の容積の水の重量に等しい均
衡を崩す力が働いてゲート4は全開し、ストッパ ”4
f  K支えられて静止し、スキンプレード4d は空
中に露出し、流水は何等の制約もなしに水路3内へ流入
し、可能な限シの取水が続行される。
Now that the preliminary explanation has been completed, the functions of the downstream water level type will be explained. In Figures 1 to 3, river 1
When the water level in the downstream still water reservoir 7 is lower than the crest of the downstream water level detection weir 8, the water level in the downstream water level change amplification chamber 9 is equal to the water level at the insertion part "3a", The lower end of the exposed part of the float 17 will be at the same height as the water surface of the insertion part "3&" only when the gate 4 is fully opened and the water level of the channel 5 is at the planned water level. Gate 4 opens fully due to an unbalanced force equal to the weight of water half the volume of the exposed part of gate 4, and stopper 4
f K is supported and stationary, the skin blade 4d is exposed in the air, the flowing water flows into the water channel 3 without any restrictions, and water intake continues as much as possible.

また、河川1の水位が十分に高く、水路3の取水量が所
定の限度に近づくと、下流水位検知堰8のフレスト上か
ら、下流水位変化増巾室9内へ越流を生じ、室内の水位
は若干上昇するが、フロート17の露出部分の下半分が
水没した段階においては、ゲート4ば、静止したまま動
かず、所定量の取水が続行てれろ。
In addition, when the water level of the river 1 is sufficiently high and the water intake amount of the waterway 3 approaches a predetermined limit, overflow occurs from above the frest of the downstream water level detection weir 8 into the downstream water level change width expansion chamber 9, and The water level will rise slightly, but when the lower half of the exposed part of the float 17 is submerged, the gate 4 will remain stationary and continue to take in the prescribed amount of water.

しかし、さらに河川1の水位が上外し、水路3内の水位
が僅か(C所定の計画水路を超えると、下流水位検知堰
8上の越流水量は急激に増加し。
However, when the water level of the river 1 further rises and the water level in the waterway 3 exceeds a predetermined planned waterway (C), the amount of overflow water on the downstream water level detection weir 8 increases rapidly.

下流水位変化増巾室9内の水位が上昇し、フロート17
の露出部分の上半分も水没し、これによって生じた浮力
がゲート4に働き、ゲート4は僅かに閉じるが、僅かに
閉じただけで、水路3内の水位が低下して、下流水位変
化増巾室9内への流入量が激減し、室内の水位が低下す
る。
The water level in the downstream water level change width increasing chamber 9 rises, and the float 17
The upper half of the exposed part of the waterway is also submerged in water, and the resulting buoyancy acts on the gate 4, which closes slightly, but even if the gate 4 closes only slightly, the water level in the waterway 3 decreases, causing an increase in downstream water level change. The amount of water flowing into the width chamber 9 is drastically reduced, and the water level in the room is lowered.

−方、フロート17自体の上昇もあるので、ゲート4は
再び静止し、所定量の取水が続行でれる。このように、
ゲート4の1回当シの作動量は極めて僅少であるので、
ゲート4の運動は、恰も、連続運動であるかの如く1円
滑である。
- On the other hand, since the float 17 itself rises, the gate 4 becomes stationary again and the predetermined amount of water intake can continue. in this way,
Since the amount of operation of gate 4 at one time is extremely small,
The movement of the gate 4 is smooth, as if it were a continuous movement.

河川1の水位が、さらに上昇し続ければゲート4は、そ
の都度、直ちに閉じて、−定量の取水が続行てれるが、
下流水位検知堰8のフレストの高さを、予め調節して置
けば所要の水量に合わせて、取水量を変更する事も出来
る。
If the water level of river 1 continues to rise further, gate 4 will be immediately closed each time and a fixed amount of water intake will continue.
If the height of the frest of the downstream water level detection weir 8 is adjusted in advance, the amount of water intake can be changed according to the required amount of water.

こ\で、下流水位検知堰8のフレストを可変とする場合
における溝底について補足説明する。
Here, a supplementary explanation will be given regarding the groove bottom in the case where the frest of the downstream water level detection weir 8 is made variable.

