JPH0430866B2 - - Google Patents

Info

Publication number
JPH0430866B2
JPH0430866B2 JP62051980A JP5198087A JPH0430866B2 JP H0430866 B2 JPH0430866 B2 JP H0430866B2 JP 62051980 A JP62051980 A JP 62051980A JP 5198087 A JP5198087 A JP 5198087A JP H0430866 B2 JPH0430866 B2 JP H0430866B2
Authority
JP
Japan
Prior art keywords
peat
microorganisms
deodorizing
soil
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62051980A
Other languages
Japanese (ja)
Other versions
JPS63220875A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP62051980A priority Critical patent/JPS63220875A/en
Publication of JPS63220875A publication Critical patent/JPS63220875A/en
Publication of JPH0430866B2 publication Critical patent/JPH0430866B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、微生物による脱臭方法に関し、とく
に公害源となる悪臭を低コストで除くための微生
物による脱臭方法に関する。 従来の技術 都市化の進展に伴ない悪臭に対する苦情が増加
しており、環境庁発行の昭和58年度公害白書によ
れば公害苦情の約四分の一が悪臭に関するもので
あり、騒音に次いで二番目である。悪臭源は、畜
産排泄物、産業廃棄物、製造工場に於る原料、中
間及び最終製品、副産物、家庭からの廃棄物、下
水処理設備、ごみ焼却設備等がある。 悪臭対策として古くから用いられた土壌で覆う
方法は必ずしも効率的でなくしかも広大な設備面
積を要するので実用的でない。従来の一般的対策
として焼却法、吸着法、化学的分解法、洗浄可溶
化法等がとられてきたが、いずれも大量の燃料や
薬品等の消耗材及び大きな設備を必要とし技術的
及び経済的に満足すべきものではなかつた。 従来廃棄されていた水処理設備の余剰汚泥を脱
臭剤として活用する生物学的脱臭方法としていわ
ゆるバイオフレツシヤ法が知られている。この方
法は、スラリー化した余剰汚泥を脱臭剤としてス
プレーし、これと悪臭成分含有気体とを向流接触
させて脱臭するもので、脱臭剤のコスト低減及び
スクラバー塔利用による設備面積節減の利点を有
する。しかし、いわゆるバイオフレツシヤ法はス
ラリーを常時循環させるので大きな設備費、運転
コスト、保守コストを要する欠点がある。 発明が解決しようとする問題点 従つて、本発明が解決しようとする問題点は、
生物学的脱臭方法におけるコスト低減にある。 問題点を解決するための手段 本発明の微生物による脱臭方法においては、
100cm3の風乾重11g以下のミズゴケ泥炭に脱臭微
生物を固定し、このミズゴケ泥炭及び0.1%以上
の増孔材からなる多孔質脱臭層の水分を50%以上
に保ち、その多孔質脱臭層に臭気のある気体を通
すことにより脱臭を行なう。増孔材の例は活性炭
素又はプラスチツク若しくはガラス等の材料を多
孔質の球状等の形状に成形したいわゆる『アイボ
ール』である。 本発明者は、汚泥や土壌等に含まれる微生物を
利用した脱臭方法の効率に着目し、微生物の坦体
における通気性と接触面積の増大に関する研究実
験を重ねた結果、泥炭が適切な坦体であることを
見出した。 泥炭は一般に沼沢地、湖或いはその近傍の湿潤
地に成育していた樹木、草本類、藻類およびこけ
類などの植物が微生物により分解される過程のあ
る段階で酸素不足の嫌気状態において分解が停滞
し堆積したものである。泥炭が堆積したものを泥
炭土と称することもある。 日本では、古くから低位泥炭、中間泥炭、及び
高位泥炭として分類され、主要構成植物種も明ら
かにされている。世界的に見た泥炭の総資源量は
約28億トンと推定され、このうち各国の資源量の
割合はソヴイエト60.7%、フインランド8.2%、
カナダ7.8%等であり、日本は0.18%といわれま
た約9億トンの資源量ともいわれる。日本の泥炭
は、主として北海道や東北地方に分布している。
泥炭類の容積重、容水量、保水性、その他の性質
を植壌土のそれらと対比して第1表に示す。
INDUSTRIAL APPLICATION FIELD The present invention relates to a deodorizing method using microorganisms, and particularly to a deodorizing method using microorganisms for removing bad odors that are a source of pollution at low cost. Conventional technology Complaints about bad odors are increasing with the progress of urbanization, and according to the 1988 White Paper on Pollution issued by the Environment Agency, about a quarter of complaints about pollution are related to bad odors, making it the second largest problem after noise. It is the th. Sources of bad odors include livestock excrement, industrial waste, raw materials in manufacturing plants, intermediate and final products, by-products, household waste, sewage treatment equipment, garbage incineration equipment, etc. The method of covering with soil, which has been used for a long time as a countermeasure against bad odors, is not necessarily efficient and requires a large area of equipment, so it is not practical. Conventional general