JPH04308443A - Method for insulating salient pole field winding - Google Patents
Method for insulating salient pole field windingInfo
- Publication number
- JPH04308443A JPH04308443A JP3070701A JP7070191A JPH04308443A JP H04308443 A JPH04308443 A JP H04308443A JP 3070701 A JP3070701 A JP 3070701A JP 7070191 A JP7070191 A JP 7070191A JP H04308443 A JPH04308443 A JP H04308443A
- Authority
- JP
- Japan
- Prior art keywords
- field winding
- salient pole
- winding
- insulating
- varnish
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004804 winding Methods 0.000 title claims abstract description 70
- 238000000034 method Methods 0.000 title claims abstract description 26
- 239000002966 varnish Substances 0.000 claims abstract description 44
- 229920005989 resin Polymers 0.000 claims abstract description 36
- 239000011347 resin Substances 0.000 claims abstract description 36
- 239000003822 epoxy resin Substances 0.000 claims abstract description 18
- 229920000647 polyepoxide Polymers 0.000 claims abstract description 18
- 239000011248 coating agent Substances 0.000 claims abstract description 14
- 238000000576 coating method Methods 0.000 claims abstract description 14
- 239000011247 coating layer Substances 0.000 claims description 33
- 238000009413 insulation Methods 0.000 claims description 32
- 230000002093 peripheral effect Effects 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 5
- 238000007788 roughening Methods 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000010949 copper Substances 0.000 claims description 2
- 238000003672 processing method Methods 0.000 abstract description 2
- 239000012298 atmosphere Substances 0.000 description 7
- 239000004593 Epoxy Substances 0.000 description 6
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 6
- 229920003002 synthetic resin Polymers 0.000 description 6
- 239000000057 synthetic resin Substances 0.000 description 6
- 238000001723 curing Methods 0.000 description 5
- 238000001879 gelation Methods 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 239000004020 conductor Substances 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- MECNWXGGNCJFQJ-UHFFFAOYSA-N 3-piperidin-1-ylpropane-1,2-diol Chemical compound OCC(O)CN1CCCCC1 MECNWXGGNCJFQJ-UHFFFAOYSA-N 0.000 description 3
- OECTYKWYRCHAKR-UHFFFAOYSA-N 4-vinylcyclohexene dioxide Chemical compound C1OC1C1CC2OC2CC1 OECTYKWYRCHAKR-UHFFFAOYSA-N 0.000 description 3
- 239000011353 cycloaliphatic epoxy resin Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 3
- 238000013007 heat curing Methods 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 230000008646 thermal stress Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical class C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000005340 laminated glass Substances 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 239000010445 mica Substances 0.000 description 2
- 229910052618 mica group Inorganic materials 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 150000002118 epoxides Chemical class 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Insulation, Fastening Of Motor, Generator Windings (AREA)
- Manufacture Of Motors, Generators (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】この発明は、主として同期発電機
の回転子に用いられる突極界磁巻線、ことに界磁巻線外
周部分の絶縁塗膜層の絶縁処理方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a salient pole field winding used primarily in a rotor of a synchronous generator, and more particularly to a method for insulating an insulating coating layer on the outer periphery of the field winding.