ゲート4のストッパー1’ 4t ′は最大取水量の時
)水位に、スキンプレートla’の下端が合致するよう
定められることは勿論であるが、水位差z′5e−最少
流量の時、断面Iの水位と、最大流量の時の挟挿部3の
水位とすべき事は、全開状態におけるフロート17の露
出部下端の高さ、および全閉状態におけるフロート上端
の高での制約からして明らかである。
It goes without saying that the stopper 1'4t' of the gate 4 is set so that the lower end of the skin plate la' matches the water level (at the time of maximum water intake), but when the water level difference z'5e - the minimum flow rate, the cross section I It is clear from the constraints on the height of the exposed lower end of the float 17 in the fully open state and the height of the upper end of the float in the fully closed state that the water level should be the same as the water level of the clamping part 3 at the maximum flow rate. It is.

し友がって、下流水位検知堰8のフレストの高芒による
流量調節の範囲には限界があるが。
However, there is a limit to the range of flow rate adjustment by the height of the frest of the downstream water level detection weir 8.

流量調節の範囲が著しく大きく要求でれる場合には、断
面Iと断面■の間に調節可能なゲートを別途に設ける事
によって、目的を達成できる。
If a significantly larger range of flow rate adjustment is required, the objective can be achieved by separately providing an adjustable gate between sections I and II.

このようにして−定量の取水が続けられるが、水田の用
水等、上水道を除く一般の取水において降雨のため、用
水が不用となシ、むしろ渇水被害を防止しない段階とな
ると、注水管18のフレストから河川水が下流水位変化
増巾室9内へ流入し、室内水位とフロート17が一気に
上昇して、ゲート4は全閉するが、同時に、フロート弁
19のフロート部’1q、1°:に浮力が働いて、′弁
座’ 19 a ’、’が注水管18の吐出口”j8c
”に接近して、注水管18からの流入量が制限され、下
流水位変化増巾室9内の水位は、下流水位検知堰8のフ
レストよりも僅かに低い高てでもって、−定に保たれ、
ゲート4は全閉状態を続けるが、河川1の水位が、どの
ように高くなっても、注水管18からの流入量はフロー
ト弁19に制御されて著しく増加する事はなく、したが
って、下流水位変化増巾室9内の水位は、下流水位検知
堰8のフレストより高くなる事はないので、水路3に流
入する水は、下流水排出孔10から排田管11を通じて
流入する。僅かな水量だけとなって、事実上取水は中止
きれる。
In this way, a fixed amount of water intake continues, but due to rainfall in general water intakes, such as water for rice fields, etc., water is no longer needed, or rather, when it reaches a stage where drought damage cannot be prevented, the water injection pipe 18 River water flows from the frest into the downstream water level change amplification chamber 9, the indoor water level and the float 17 rise at once, and the gate 4 is fully closed, but at the same time, the float portion '1q, 1° of the float valve 19: The buoyant force acts on the 'valve seat'19a',' and the discharge port of the water injection pipe 18'j8c
”, the inflow from the water injection pipe 18 is restricted, and the water level in the downstream water level change amplification chamber 9 is kept constant at a height slightly lower than the crest of the downstream water level detection weir 8. Sauce,
The gate 4 remains fully closed, but no matter how high the water level of the river 1 becomes, the inflow from the water injection pipe 18 is controlled by the float valve 19 and will not increase significantly, so the downstream water level will increase. Since the water level in the variable width expansion chamber 9 never becomes higher than the frest of the downstream water level detection weir 8, water flowing into the water channel 3 flows from the downstream water discharge hole 10 through the discharge pipe 11. With only a small amount of water available, water intake can effectively be stopped.

注水管18内にはすでにサイフオン現象が形成され、ま
た、弁座、、’ 19 a ’の周辺が突起して、吐出
口 18C°の周囲を囲み、空気の侵入によるサイフオ
ンの切断全防止しているので、河川1の水位が注水管1
8の入口’18b iで低下するまで、上記の状態は維
持されるが、ここにおいて、注水管18内へ空気が侵入
して、注水管18から下流水位変化増巾室9内への水の
流入が止められるので、室内水位が低下し、ゲート4が
開いて、水路3の流量が徐々に増加し、再び下流水位検
知堰8からの流入によって室内水位の低下が止まフゲー
ト4が静止して、所定量の取水が開始される。
A siphon phenomenon has already been formed in the water injection pipe 18, and the periphery of the valve seat '19a' protrudes to surround the discharge port 18C, completely preventing the siphon from breaking due to air intrusion. Therefore, the water level of river 1 is at water injection pipe 1.
The above condition is maintained until the water level decreases at the inlet '18b i of 8, but at this point, air enters the water injection pipe 18 and water flows from the water injection pipe 18 into the downstream water level change width chamber 9. Since the inflow is stopped, the indoor water level decreases, the gate 4 opens, and the flow rate of the waterway 3 gradually increases.The indoor water level stops decreasing due to the inflow from the downstream water level detection weir 8 again, and the fugate 4 becomes stationary. , intake of a predetermined amount of water begins.