countermeasures include incineration, adsorption, chemical decomposition, washing and solubilization, etc., but all of them require large amounts of consumables such as fuel and chemicals and large equipment, making them technically and economically difficult. It was not something that I should be satisfied with. The so-called biofreshure method is known as a biological deodorization method that utilizes surplus sludge from water treatment equipment, which was previously disposed of, as a deodorizer. In this method, surplus sludge made into a slurry is sprayed as a deodorizer, and this is brought into countercurrent contact with a gas containing malodorous components to deodorize.This method has the advantages of reducing the cost of the deodorizer and saving equipment space by using a scrubber tower. have However, the so-called biofreshure method requires large equipment costs, operating costs, and maintenance costs because the slurry is constantly circulated. Problems to be solved by the invention Therefore, the problems to be solved by the invention are as follows:
Cost reduction in biological deodorization methods. Means for solving the problems In the deodorizing method using microorganisms of the present invention,
Deodorizing microorganisms are fixed on 100cm3 of sphagnum peat with an air-dry weight of 11g or less, and the moisture content of this porous deodorizing layer made of sphagnum peat and 0.1% or more pore-filling material is kept at 50% or more. Deodorization is performed by passing a certain gas through. An example of a pore-forming material is a so-called "eyeball" made of activated carbon or a material such as plastic or glass formed into a porous spherical shape or the like. The present inventor focused on the efficiency of deodorizing methods that utilize microorganisms contained in sludge and soil, and as a result of repeated research experiments on increasing the air permeability and contact area of microorganism carriers, the inventor found that peat is an appropriate carrier for microorganisms. I found that. Peat is generally produced by plants such as trees, herbs, algae, and moss that grow in swamps, lakes, or nearby moist areas. At some stage during the process of decomposition by microorganisms, decomposition stagnates in anaerobic conditions lacking oxygen. This is what was deposited. A pile of peat is sometimes called peat soil. In Japan, peat has long been classified as low peat, intermediate peat, and high peat, and the main constituent plant species have also been clarified. The total amount of peat resources worldwide is estimated to be approximately 2.8 billion tons, of which the share of each country's resources is 60.7% in the Soviet Union, 8.2% in Finland, 8.2% in Finland,
It is said that Canada accounts for 7.8%, and Japan accounts for 0.18%, and the amount of resources is said to be about 900 million tons. Peat in Japan is mainly distributed in Hokkaido and the Tohoku region.
Table 1 shows the volumetric weight, water capacity, water holding capacity, and other properties of peat in comparison with those of loam soil.

