JPH0430921A - Probe for interatomic power microscope - Google Patents

Probe for interatomic power microscope

Info

Publication number
JPH0430921A
JPH0430921A JP2132637A JP13263790A JPH0430921A JP H0430921 A JPH0430921 A JP H0430921A JP 2132637 A JP2132637 A JP 2132637A JP 13263790 A JP13263790 A JP 13263790A JP H0430921 A JPH0430921 A JP H0430921A
Authority
JP
Japan
Prior art keywords
tip
probe
plate
head section
power microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2132637A
Other languages
Japanese (ja)
Inventor
Takashi Matsubara
隆 松原
Hajime Nakamura
肇 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2132637A priority Critical patent/JPH0430921A/en
Publication of JPH0430921A publication Critical patent/JPH0430921A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the resolution and perform accurate measurement by providing the head section of a plate with an electrolyticaly ground needle like tip and making it faithfully trace the surface shape of specimens. CONSTITUTION:An electrolyticaly ground needle like tip 1 is provided in the head section of the plate 2 of a probe for inter-atomic power microscope. Owing to this constitution, this head section can be sharply constituted, and the power that the atomic of the head of this tip receives can accurately detected, and the surface shape or the distribution of force can accurately measured without errors on the surface of specimens 5.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は試料表面の掻く微細な構造を観察するだめの原
子開力顕微鏡に用いられるプローブに関するものである
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a probe used in an atomic force microscope for observing minute structures on the surface of a sample.

[従来の技術] 第3図は、従来の原子開力顕微鏡(AFM)の構成を示
す。チップ(1)の形成されたプレート(2)部分かプ
ローブであり、基板(4)に固定されている。観察用の
試料(5)はxyz−走査系に装着されている。チップ
(1)先端と試料(5)をZ−駆動装置によってごく近
距離に接近させるとPauliの排他律による斥力か試
料(5)表面とチップ(1)間に作用し、プレート(2
)にたわみか生しる。このたわみ、すなわち変位量を光
学的手段などを用いた変位検出器(6)で検出する。か
つ、検出した変位量が一定となるように、圧電素子等を
利用してZ−駆動装置によりチップの位置を制御しなが
ら、試料(5)を走査することで表面の構゛造を原子的
スケールの分解能で知ることかてきる。このとき、チッ
プ先端の形状が本顕微鏡の分解能を決定する大きな要因
の−っであると考えられている。すなわち、チップの先
端か鋭利であるほど分解能が向上する。
[Prior Art] FIG. 3 shows the configuration of a conventional atomic force microscope (AFM). The part of the plate (2) on which the chip (1) is formed is a probe, and is fixed to the substrate (4). A sample for observation (5) is mounted on an xyz-scanning system. When the tip of the tip (1) and the sample (5) are brought close together by the Z-drive device, a repulsive force due to Pauli's exclusion law acts between the surface of the sample (5) and the tip (1), and the plate (2)
). This deflection, that is, the amount of displacement is detected by a displacement detector (6) using optical means or the like. In addition, by scanning the sample (5) while controlling the position of the tip with a Z-drive device using a piezoelectric element, etc., so that the detected displacement amount is constant, the structure of the surface is atomically determined. What you can know is based on the resolution of the scale. At this time, the shape of the tip tip is considered to be a major factor in determining the resolution of this microscope. That is, the sharper the tip of the tip, the better the resolution.

[発明か解決しようとする課題] 従来の技術として、酸化珪素や窒化珪素からなるプレー
トの先端に半導体リソグラフィ技術を用いて針状のチッ
プをプレートと一体に形成して用いる方法がある。この
方法で作成されたプローブにおいてもチップ先端の鋭利
さはなお改善されるへきものである。
[Problems to be Solved by the Invention] As a conventional technique, there is a method in which a needle-shaped tip is formed integrally with the tip of a plate made of silicon oxide or silicon nitride using semiconductor lithography technology. Even in probes made by this method, the sharpness of the tip tip still needs to be improved.

本発明の目的は、プレートの先端部に、鋭利な針状のチ
ップをもつプローブを提供することにあ頁。
An object of the present invention is to provide a probe having a sharp needle-like tip at the distal end of the plate.

[課題を解決するための手段] 上記目的は、原子間力顕微鏡用プローブのプレート先端
部に電解研摩加工した針状チ・ンブを備えることで達成
される。
[Means for Solving the Problems] The above object is achieved by providing an electrolytically polished needle-like chimney at the tip of a plate of a probe for an atomic force microscope.

[作 用] 本発明によれは、プレート先端部に電解研摩加工した針
状チップを備えたので、充分に鋭利に構成でき、正確に
チップの先端の原子の受ける力を検出することかでき、
試料表面に誤差なく、表面形状あるいは力分布等を正確
に測定することかできる。
[Function] According to the present invention, since the tip of the plate is provided with an electrolytically polished needle-like tip, it can be configured to be sufficiently sharp, and the force exerted by the atoms at the tip of the tip can be accurately detected.
It is possible to accurately measure the surface shape, force distribution, etc. without any errors on the sample surface.