以上のとおり、下流水位型の機能は、渇水時においては
全開して、何等の制約も加えず、小洪水時においては、
所要の取水を行い、大洪水時においては、全面的に近く
、取水を中断し、減水に伴って再び所定量の取水を開始
するものであるから、−般の既得水利権?有する個所の
取水および、幹線用水路からの分水に最適である。また
、洪水調節朋友め池においては、下流の排水路の許容能
力に応じて、なるだけ多く水を排出し、以後における洪
水の流入に備える必要があるが、注水管18全除けば、
この目的にも好適である。
As mentioned above, the downstream water level type function is fully activated during times of drought without any restrictions, and during times of small floods,
The system takes the required amount of water, and in the event of a major flood, the water intake is almost completely interrupted, and when the water level decreases, the water intake starts again at a predetermined amount. It is ideal for taking water from areas with existing facilities and for diverting water from main canals. In addition, in the flood control Tomomi Pond, it is necessary to discharge as much water as possible according to the allowable capacity of the downstream drainage channel to prepare for the influx of flood water in the future, but if all the water injection pipes 18 are removed,
It is also suitable for this purpose.

次に、上記の構成と機能を応用し次上下流水位型の機能
について第4図、第5図にもとづいて説明する。上下流
水位型においては、河川1の水位が、上流水位検知堰2
2のフレストより低い場合には、上記において説明し念
とおり、挟挿部 3a の水面は、フロート17の露出
部の下端より低いので、ゲート4は全閉している。
Next, the functions of the next upstream and downstream water level type system will be explained based on FIGS. 4 and 5 by applying the above configuration and functions. In the upstream/downstream water level type, the water level of river 1 is determined by the upstream water level detection weir 2.
2, the water level of the pincer part 3a is lower than the lower end of the exposed part of the float 17, as explained above, so the gate 4 is fully closed.

したがって、上流水位検知堰22のフレストの高さを適
当に定めれば、渇水時において河川1の下流の既得水利
権を侵害する恐れは全くない。
Therefore, if the height of the frest of the upstream water level detection weir 22 is appropriately determined, there is no fear of infringing on vested water rights downstream of the river 1 during drought.

しかし、河川1の流量が増加し、流量に余裕を生ずると
、上流水位検知堰22のフレストから、上流水位変化増
巾室23内に流入を生じ室内の水位が上昇し始めるが、
この段階においては、フロート17の内部には全く水が
ないので、フロート17の露出部の上中部が水没すると
、浮力が働いて、ゲート4は僅かに開く。その際ゲート
4が僅かに開いただけで河川1の水位、ひいては上流水
位変化増巾室23内の水位が低下し、−方、フロート1
7自体の上昇も伴うので、ゲート4の作動は極めて僅少
である。
However, when the flow rate of the river 1 increases and a margin is created in the flow rate, an inflow occurs from the frest of the upstream water level detection weir 22 into the upstream water level change widening chamber 23, and the water level inside the chamber begins to rise.
At this stage, there is no water inside the float 17, so when the exposed upper part of the float 17 is submerged in water, buoyancy acts and the gate 4 opens slightly. At that time, when the gate 4 opens only slightly, the water level of the river 1 and, by extension, the water level in the upstream water level change amplification chamber 23 decreases, and the float 1
Since the gate 7 itself is also raised, the operation of the gate 4 is extremely small.

このようにして、河川1の流量が増加し続けると、その
都度ゲート4は僅かづつ開いて行き、遂には全開し、ス
トッパー’ 4 f ”に支えられてゲート4は静止し
、水路3内の流量も、所定の量て達し、この頃から、下
流水位検知堰8から下流水位変化増巾室9内への流入を
生じ室内の水位も徐々に、上昇する。
In this way, as the flow rate of the river 1 continues to increase, the gate 4 opens little by little each time, and finally opens fully.The gate 4 comes to rest supported by the stopper '4f', and the gate 4 in the waterway 3 The flow rate also reaches a predetermined amount, and from around this time, water flows into the downstream water level change amplification chamber 9 from the downstream water level detection weir 8, and the water level in the chamber gradually rises.