【表】【table】

【表】 容積重は植壌土に比べて他の3種の泥炭とも著
しく低く、その順位はミズゴケ泥炭<スゲ泥炭<
ヨシ泥炭であり、ミズゴケ泥炭では11g/100cm3
と極めて低い値となつている。これは、泥炭とく
にミズゴケ泥炭がかなりその形骸を残しておりか
つ組織内に多くの孔隙が分布していることを示
す。容水量を見ると、植壌土の44.3%に対して他
の泥炭は、289−1057%の範囲に分布しており、
とくにミズゴケ泥炭で高い値となつている。 このように泥炭は分布した多くの孔隙を有し、
容積重が極めて小さく、かつ水分保持量が多く、
しかも保持された水分の有効性も植壌土とほぼ同
程度である。これらの性質は、分解性が低く繊維
質であるミズゴケ泥炭の場合に特に著しく、微生
物を固定保持する担体として泥炭とくにミズゴケ
泥炭が優れた素材であることを示す。即ち、泥炭
を担体とする微生物脱臭層に被処理気体を通過さ
せる場合に、圧損失が小さく送風に要する電力消
費が少ないことが期待される。 繊維質泥炭素における含水率と圧損失との関係
を他の坦体の場合と比較測定した結果、広い含水
率の範囲に亘り泥炭層が際立つて低い圧損失の値
を示すことを確認した。長期操業を必要とする実
用脱臭装置では、含水率が非常に重要な因子とな
るので、広範囲の含水率に対して圧損失が少ない
ことは坦体として格別に望ましい性質である。 水分を含有させた湿潤な泥炭を本発明において
使用するのは、乾燥泥炭では脱臭効果が少ないか
らである。悪臭物質の水への溶解が脱臭効果を持
つことはよく知られている。 本発明において使われる悪臭物質分解用の微生
物の一例を挙げれば、豚舎、牛舎、鶏舎、若しく
はその付近の土壌から採取したもの、種々の水処
理施設における活性泥炭から採取したもの、又は
嫌気性汚泥から採取したもの等である。一般に悪
臭物質は単一化合物ではなく複合系である場合が
多いもので、分解能を有する微生物もまた単一種
よりも数種の微生物からなる混合系とすることが
望ましい。 微生物採取方法としては、悪臭物質が発生され
る施設付近の土壌中に泥炭からなる固定化坦体を
一定期間埋込み、当該悪臭物質に対する活性を有
する微生物を固定化坦体に移行させ且つ馴養する
のが便利である。無臭化微生物は、かび、酵母、
放線菌、及び細菌に分類できるが、悪臭物質が多
岐に亘るので好ましい微生物を特定化するのは必
ずしも容易ではない。除去すべき悪臭に対して有
効な微生物を見出すのは、試行錯誤的な実験によ
らざるを得ないのが実状である。 一部特定悪臭物質については、有効な無臭化微
生物の分離・同定に成功し、その大量培養による
高効率脱臭技術も開発されている。しかし、一般
的な微生物脱臭技術ば未だ確立されたとは言いが
たい。 作 用 作用を説明するに、さきに指摘した如く含水泥
炭層に気体を通過させたときの圧損失は広い含水
率の範囲に亘り際立つて低いので、脱臭能のある
微生物が固定された湿潤な泥炭に臭気のある空気
を通すことにより、格別に大きな送風動力を要す
ることなくその臭気を除去することができる。 従つて、スラリー状の汚泥を循環する設備及び
循環のための動力を必要とせず、しかも送風動力
が小さいので、本発明の目的たる生物学的脱臭方
法におけるコスト低減を確実に達成することがで
きる。 実施例 以下実施例を参照して本発明をさらに詳細に説
明する。 本発明では泥炭における気体の流通性を一定に
保つため適当な増孔材を使用する。増孔材の例と
しては、活性炭素及び球状多孔体が挙げられる。
活性炭素は表面活性が高く物理的吸着能を有する
だけでなく、微生物坦体としても優れた性質を持
つている。即ち、農業用炭素として土壌に混入し
たときに、団粒構造、保水性、通気性、保肥性、
地温上昇、微生物増殖、PH調整等の点において微
生物環境の改善に対し優れた特性を示すことが認
められている。泥炭に30−0.1%の活性炭素を混
合した微生物固定坦体が好ましいことを本発明者
は実験的に見出した。 球状多孔体とは、プラスチツク、ガラス、その
他の材料を多孔質の球状に成形したものである。
その一例は東京特殊金網株式会社が「アイボー
ル」の名称で製作販売する多孔体であり、直径25
mm、表面積314m2/m3、自由容積92%、密度84000
個/m3の製品その他粒度・特性の製品として市販
されている。 実施例 1 東京の北多摩下水処理場で採取した活性汚泥液
75mlをソ連産ミズゴケ泥炭240gに含浸処理した。
ソ連産ミズゴケ泥炭の性質は次の通りであつた。 水分52.41%、 窒素全量1.03%、 燐酸全量0.13%、 カリ全量0.04%、 粗灰分2.71%、 強熱減量97.29%、 有機炭素50.03%、 炭素率48.6%、 粗腐植酸12.2%、 陽イオン交換容量1.15meq/100g 内径60mm、高さ500mmのカラム内部に、その内
容積1350mlに対し50%の上記汚泥含浸泥炭及び同
じく50%の上記直径25mm球状多孔体アイボールを
交互に充填した。カラム上部から、50−100ppm
の硫化水素を含む空気を100/時の速度で吹込
み約24日間に亘り連続運転を行なつた。泥炭の乾
燥を防ぐために、水を随時上部から噴霧し、泥炭
の含水率を50−80%に調節した。 カラムの入口及び出口の硫化水素濃度を検知管
により測定することにより脱臭効率を算出した。
上記運転期間中の脱臭効率は、100%であつた。 実施例 2 上記の北多摩下水処理場で採取した活性汚泥液
の代りにメタン醗酵リアクタから採取した嫌気性
汚泥液を使用した以外は実施例1と同様な方法に
より実験を行なつた。この実験期間中の脱臭効率
も100%であつた。 実施例 3 上記の北多摩下水処理場で採取した活性汚泥液
の含浸処理の代りに、千葉県木更津市の森本養豚
家の養豚場から採取した土壌250gを混合処理し
た以外は実施例1と同様な方法により実験を行な
つた。この実験期間中の脱臭効率も100%であつ
た。 実施例 4 実施例3の養豚場の土壌中に上記ソ連産泥炭を
埋設放置して微生物を採取した。内径60mm、高さ
500mmのカラム内に上記微生物採取処理したミズ
ゴケ泥炭350gと上記直径25mmの球状多孔体アイ
ボール60個とを交互に混合充填した。カラム上部
から100−150ppmの硫化水素を含む空気を100
/時の速度で吹込み、約35日間に亘り連続運転
を行なつた。泥炭の乾燥を防ぐため、水を随時上
部から噴霧し、泥炭の含水率を50−80%に調節し
た。 カラムの入口及び出口空気の硫化水素濃度を検
知管により測定することにより脱臭効率を算出し
た。上記運転期間中の脱臭効率は、100%であつ
た。 実施例 5 悪臭成分として100−150ppmの硫化水素の代り
に50−100ppmの酢酸を含む空気を100/時の速
度で吹込み、約18日間に亘り連続運転を行なつた
以外は実施例4と同様な方法により実験を行なつ
た。この実験期間中の脱臭効率も100%であつた。 実施例 6 槽床面積(2.2mx3.3m=)6.0m2、槽高さ1.0m
の微生物脱臭ベンチ実験装置内部に、その内容積
6m3に対し50%即ち3m3の上記実施例3の養豚場
土壌中に埋設放置して微生物採取したソ連産ミズ
ゴケ泥炭及び同じく50%相当の東京特殊金網株式
会社製球状多孔体アイボール(直径50mm、表面積
165m2/m3、自由体積94%、密度10400個/m3)約
31000個とを交互に充填した。泥炭の含水率を50
−80%に調節するため、水分量を連続監視しカラ
ム上部から散水機により自動的に水を噴霧した。 悪臭気体として養豚場から発生する臭気のある
空気をフアン(送風能力1200m3/時)で上記ベン
チ実験装置へ風速0.04−0.07m/秒に制御しなが
ら送入し、約3ケ月に亘り連続運転を行なつた。 上記ベンチ実験装置の入口及び出口空気の悪臭
成分(アンモニア、メチルメルカプタン、硫化水
素、酪酸イソ吉草酸)濃度をガスクロマトグラフ
のピーク面積により定量測定した。上記運転期間
を通じて脱臭効率は約80%であつた。立上がりか
ら38日間は100%の脱臭効率を持続していたが、
39日目から脱臭効率が徐々に低下しはじめ、3ケ
月の終了時には55%まで低下していた。 発明の効果 以上詳細に説明した如く、本発明の微生物によ
る脱臭方法は脱臭微生物を固定した水分50%以上