また、電解研磨は簡便な操作で先端を鋭利にすることか
できる。
Furthermore, electrolytic polishing can sharpen the tip with a simple operation.

[実施例] 次に本発明の原子間力顕微鏡用プローブ(AFMプロー
ブ)を実施例にもとつき説明する。
[Example] Next, the atomic force microscope probe (AFM probe) of the present invention will be described based on an example.

第1図は先端に金属の針状チップを持つAFMプローブ
を示す。プローブはプレート部(2)か原子間力を受け
てたわむ構造になっている。本構造のようにプレート面
外に突出した針状チップ(1)を形成することにより感
度の高いAFMプローブとなっている。
FIG. 1 shows an AFM probe with a metal needle tip at the tip. The probe has a structure in which the plate portion (2) bends when subjected to atomic force. By forming the needle tip (1) protruding outside the plate surface as in this structure, the AFM probe has high sensitivity.

次に代表的なプローブの製造方法について述べる。第2
図は第1図に示すプローブの製造方法の説明図である。
Next, a typical probe manufacturing method will be described. Second
The figure is an explanatory diagram of a method for manufacturing the probe shown in FIG. 1.

初めに31ウエハ(8)に窒化珪素の膜(9)を形成す
る(a)。次にSiウェハ(8)の片面にレジスト(1
0)をコートしくb)、露光現像し、プレート部となる
3角形のパターンを形成する(C)。次にCF a等の
反応性カスをもちいて窒化珪素の膜(9)をドライエツ
チングした後レシス1− (10)を剥離する(d) 
 次に裏面にレジスト(lO)をコートし、Siエツチ
ングのためのパターンを形成スる(e)。表にレジスト
(10)次にマスク(16)をコートし、フォトリング
ラフィによって金属のチップを蒸着するための窓を形成
する。このとき、回折光を使用するなどして図に示すよ
うにアンターカットを生しさせる(f)   W、Ni
Cu  Pt、Crなとの金属あるいはそれらの合金、
導電性の電解研磨可能な化合物などを堆積してチップ(
1) を形成する(g)  次にレジスト(10)を剥
離する(h)   この上に、3102膜(12)を形
成し、シリコンエツチングの際の保護膜とする(1)。
First, a silicon nitride film (9) is formed on a 31 wafer (8) (a). Next, resist (1
0) and b) are exposed and developed to form a triangular pattern that will become the plate portion (C). Next, the silicon nitride film (9) is dry-etched using reactive scum such as CF a, and then the resin 1- (10) is peeled off (d).
Next, a resist (IO) is coated on the back surface, and a pattern for Si etching is formed (e). The surface is coated with a resist (10) and then a mask (16) to form windows for depositing metal chips by photolithography. At this time, use diffracted light to create an undercut as shown in the figure (f) W, Ni
Metals such as Cu, Pt, and Cr, or alloys thereof;
Chips (
1) Form (g) Next, peel off the resist (10) (h) On top of this, a 3102 film (12) is formed to serve as a protective film during silicon etching (1).

次にシリコンエツチングを行ないブレト(2)を形成す
る(j)  さらニS i O21!!j! (12)
ヲフッ酸で除去する(k)  プレート(2)上に導電
性の膜(13)を薄く形成する。該膜の材料としては金
、銀、カーホンなどが使用できるか、最適には金を用い
る(1)   この後でKOHi液(14)中でプレー
ト(2)を陽極とし、白金電極(15)を負極として4
0〜50Vの電圧をかけなから電解研摩を行なう(m) 本実施例では、蒸着によってチップを形成する際に、ア
ンダーカットを生しさせた窓を用いているため、蒸着さ
れたチップ(1)は、先端部か突出した形状となるのて
、電解研磨時間か少なくても充分に鋭利な先端となる。
Next, silicon etching is performed to form bullet (2) (j) Sarani S i O21! ! j! (12)
Remove with hydrofluoric acid (k) Form a thin conductive film (13) on the plate (2). Gold, silver, carphone, etc. can be used as the material for the membrane, and gold is most preferably used (1). After this, the plate (2) is used as an anode in a KOHi solution (14), and a platinum electrode (15) is used. 4 as negative electrode
Electrolytic polishing is performed without applying a voltage of 0 to 50 V (m) In this example, when forming a chip by vapor deposition, a window with an undercut is used, so the deposited chip (1 ) has a protruding tip, so even if the electrolytic polishing time is short, the tip will be sufficiently sharp.

プレート部には窒化珪素以外に酸化珪素などの膜を使う
ことも可能である。
In addition to silicon nitride, it is also possible to use a film of silicon oxide or the like for the plate portion.

なお、導電性の膜は電解研磨を実施するための電極か接
地すればよく、先端のチップ(2)に接地することかで
きれは不要のものである。
Incidentally, the conductive film may be grounded as an electrode for carrying out electrolytic polishing, and is not necessary as it may be grounded on the tip (2) at the tip.