こ\で、フロート17に生ずる浮力について、補足して
説明する。上記の構成の説明において、下流水位型につ
いては、対重パ4e″の位置は、フロート17の露出部
の下半分が水没した状態において、−連の回動部分が均
衡を保ち、静止するよう調節されるべき事を説明した。
Here, the buoyant force generated on the float 17 will be additionally explained. In the above description of the configuration, for the downstream water level type, the position of the counterweight pad 4e'' is such that when the lower half of the exposed part of the float 17 is submerged in water, the rotating part of the - chain remains balanced and remains stationary. I explained what needs to be adjusted.

上下流水位型においても、本質的には、全く同じである
が、上下流水位型の構成に即した説明を行えば、フロー
ト170周辺の水位(以下、外水位と云う)が、フロー
ト内の水位(以下、内水位と云う)より、フロート17
の露出部分の高さの半分の高さだけ高い状態において、
−連の回動部分が均衡し、静止するよう、対重” 4 
e ”の位置は調節されていると云いかえたほうがより
適切である。
The upstream/downstream water level type is essentially the same, but if we explain it based on the configuration of the upstream/downstream water level type, the water level around the float 170 (hereinafter referred to as the outside water level) is the same as the water level inside the float. From the water level (hereinafter referred to as internal water level), float 17
When the height is half the height of the exposed part of the
-The counterweight is 4" so that the rotating parts of the chain are balanced and stationary.
It would be more appropriate to say that the position of ``e'' is adjusted.

さて1次の段階には入る。上記の状態から、ざらに、僅
かに河川1の水位が上昇す、ると、フロート外水位が、
河川1の水位と殆んど等しくなり、フロート内水位は、
殆んど水路3内の水位と等しくなる。両水位検知堰のフ
レストの高さに誤差があって、上記の二つの現象のうち
、いずれが早く起きるかと云う事は、論外であって、い
ずれにしろ、上記の状態となる事は勿論であるが、この
状態になれば、フロート17に働く浮力が、均@を保っ
ている時よりも、その露出部分の半分の容積の水の量だ
け少くなるので、ゲート4が僅かに閉じ、水路3内の水
位ひいては、フロート内水位が低くなシ、フロート17
の浮力が再び回復して、ゲート4は静止する。この段階
においてフロート17は全ての部分が水没するので、以
降フロート17は外水位の影響を全く受けず、専らゲー
ト4は内水位のみによって操作され、−定量の取水が続
けられるが、上下流水位型においては余剰水をなるべく
多く取水し、貯留して置くのが目的であるから、洪水時
において取水を制限し、或は中断する事は有夛得ない。
Now, let's move on to the first stage. From the above situation, if the water level of River 1 rises slightly, the water level outside the float will become
It becomes almost equal to the water level of river 1, and the water level inside the float is
The water level is almost equal to the water level in water channel 3. There is an error in the height of the frests of both water level detection weirs, and it is out of the question which of the above two phenomena will occur first; in any case, the above condition will of course occur. However, in this state, the buoyant force acting on the float 17 is reduced by the amount of water that is half the volume of the exposed part compared to when the float 17 is kept uniform, so the gate 4 closes slightly and the waterway If the water level in float 3 and the water level in float is low, float 17
The buoyancy of the gate 4 is restored and the gate 4 becomes stationary. At this stage, all parts of the float 17 are submerged in water, so from then on the float 17 is not affected by the outside water level at all, and the gate 4 is operated exclusively based on the inside water level. - A fixed amount of water intake continues, but the upstream and downstream water levels Since the purpose of this method is to take in as much surplus water as possible and store it, it is unlikely that water intake will be restricted or interrupted in the event of a flood.

次に河川1の水位が低下し始めると、水路3内の水位が
僅かに低下した段階で、フロート内水位が低下し、フロ
ート17の浮力か大きくなって、ゲート4は徐々に開い
て行き、遂に全開するに至るが、その際、下流水排出口
10の大きさは、河川1のもっとも急激な低下を考慮し
て定められているので、ゲート4の動作が遅れて、水路
3内の水位が大きく下夛過ぎる事はない。
Next, when the water level of the river 1 starts to drop, the water level in the waterway 3 drops slightly, the water level inside the float drops, the buoyancy of the float 17 increases, and the gate 4 gradually opens. It is finally fully opened, but at that time, the size of the downstream water outlet 10 is determined taking into account the most rapid drop in the river 1, so the operation of the gate 4 is delayed and the water level in the waterway 3 There is no need for too much decline.