の泥炭からなる多孔質層に臭気のある気体を通す
ことにより脱臭するので次の効果を奏する。 (イ) 汚泥スラリー循環装置を要しないので設備費
を低く抑えることができる。 (ロ) 運転動力が少ないのでランニングコストが低
額である。 (ハ) 保守が容易であり保守コストを低く抑えるこ
とができる。
[Table] The volumetric weight of the other three types of peat is significantly lower than that of the planted loam, and the ranking is sphagnum peat < sedge peat <
It is reed peat, and sphagnum peat is 11g/100cm 3
This is an extremely low value. This indicates that peat, especially sphagnum peat, retains much of its remains and has many pores distributed within its structure. Looking at the water capacity, the planted soil is 44.3%, while other peat is distributed in the range of 289-1057%.
The values are particularly high in sphagnum peat. Peat thus has many distributed pores,
It has an extremely small volumetric weight and a large amount of water retention.
Moreover, the effectiveness of retained moisture is almost the same as that of planting soil. These properties are particularly remarkable in the case of sphagnum peat, which has low degradability and is fibrous, indicating that peat, especially sphagnum peat, is an excellent material as a carrier for immobilizing microorganisms. That is, when the gas to be treated is passed through a microbial deodorizing layer using peat as a carrier, it is expected that the pressure loss will be small and the power consumption required for air blowing will be small. As a result of comparing the relationship between water content and pressure loss in fibrous peat carbon with that of other carriers, it was confirmed that peat layers exhibit significantly lower pressure loss values over a wide range of water content. In practical deodorizing equipment that requires long-term operation, moisture content is a very important factor, so low pressure loss over a wide range of moisture content is a particularly desirable property for carriers. The reason why wet peat containing water is used in the present invention is that dry peat has little deodorizing effect. It is well known that dissolving malodorous substances in water has a deodorizing effect. Examples of microorganisms for decomposing malodorous substances used in the present invention include microorganisms collected from pig pens, cow pens, poultry pens, or soil in their vicinity, microorganisms collected from activated peat in various water treatment facilities, and anaerobic sludge. These are things taken from. Generally, malodorous substances are often complex systems rather than single compounds, and it is preferable that the microorganisms that have decomposition ability be a mixed system consisting of several types of microorganisms rather than a single type. A method for collecting microorganisms is to embed an immobilized carrier made of peat in the soil near the facility where the malodorous substance is generated for a certain period of time, and allow microorganisms that have activity against the malodorous substance to migrate to the immobilized carrier and become accustomed to it. is convenient. Odorless microorganisms include mold, yeast,
Although they can be classified into actinomycetes and bacteria, it is not always easy to identify preferred microorganisms because there are a wide variety of malodorous substances. The reality is that finding microorganisms that are effective against bad odors to be removed requires trial and error experiments. Effective deodorizing microorganisms have been successfully isolated and identified for some specific malodorous substances, and highly efficient deodorizing technology based on mass cultivation has also been developed. However, it is difficult to say that