【0002】0002
【従来の技術】図3は従来の突極界磁巻線を示す断面図
(ハッチングを省略)であり、磁極鉄心1は、そのダブ
テ−ル部1Bが例えば水車発電機の回転子に結合されて
高速で回転するものであるから、磁極鉄心1に巻装され
る界磁巻線2には大きな遠心力が作用する。そこで、界
磁巻線2はそのコイル導体2Aに裸導帯を用い、これを
エッジワイズ(広幅方向)にレ−ストラック状に複数回
巻回し、タ−ン間絶縁4としてのマイカシ−ト,ガラス
布,アラミッド紙などを接着剤で裸導帯に貼り付けて各
タ−ン間を絶縁し、得られた界磁巻線2を磁極鉄心1の
H字状の凹所に鉄心絶縁5および端部絶縁3を介在させ
た状態で装着し、界磁巻線2のコイル導体間に締め付け
荷重を加えた状態で磁極鉄心1の凹所に固定する。界磁
巻線2と磁極鉄心1を電気的に絶縁する鉄心絶縁5や端
部絶縁3には、エポキシガラス積層板,ポリエステルガ
ラス積層板,マイカシ−トの積層体など機械的強度の高
い絶縁材料が使用され、したがって、過酷な遠心力や機
械的振動,ヒ−トサイクルによる熱応力に耐える強固な
突極界磁巻線が得られる。2. Description of the Related Art FIG. 3 is a cross-sectional view (hatching is omitted) showing a conventional salient pole field winding, in which a magnetic pole core 1 has a dovetail portion 1B coupled to a rotor of a water turbine generator, for example. Since the magnetic field winding 2 rotates at high speed, a large centrifugal force acts on the field winding 2 wound around the magnetic pole core 1. Therefore, the field winding 2 uses a bare conductive band for its coil conductor 2A, which is wound edgewise (in the wide width direction) multiple times in a race track shape, and a mica sheet is used as the inter-turn insulation 4. , glass cloth, aramid paper, etc. are pasted on the bare conductive strip with adhesive to insulate between each turn, and the obtained field winding 2 is placed in the H-shaped recess of the magnetic pole core 1 with core insulation 5. The field winding 2 is mounted with the end insulation 3 interposed therebetween, and is fixed in the recess of the magnetic pole core 1 with a tightening load applied between the coil conductors of the field winding 2. The core insulation 5 and end insulation 3 that electrically insulate the field winding 2 and the magnetic pole core 1 are made of insulating materials with high mechanical strength such as epoxy glass laminates, polyester glass laminates, mica sheet laminates, etc. is used, thus resulting in a strong salient pole field winding that can withstand severe centrifugal force, mechanical vibration, and thermal stress due to heat cycles.
【0003】0003
【発明が解決しようとする課題】一方、界磁巻線2の外
周側は磁極鉄心1や端部絶縁3,タ−ン間絶縁4の外周
面に対して十数mm程度突出して冷却フィンを形成し、
回転子が回転する際界磁巻線が強制風冷されるよう構成
される。したがって、界磁巻線は裸導帯が露出していた
方が良好な冷却効果が得られるが、回転中空気中の塵埃
が界磁巻線の表面に付着したり、あるいは運転を停止し
て界磁巻線の温度が低下した際界磁巻線の表面に結露を
生ずることがあり、端部絶縁3やタ−ン間絶縁4の端面
が濡れた塵埃で覆われることにより、漏れ電流,ことに
磁極鉄心1への漏れ電流が増し、ついには界磁巻線の地
絡事故やタ−ン間の短絡事故に発展する事態が発生する
。[Problems to be Solved by the Invention] On the other hand, the outer circumferential side of the field winding 2 has cooling fins that protrude by about ten or more mm from the outer circumferential surfaces of the magnetic pole core 1, the end insulation 3, and the inter-turn insulation 4. form,
The field winding is configured to be forcedly cooled when the rotor rotates. Therefore, a better cooling effect can be obtained when the bare conductive band of the field winding is exposed, but dust in the air may adhere to the surface of the field winding during rotation, or the operation may be stopped. When the temperature of the field winding decreases, dew condensation may occur on the surface of the field winding, and the end surfaces of the end insulation 3 and inter-turn insulation 4 are covered with wet dust, causing leakage current and In particular, the leakage current to the magnetic pole core 1 increases, and eventually a situation develops into a ground fault in the field winding or a short circuit between turns.