このようにして、全開して後、てらに僅かに河川1の流
量が少くなると河川1の水位が低下して、上流水位変化
増巾室25内への流入量が少くなシ、室内水位が低下し
て、フロート17に働く浮力が減少し、ゲート4は僅か
に閉じるが、同時に水路3内の水位が下って、下流水位
検知基8上の越流はなくなシ、フロート内水位は露出部
の下端以下に下って、以降、フロート17は、内水位の
影響を全く受けず、ゲート4は、専ら外水位のみによっ
て、操作式れ、余剰水が取水し続けられ、遂には全閉し
て、取水は停止される。
In this way, if the flow rate of the river 1 decreases slightly after the river is fully opened, the water level of the river 1 will decrease, the amount of inflow into the upstream water level change widening chamber 25 will decrease, and the indoor water level will increase. As a result, the buoyancy acting on the float 17 decreases, and the gate 4 closes slightly, but at the same time, the water level in the water channel 3 falls, and there is no overflow on the downstream water level detection base 8, and the water level in the float is exposed. From then on, the float 17 is not affected by the internal water level at all, and the gate 4 is operated only by the external water level, and surplus water continues to be taken in until it is completely closed. Therefore, water intake will be stopped.

このように、本発明を応用した上下流水位壁の機能は、
渇水時においては、全く取水せず、豊水時においては余
剰水を取水し、洪水時においては、−定量を取水するも
のであるから、河川1の下流水利槽を侵害する事が全く
なく、シたがって、既得水利権を有しない個所における
取水に好適である。
In this way, the functions of the upstream and downstream water level walls to which the present invention is applied are as follows:
During times of drought, no water is taken at all, during times of high water, surplus water is taken, and during floods, a fixed amount of water is taken, so there is no encroachment on the water tank downstream of River 1, and the system is Therefore, it is suitable for water intake in areas that do not have vested water rights.

(効  果) 本発明によって提供される水門扉は、実施例および応用
例ともに極めて簡単な構造にして、−切の人為操作と動
力を要せずして、自動的に流量を制御するものであって
、これによって、動力用の電力線、流量計算用の電子機
器、遠隔操作用の看視装置、流量測定用の超音波装置或
は堰等が一切不必要となり、lた、制御のW度も一段と
向上されるのである。
(Effects) The water gate provided by the present invention has an extremely simple structure in both embodiments and application examples, and can automatically control the flow rate without requiring manual operation or power. This eliminates the need for power lines for power, electronic equipment for calculating flow rates, monitoring devices for remote control, ultrasonic devices or weirs for measuring flow rates, and also increases the W degree of control. will also be further improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の一部横断平面図、第2図は第1図
における水路を縦断して示し比縦断側面図、 第3図は第1図における下流水位変化増巾室の縦断側面
図、 第4図は他の実施例における第1図同様の図、第5図は
第4図における上流水位変化増巾室の縦断側面図である
。 1・・・河川、3・・・水路、3a・・・挾搾水路、4
・・・ゲート、7・・−下流水静水池、8・・−下流水
位検知基、9・・・下流水位変化増巾室、23・−上流
水位変化増巾室。
Fig. 1 is a partial cross-sectional plan view of the device of the present invention, Fig. 2 is a longitudinal side view showing the waterway in Fig. 1, and Fig. 3 is a longitudinal side view of the downstream water level change amplification chamber in Fig. 1. 4 is a view similar to FIG. 1 in another embodiment, and FIG. 5 is a longitudinal sectional side view of the upstream water level change amplification chamber in FIG. 4. 1...River, 3...Waterway, 3a...Squeezed waterway, 4
...Gate, 7.--Downstream water still water pond, 8.--Downstream water level detection group, 9.--Downstream water level change amplification room, 23.--Upstream water level change amplification room.

Claims (1)

【特許請求の範囲】[Claims] (1)河川から導水した水路中において、水平軸の周り
に揺動自在に設けた、水路の開閉のためのゲートと、 前記ゲートの近くに設けられた下流水位変化増巾室と、 前記下流水位変化増巾室の中を下流水位検知堰によって
形成された、ゲートより下流の水路と連通している下流
水静水池と、 前記下流水位変化増巾室と連通した、前記ゲートより下
流の挾搾水路と、 前記下流水位変化増巾室中または前記下流水位変化増巾
室に隣接して設けられ河川の水位の影響を受ける上流水
位変化増巾室中であって、前記ゲートの水平軸が延長し
た部分に装着され、前記いずれかの変化増巾室の水位の
変化を前記ゲートに伝えるフロートとからなることを特
徴とする自動水門扉装置。
(1) A gate for opening and closing the waterway, which is swingably provided around a horizontal axis in a waterway conveying water from a river, a downstream water level change width room provided near the gate, and the downstream water level. A downstream still water pond formed by a downstream water level detection weir inside the water level change width room and communicating with the waterway downstream from the gate; and an upstream water level change width room that is provided in the downstream water level change width room or adjacent to the downstream water level change width room and is affected by the water level of the river, and the horizontal axis of the gate is An automatic water gate device comprising: a float attached to the extended portion to transmit a change in the water level in any one of the variable amplification chambers to the gate.
JP14915886A 1986-06-25 1986-06-25 Automatic sluice gate device Pending JPS637409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14915886A JPS637409A (en) 1986-06-25 1986-06-25 Automatic sluice gate device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14915886A JPS637409A (en) 1986-06-25 1986-06-25 Automatic sluice gate device