general microbial deodorization technology has been established yet. Effects To explain the effects, as pointed out earlier, the pressure drop when gas is passed through a hydrated peat layer is extremely low over a wide range of moisture content. By passing odorous air through peat, the odor can be removed without requiring particularly large blowing power. Therefore, equipment for circulating slurry-like sludge and power for circulation are not required, and the blowing power is small, so that cost reduction in the biological deodorization method, which is the objective of the present invention, can be achieved reliably. . EXAMPLES The present invention will be described in further detail below with reference to Examples. In the present invention, a suitable pore-forming material is used to maintain constant gas flow in the peat. Examples of pore-forming materials include activated carbon and spherical porous bodies.
Activated carbon not only has high surface activity and physical adsorption ability, but also has excellent properties as a microbial carrier. In other words, when mixed into soil as agricultural carbon, it improves aggregate structure, water retention, air permeability, fertilizer retention,
It has been recognized that it exhibits excellent properties for improving the microbial environment in terms of soil temperature rise, microbial growth, pH adjustment, etc. The present inventor has experimentally found that a microbial immobilization carrier prepared by mixing 30-0.1% activated carbon with peat is preferable. A spherical porous body is one made of plastic, glass, or other material molded into a porous spherical shape.
One example is the porous material manufactured and sold by Tokyo Tokushu Wire Mesh Co., Ltd. under the name "Eyeball", which has a diameter of 25 mm.
mm, surface area 314m 2 /m 3 , free volume 92%, density 84000
It is commercially available as products with particles/m 3 and other particle sizes and characteristics. Example 1 Activated sludge liquid collected at Kitatama Sewage Treatment Plant in Tokyo
75ml was impregnated with 240g of sphagnum peat from the Soviet Union.
The properties of the Soviet sphagnum peat were as follows. Moisture 52.41%, total nitrogen 1.03%, total phosphoric acid 0.13%, total potassium 0.04%, crude ash 2.71%, loss on ignition 97.29%, organic carbon 50.03%, carbon percentage 48.6%, crude humic acid 12.2%, cation exchange capacity A 1.15 meq/100 g column with an internal diameter of 60 mm and a height of 500 mm was filled with 50% of the above sludge-impregnated peat and 50% of the above spherical porous eyeballs with a diameter of 25 mm in an internal volume of 1350 ml. From the top of the column, 50-100ppm
Air containing hydrogen sulfide was blown in at a rate of 100 ml per hour, and continuous operation was carried out for about 24 days. To prevent the peat from drying out, water was sprayed from the top from time to time to adjust the moisture content of the peat to 50-80%. The deodorizing efficiency was calculated by measuring the hydrogen sulfide concentration at the inlet and outlet of the column using a detection tube.