【0004】このような事態を回避するために、界磁巻
線2の表面に磁極鉄心の外周面に跨がって合成樹脂を主
成分とするワニスを塗布,加熱乾燥して絶縁塗膜層7を
形成し、界磁巻線の表面汚損による漏れ電流の増加を阻
止したものが知られている。しかしながら、従来のワニ
スは有機溶剤を含んでいるために、その乾燥工程で溶剤
が飛散することにより皮膜にピンホ−ルが発生し易く、
充分な耐湿性能を得難いばかりか、ピンホ−ルを減らす
ためには乾燥時間を長くして急激な溶剤の蒸発を抑制し
たり、あるいは重ね塗りの回数を多くして皮膜を厚くす
る必要があり、絶縁塗膜層7の形成に多大な加工工数お
よび加工時間を要するという問題が生ずる。In order to avoid such a situation, a varnish mainly composed of synthetic resin is applied to the surface of the field winding 2 over the outer peripheral surface of the magnetic pole core, and then heated and dried to form an insulating coating layer. 7 is known to prevent an increase in leakage current due to surface contamination of the field winding. However, since conventional varnishes contain organic solvents, pinholes are likely to occur in the film due to the solvent scattering during the drying process.
Not only is it difficult to obtain sufficient moisture resistance, but in order to reduce pinholes, it is necessary to increase the drying time to suppress rapid evaporation of the solvent, or to increase the number of coats to thicken the film. A problem arises in that forming the insulating coating layer 7 requires a large number of processing steps and processing time.
【0005】また、例えばエポキシ系の無溶剤樹脂ワニ
スを用いることによりピンホ−ルが少なく,耐湿性能の
優れた絶縁塗膜層7を形成できると期待されるが、一般
に多く使用されるエピ.ビス系(エピクロルヒドリン.
ビスフェノ−ルA系)のエポキシ樹脂は粘度が高く、そ
のままでは塗料として使用できないため、反応性希釈剤
であるエポキサイドや各種有機溶剤を加えて粘度を下げ
る必要があり、反応希釈剤の添加は硬化物の架橋密度を
低下させてエポキシ樹脂硬化物の特性,ことに耐湿性能
を低下させる欠点があり、また、有機溶剤の添加は前述
の合成樹脂ワニスにおけると同様の不都合をもたらす。Furthermore, it is expected that the insulating coating layer 7 with fewer pinholes and excellent moisture resistance can be formed by using, for example, an epoxy-based solvent-free resin varnish. Bis-based (epichlorohydrin.
Bisphenol A-based epoxy resin has a high viscosity and cannot be used as a paint as it is, so it is necessary to add reactive diluent epoxide or various organic solvents to lower the viscosity. This method has the drawback of lowering the crosslinking density of the product and lowering the properties of the cured epoxy resin product, especially its moisture resistance, and addition of an organic solvent brings about the same disadvantages as those of the synthetic resin varnish described above.
【0006】この発明の目的は、優れた耐湿性能を有す
る絶縁塗膜層を、省力化された加工方法で容易に形成で
きる突極界磁巻線の絶縁処理方法を得ることにある。An object of the present invention is to provide a method for insulating a salient pole field winding, which allows an insulating coating layer having excellent moisture resistance to be easily formed using a labor-saving processing method.
【0007】[0007]
【課題を解決するための手段】上記課題を解決するため
に、この発明によれば、裸銅帯をエッジワイズに複数回
巻回し,各巻回間にタ−ン間絶縁を介装してなる界磁巻
線が、H字状に近い断面形状の磁極鉄心の凹所内に強固
に絶縁支持され、前記磁極鉄心の外周面を含む前記界磁
巻線の外周部分がエポキシ樹脂系の無溶剤樹脂ワニスの
硬化膜からなる絶縁塗膜層に覆われた突極界磁巻線にお
いて、前記突極界磁巻線を所定の温度に加熱した後、前
記エポキシ樹脂系の無溶剤樹脂ワニスを塗布し、しかる
後塗布膜を加熱硬化処理して絶縁塗膜層を形成すること
とする。[Means for Solving the Problems] In order to solve the above problems, according to the present invention, a bare copper strip is wound edgewise a plurality of times, and inter-turn insulation is interposed between each winding. A field winding is firmly insulated and supported within a recess of a magnetic pole core having a cross-sectional shape close to an H-shape, and an outer peripheral portion of the field winding including an outer peripheral surface of the magnetic pole core is made of an epoxy resin-based solvent-free resin. In the salient pole field winding covered with an insulating coating layer made of a cured varnish film, the salient pole field winding is heated to a predetermined temperature, and then the epoxy resin-based solvent-free resin varnish is applied. After that, the coating film is heat-cured to form an insulating coating layer.