Publications (1)

Publication Number Publication Date
JPS637409A true JPS637409A (en) 1988-01-13

Family

ID=15469058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14915886A Pending JPS637409A (en) 1986-06-25 1986-06-25 Automatic sluice gate device

Country Status (1)

Country Link
JP (1) JPS637409A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6579516B1 (en) 1995-06-13 2003-06-17 Zahra Mansouri Methods of delivering materials into the skin, and compositions used therein
US7114879B2 (en) 2001-07-09 2006-10-03 Henry K. Obermeyer Water control gate and actuator therefore

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48101723A (en) * 1972-04-07 1973-12-21
JPS5220781A (en) * 1975-08-11 1977-02-16 Fujitsu Ltd Semi-conductor memory unit
JPS6226435B2 (en) * 1979-07-27 1987-06-09 Citizen Watch Co Ltd

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48101723A (en) * 1972-04-07 1973-12-21
JPS5220781A (en) * 1975-08-11 1977-02-16 Fujitsu Ltd Semi-conductor memory unit
JPS6226435B2 (en) * 1979-07-27 1987-06-09 Citizen Watch Co Ltd

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6579516B1 (en) 1995-06-13 2003-06-17 Zahra Mansouri Methods of delivering materials into the skin, and compositions used therein
US7655250B2 (en) 1995-06-13 2010-02-02 Laboratory Skin Care, Inc. Topical formulations comprising ceramic hydroxyapatite particles
US7771753B2 (en) 1995-06-13 2010-08-10 Laboratory Skin Care, Inc. Topical formulations comprising ceramic hydroxyapatite particles
US7114879B2 (en) 2001-07-09 2006-10-03 Henry K. Obermeyer Water control gate and actuator therefore
US8511937B2 (en) 2001-07-09 2013-08-20 Henry K. Obermeyer Water control apparatus
US9028170B2 (en) 2001-07-09 2015-05-12 Henry K. Obermeyer Water control apparatus
US9765495B2 (en) 2001-07-09 2017-09-19 Henry K. Obermeyer Water control apparatus
US10370813B2 (en) 2001-07-09 2019-08-06 Henry K. Obermeyer Water control apparatus

Similar Documents

Publication Publication Date Title
CN206523791U (en) Dam is using siphon piping draining and automatically controls water flow device
JPS637409A (en) Automatic sluice gate device
CN104762933B (en) Automatically the hollow gate of water intaking is weighed
JP3030803B2 (en) Flow response gate
US3509724A (en) Gate valve means for controlling the flow of water over a weir,dam wall or the like
JP2552616B2 (en) Control gate of fishway device and its fish collecting device
JP2514866B2 (en) Flow response gate for irrigation canal
JP4055057B2 (en) Downstream water level control device
JPH0526885B2 (en)
US4275766A (en) Fluid control system
CN105756124B (en) Bank-dam combined bowl type water distribution well
JP2582620B2 (en) Upstream water level control gate with automatic operation device
JP3516924B2 (en) Upstream water level control gate of waterway
JP2818969B2 (en) Parallel fishway device
SU1716491A1 (en) Water regulator in hydrotechnical constructions
JPH0434111A (en) Automatic rotary weir
Rice Effect of pipe boundary on hood inlet performance
US3287917A (en) Apparatus for automatic control of outflow of impounded water
JPH0355308A (en) Automatic water level-regulating gate device
JP2000045253A (en) Check gate
JPH06272232A (en) Gate for spillway
SU885980A1 (en) Downstream level regulator for hydrotechnical structures
JP3075109B2 (en) Water intake structure from storage structure to fishway
JP2001050407A (en) Flap valve
SU981950A1 (en) Device for regulating water level in water-development works pools