The deodorizing efficiency during the above operation period was 100%. Example 2 An experiment was conducted in the same manner as in Example 1, except that anaerobic sludge collected from a methane fermentation reactor was used instead of the activated sludge collected at the Kitatama Sewage Treatment Plant. The deodorizing efficiency during this experimental period was also 100%. Example 3 Same as Example 1 except that instead of the impregnation treatment with the activated sludge liquid collected at the Kitatama Sewage Treatment Plant, 250 g of soil collected from the Morimoto Pig Farm in Kisarazu City, Chiba Prefecture was mixed and treated. The experiment was conducted using a method. The deodorizing efficiency during this experimental period was also 100%. Example 4 The peat produced in the Soviet Union was left buried in the soil of the pig farm in Example 3, and microorganisms were collected. Inner diameter 60mm, height
A 500 mm column was filled with a mixture of 350 g of the microorganism-collected sphagnum peat and 60 spherical porous eyeballs each having a diameter of 25 mm. Air containing 100-150 ppm hydrogen sulfide is pumped from the top of the column to 100%
It was injected at a speed of 1/2 hour and operated continuously for about 35 days. To prevent the peat from drying out, water was sprayed from the top from time to time to adjust the moisture content of the peat to 50-80%. The deodorizing efficiency was calculated by measuring the hydrogen sulfide concentration in the inlet and outlet air of the column using a detection tube. The deodorizing efficiency during the above operation period was 100%. Example 5 Same as Example 4 except that air containing 50-100 ppm acetic acid as a malodorous component instead of 100-150 ppm hydrogen sulfide was blown in at a rate of 100 ppm/hour, and continuous operation was performed for about 18 days. Experiments were conducted in a similar manner. The deodorizing efficiency during this experimental period was also 100%. Example 6 Tank floor area (2.2mx3.3m=) 6.0m 2 , tank height 1.0m
The sphagnum peat from the Soviet Union was buried and left in the soil of the pig farm in Example 3, which accounted for 50% of its internal volume of 6 m 3 , or 3 m 3 , and microorganisms were collected inside the microbial deodorizing bench experimental equipment. Spherical porous eyeball manufactured by Special Wire Mesh Co., Ltd. (diameter 50mm, surface area
165m 2 /m 3 , free volume 94%, density 10400 pieces/m 3 ) Approx.
31,000 pieces were filled alternately. Peat moisture content 50
In order to adjust to -80%, the water content was continuously monitored and water was automatically sprayed from the top of the column using a water sprinkler. The foul-smelling air generated from the pig farm was fed into the above bench experimental equipment using a fan (blow capacity 1200 m 3 /hour) while controlling the wind speed to 0.04 - 0.07 m / sec, and it was operated continuously for about 3 months. I did this. The concentration of malodorous components (ammonia, methyl mercaptan, hydrogen sulfide, butyric acid isovaleric acid) in the inlet and outlet air of the bench experimental apparatus was quantitatively measured by the peak area of a gas chromatograph. The deodorizing efficiency was approximately 80% throughout the above operating period. The deodorizing efficiency was maintained at 100% for 38 days after startup, but
The deodorizing efficiency began to gradually decrease from the 39th day, and had dropped to 55% at the end of 3 months. Effects of the Invention As explained in detail above, the deodorizing method using microorganisms of the present invention deodorizes by passing odor gas through a porous layer of peat with a water content of 50% or more, which has fixed deodorizing microorganisms, so that it has the following effects: play. (a) Equipment costs can be kept low because a sludge slurry circulation device is not required. (b) Running costs are low because the operating power is low. (c) Maintenance is easy and maintenance costs can be kept low.