【0008】また、突極界磁巻線を所定の温度に加熱し
た後、まず硬化促進剤を塗布し、しかる後エポキシ樹脂
系の無溶剤樹脂ワニスを塗布することとする。[0008] After the salient pole field winding is heated to a predetermined temperature, a curing accelerator is first applied, and then an epoxy resin-based solvent-free resin varnish is applied.
【0009】さらに、エポキシ樹脂系の無溶剤樹脂ワニ
スの塗布面をあらかじめ粗面化処理する工程を含むこと
とする。The method further includes a step of roughening the surface to which the epoxy resin-based solvent-free resin varnish is applied.
【0010】0010
【作用】この発明の構成は、エポキシ樹脂の中にもビニ
ルシクロヘキセンジオキサイドなどの環式脂肪族エポキ
シ樹脂、ビスフェノ−ルF系エポキシ樹脂、あるいはト
リメチロ−ルプロパントリグリシジルエ−テル等のグリ
シジルエ−テル樹脂は、溶剤を加えないでもその粘度が
360〜1500cps 前後で、エピ.ビス系のそれ
にくらべてかなり低く、無溶剤樹脂ワニスとして使用可
能なことに着目して得られたものである。すなわち、突
極界磁巻線を所定の温度に加熱した後、前記エポキシ樹
脂系の無溶剤樹脂ワニスを塗布し、しかる後塗布膜を加
熱硬化処理して絶縁塗膜層を形成すれば、加熱された塗
布面に無溶剤樹脂ワニスを容易に塗布できるとともに、
無溶剤樹脂ワニスのゲル化が促進され、ワニスが垂れ落
ちることなく比較的厚い塗膜を1回の塗布作業によって
形成できる。また、加熱硬化工程では無溶剤であるため
にピンホ−ルなどの欠陥が生じがたく、耐湿性能に優れ
た絶縁塗膜層が得られる。なお、塗布面をあらかじめ粗
面化処理しておくよう構成すれば、界磁巻線に強固に固
着して耐久性の優れた絶縁塗膜層が得られる。[Operation] The constitution of the present invention is that epoxy resins include cycloaliphatic epoxy resins such as vinyl cyclohexene dioxide, bisphenol F-based epoxy resins, and glycidyl ethers such as trimethylolpropane triglycidyl ether. Teru resin has a viscosity of around 360 to 1500 cps even without adding a solvent, and has an epi. It was obtained by focusing on the fact that it is considerably lower than that of bis-based resins and can be used as a solvent-free resin varnish. That is, after heating the salient pole field winding to a predetermined temperature, the epoxy resin-based solvent-free resin varnish is applied, and then the coating film is heat-cured to form an insulating coating layer. Solvent-free resin varnish can be easily applied to the coated surface, and
The gelation of the solvent-free resin varnish is promoted, and a relatively thick coating film can be formed in a single coating operation without the varnish dripping. Furthermore, since no solvent is used in the heat curing process, defects such as pinholes are less likely to occur, and an insulating coating layer with excellent moisture resistance can be obtained. Note that if the coating surface is roughened in advance, an insulating coating layer that firmly adheres to the field winding and has excellent durability can be obtained.