なお、本実施例のようにプレート表面にソート電極とし
ての金属膜を蒸着した場合には、レーザ光をあてて変位
量を測定する際に、金属膜か良好な反射膜となり反射率
か増加しSN比が向上する効果か得られる。
Note that when a metal film is deposited as a sorting electrode on the plate surface as in this example, when measuring the amount of displacement by applying a laser beam, the metal film becomes a good reflective film and the reflectance increases. The effect of improving the SN ratio can be obtained.

[発明の効果] 以上の説明から明らかなように、本発明により高精度の
鋭利なチップを備えたプローブを提供できる。この結果
、プレート先端のチップは被測定物の表面形状を忠実に
トレースし、分解能か高く高精度の形状測定か可能とな
る。
[Effects of the Invention] As is clear from the above description, the present invention can provide a probe with a highly accurate sharp tip. As a result, the tip at the tip of the plate faithfully traces the surface shape of the object to be measured, making it possible to measure the shape with high resolution and precision.

【図面の簡単な説明】 第1図は本発明の実施例を示す窒化珪素で形成されたプ
ローブの概観図、第2図は本発明のプローブの製造方法
の実施例を示すための断面図、第3図は従来の原子開力
顕微鏡(A FM) を示す 構成図である。 [主要部分の符号の説明] 】 ・・・・チッ フ 2・・・・プレー ト ・・・・フ ブ、 ・・・・基盤、 ・・・・試料、 ・・・・変位検出 器、 ・・・・xyz−走査系
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a general view of a probe made of silicon nitride showing an embodiment of the present invention, and FIG. 2 is a cross-sectional view showing an embodiment of the probe manufacturing method of the present invention. FIG. 3 is a block diagram showing a conventional atomic force microscope (AFM). [Explanation of symbols of main parts] ・・・Chief 2・・・Plate・・・Fub, ・・・Base, ・・・Sample, ・・・Displacement detector, ・・・・xyz-scanning system

Claims (1)

【特許請求の範囲】[Claims] プレート先端部に電解研摩加工した針状チップを備えた
ことを特徴とする原子間力顕微鏡用プローブ。
An atomic force microscope probe characterized by having an electrolytically polished needle tip at the tip of the plate.
JP2132637A 1990-05-24 1990-05-24 Probe for interatomic power microscope Pending JPH0430921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2132637A JPH0430921A (en) 1990-05-24 1990-05-24 Probe for interatomic power microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2132637A JPH0430921A (en) 1990-05-24 1990-05-24 Probe for interatomic power microscope

Publications (1)

Publication Number Publication Date
JPH0430921A true JPH0430921A (en) 1992-02-03

Family

ID=15085987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2132637A Pending JPH0430921A (en) 1990-05-24 1990-05-24 Probe for interatomic power microscope

Country Status (1)

Country Link
JP (1) JPH0430921A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103757675A (en) * 2014-01-20 2014-04-30 厦门大学 Method for preparing AFM (Atomic Force Microscope) silicon tip by pulse plating of compact gold thin film in nanometer thickness

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103757675A (en) * 2014-01-20 2014-04-30 厦门大学 Method for preparing AFM (Atomic Force Microscope) silicon tip by pulse plating of compact gold thin film in nanometer thickness
CN103757675B (en) * 2014-01-20 2016-05-11 厦门大学 A kind of fine and close gold thin film method of AFM silicon needle point pulse plating nano thickness

Similar Documents

Publication Publication Date Title
US6668628B2 (en) Scanning probe system with spring probe
US4916002A (en) Microcasting of microminiature tips
JP2752755B2 (en) Integrated scanning tunneling microscope
US8393011B2 (en) Piezoresistor height sensing cantilever
US7337656B2 (en) Surface characteristic analysis apparatus
EP0619872A1 (en) Piezoresistive cantilever for atomic force microscopy.
JP4656761B2 (en) SPM cantilever
WO2006106818A1 (en) Cantilever for scanning probe microscope and scanning probe microscope equipped with it
JP2844181B2 (en) Material testing device, material testing apparatus and material testing method
JP2000065718A (en) Scanning probe microscope(spm) probe and spm device
DE102017205528A1 (en) Apparatus and method for a scanning probe microscope
JPH01262403A (en) Probe and its manufacture
EP0623805A1 (en) Method of manufacturing reference samples for calibrating amount of measured displacement and reference sample, and measuring instrument and calibration method
JPH1090287A (en) Probe for interatomic force microscope and its manufacture
JPH0430921A (en) Probe for interatomic power microscope
JPH1038916A (en) Probe device and electrically connecting method for minute region
US20010050342A1 (en) Scanning tip and process for its production and use, particularly for a scanning probe microscope
JPH0883789A (en) Micromachining method
JPH09243648A (en) Cantilever chip
JP3317001B2 (en) Probe manufacturing method
JPH1073608A (en) Base member of cantilever tip for scanning probe microscope and cantilever tip for scanning probe microscope using the same
JP3240309B2 (en) Atomic force microscope prober and atomic force microscope
JPH0611334A (en) Probe for interatomic force microscope
JPH11271015A (en) Cantilever tip for scanning probe microscope and its manufacture
JPH08189931A (en) Cantilever, its manufacture, and scanning probe microscope using the cantilever