Claims (1)

【特許請求の範囲】[Claims] 1 100cm3の風乾重11g以下のミズゴケ泥炭に脱
臭微生物を固定し、このミズゴケ泥炭及び0.1%
以上の増孔材からなる多孔質脱臭層の水分を50%
以上に保ち、その多孔質脱臭層に臭気のある気体
を通すことにより脱臭してなる微生物による脱臭
方法。
1. Deodorizing microorganisms are fixed on sphagnum peat of 100cm3 with an air-dry weight of 11g or less, and this sphagnum peat and 0.1%
The moisture content of the porous deodorizing layer made of the above pore-forming material is reduced to 50%.
This method uses microorganisms to deodorize by passing odor gas through the porous deodorizing layer.
JP62051980A 1987-03-09 1987-03-09 Deodorizing method by bacteria Granted JPS63220875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62051980A JPS63220875A (en) 1987-03-09 1987-03-09 Deodorizing method by bacteria

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62051980A JPS63220875A (en) 1987-03-09 1987-03-09 Deodorizing method by bacteria

Publications (2)

Publication Number Publication Date
JPS63220875A JPS63220875A (en) 1988-09-14
JPH0430866B2 true JPH0430866B2 (en) 1992-05-22

Family

ID=12902009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62051980A Granted JPS63220875A (en) 1987-03-09 1987-03-09 Deodorizing method by bacteria

Country Status (1)

Country Link
JP (1) JPS63220875A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5922555A (en) * 1982-07-30 1984-02-04 門馬 義芳 Deodorant utilizing microorganism

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5922555A (en) * 1982-07-30 1984-02-04 門馬 義芳 Deodorant utilizing microorganism

Also Published As

Publication number Publication date
JPS63220875A (en) 1988-09-14

Similar Documents

Publication Publication Date Title
EP0669155B1 (en) Method for biologically purifying gas streams
CN110465184A (en) Deodorant filler and preparation method thereof, deodorization device and deodorizing methods and application
CN101172211B (en) Method for purifying malodorous gas by regulating biogum filling material
KR100490800B1 (en) Compost Biofilter and Method for Removing Compost Odor Using the Same
RU145378U1 (en) DEVICE FOR DISPOSAL OF GASES FORMED IN BIORACTORS OF ORGANIC WASTE PROCESSING
KR100267632B1 (en) Method for removing volatile organic componets, hydrogen sulfide and ammonia gas employing biological filter system with immobilized microorganisms
JPH0430866B2 (en)
KR101340353B1 (en) Sewage treatment facility using biofilter with purification waterweed
CN206262355U (en) For the deodoration system of food waste treatment equipment
JP3063103B2 (en) Biological deodorization method
JP2560374B2 (en) Biological deodorizing method, biological deodorizing device, and agent for improving decomposition activity of sulfur-based odorous substances in biological deodorizing device
JPH08323136A (en) Method for deodorizing odorous gas by microorganism
JPH0365208B2 (en)
Gałwa-Widera et al. Reduction of Odour Nuisance of Industrial Plants–Biofiltering in Composting Plants
Komariah et al. Design of Biofiltration System for Ammonia Removal from the Storage of Rubber Processed Materials
JP4424702B2 (en) Deodorizing method of compost odor
JP6792237B2 (en) Hydrogen sulfide reduction material and hydrogen sulfide reduction method
Shimko et al. Biochemical methods of freeing gas-air mixtures from sulfur containing compounds
KR0149108B1 (en) Method of deodorisation and apparatus thereof
JPH11236287A (en) Biological deodorization equipment
JPH08243346A (en) Treatment of malodorous gas
JP2001070746A (en) Deodorization method and apparatus
JPH02113B2 (en)
JPH09141046A (en) Packing type biological deodorizing device using carbonized coffee extraction residue
KR100330549B1 (en) Applcation system of actinoplanes in livestock industry

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term