【0011】さらに、加熱された界磁巻線に硬化促進剤
を塗布した後、無溶剤樹脂ワニスを塗布するよう構成す
れば、塗布された無溶剤樹脂ワニスの内側から樹脂のゲ
ル化が始まってワニスの流動を拘束するので、塗膜の厚
みが厚くかつ均一な絶縁塗膜層を形成することができる
とともに、塗布面をあらかじめ粗面化処理しておくこと
により、界磁巻線に強固に固着して耐久性の高い絶縁塗
膜層が得られる。Furthermore, if the structure is such that the solvent-free resin varnish is applied after the curing accelerator is applied to the heated field winding, gelation of the resin starts from the inside of the applied solvent-free resin varnish. Since the flow of the varnish is restricted, it is possible to form a thick and uniform insulating coating layer, and by roughening the coated surface in advance, it can be firmly attached to the field winding. A highly durable insulating coating layer is obtained.
【0012】0012
【実施例】以下、この発明を実施例に基づいて説明する
。図1はこの発明の実施例絶縁処理方法になる突極界磁
巻線の断面図、図2は図1におけるA部の拡大図であり
、従来技術と同じ部分には同一参照符号を付して重複し
た説明を省略する。図において、使用する無溶剤樹脂ワ
ニスは、ビニルシクロヘキセンジオキサイドなどの環式
脂肪族エポキシ樹脂、ビスフェノ−ルF系エポキシ樹脂
、あるいはトリメチロ−ルプロパントリグリシジルエ−
テル等のグリシジルエ−テル樹脂のいずれかであり、こ
れに石英粉末,アルミナ,あるいは顔料等の無機質粉末
を充填剤として樹脂重量100に対して30〜50の割
合で加え、さらにアミン系または酸無水物系の硬化剤を
エポキシ当量により求まる必要量に対して約90%に当
たる量添加したものを用いた。EXAMPLES The present invention will be explained below based on examples. FIG. 1 is a sectional view of a salient pole field winding according to an embodiment of the insulation treatment method of the present invention, and FIG. 2 is an enlarged view of part A in FIG. Therefore, duplicate explanations will be omitted. In the figure, the solvent-free resin varnish used is cycloaliphatic epoxy resin such as vinylcyclohexene dioxide, bisphenol F-based epoxy resin, or trimethylolpropane triglycidyl ether.
To this, quartz powder, alumina, or inorganic powder such as pigment is added as a filler at a ratio of 30 to 50% based on 100% of the resin weight, and amine-based or acid anhydride resin is added. A material containing a physical curing agent in an amount corresponding to about 90% of the required amount determined by the epoxy equivalent was used.
【0013】また、界磁巻線2およびこれを支持する磁
極鉄心1はあらかじめ60〜70°C程度に加熱され、
ジグザグ状の界磁巻線2の表面から磁極鉄心1の外周面
に沿って上記無溶剤樹脂ワニスが塗布される。このとき
、無溶剤樹脂ワニスは加熱された突極界磁巻線に塗布さ
れる過程で一旦粘度が低下して塗布作業が容易化される
とともに、数分間程度でゲル化するので、無溶剤樹脂ワ
ニスの流れ落ちが阻止され、直ちに加熱硬化処理するこ
とにより1回の塗布作業で0.15〜0.2mm程度の
厚みを有する絶縁塗膜層17が、図2に示すように界磁
巻線の表面に沿って均一な厚みを保持して形成される。
なお、合成樹脂系のワニスを用いた従来の絶縁処理方法
では、皮膜の厚みが0.15mm程度の絶縁塗膜層7を
形成しようとする場合2回塗りが必要であるが、実施例
方法によれば1回塗りでこれを上回る厚みの絶縁塗膜層
を形成でき、かつ加熱硬化処理も短くて済むので、絶縁
処理工数を大幅に省力化できるとともに、絶縁処理時間
を従来の1/3程度に省時間化することができる。[0013] The field winding 2 and the magnetic pole core 1 that supports it are heated in advance to about 60 to 70°C.
The solvent-free resin varnish is applied from the surface of the zigzag-shaped field winding 2 to the outer peripheral surface of the magnetic pole core 1. At this time, the viscosity of the solvent-free resin varnish decreases during the process of applying it to the heated salient pole field winding, making the application process easier. The varnish is prevented from running off, and the insulation coating layer 17 having a thickness of about 0.15 to 0.2 mm can be formed on the field winding in one application by immediately heating and curing the field winding as shown in FIG. It is formed with a uniform thickness along the surface. In addition, in the conventional insulation treatment method using a synthetic resin varnish, two coats are required to form the insulation coating layer 7 with a film thickness of about 0.15 mm. According to this method, it is possible to form an insulating coating layer with a thickness greater than this in one coat, and the heat curing process is also short, so the number of man-hours required for insulating process can be greatly reduced, and the insulating process time is about 1/3 of the conventional time. It can save time.
【0014】さらに、絶縁塗膜層17を形成する界磁巻
線2の裸導帯の表面および磁極鉄心2の外周面を、酸ま
たは研磨材を用いてあらかじめ粗面化処理しておけば、
絶縁塗膜層17が突極界磁巻線に強固に固着して遠心力
や振動に対する機械的安定性が増し、また突極界磁巻線
の温度変化と各部の熱膨張差に伴って生ずる熱応力に対
する安定性も増すので、信頼性の優れた絶縁塗膜層を形
成できる。Furthermore, if the surface of the bare conductive band of the field winding 2 forming the insulating coating layer 17 and the outer peripheral surface of the magnetic pole core 2 are roughened in advance using an acid or an abrasive,
The insulating coating layer 17 firmly adheres to the salient pole field winding, increasing mechanical stability against centrifugal force and vibration, which also occurs due to temperature changes in the salient pole field winding and differences in thermal expansion between various parts. Since stability against thermal stress is also increased, it is possible to form an insulating coating layer with excellent reliability.
【0015】また、加熱された突極界磁巻線の表面に、
先ず硬化促進剤を塗布し、その上にエポキシ系の無溶剤
樹脂ワニスを塗布するよう絶縁処理方法を構成すれば、
無溶剤樹脂ワニスのゲル化時間を一層短縮できるので、
厚みが20〜30%厚い絶縁塗膜層を1回の塗布作業で
形成でき、より耐湿性能の優れた絶縁塗膜層を有する突
極界磁巻線が得られる。さらに、粗面化処理した突極界
磁巻線の表面に硬化促進剤を塗布するよう構成すれば、
突極界磁巻線への接着性が一層向上するので、より耐久
性の優れた絶縁塗膜層を有する突極界磁巻線を得ること
ができる。[0015] Furthermore, on the surface of the heated salient pole field winding,
If the insulation treatment method is configured to first apply a curing accelerator and then apply an epoxy-based solvent-free resin varnish,
Since the gelation time of solvent-free resin varnish can be further shortened,
An insulating coating layer 20 to 30% thicker can be formed in one coating operation, and a salient pole field winding having an insulating coating layer with better moisture resistance can be obtained. Furthermore, if a hardening accelerator is applied to the surface of the roughened salient pole field winding,
Since the adhesion to the salient pole field winding is further improved, it is possible to obtain a salient pole field winding having an insulating coating layer with more excellent durability.
【0016】表1はこの発明の実施例になるエポキシ系
無溶剤樹脂ワニスを用いた絶縁塗膜層の耐湿性能を、従
来の合成樹脂系ワニスを用いた絶縁塗膜層のそれと比較
して示す特性表であり、乾燥雰囲気(温度20°C,湿
度40%)中での絶縁抵抗と、湿潤雰囲気(温度40°
C,湿度90%)での絶縁抵抗とが示してある。表にお
いて、合成樹脂系ワニスを用いた従来例では、湿潤雰囲
気中では抵抗値が乾燥雰囲気中のそれより4桁も低下し
、絶縁塗膜層7にピンホ−ル等の欠陥が多く存在して耐
湿性能が低いことを示している。これに対してエポキシ
系無溶剤樹脂ワニスを用いた実施例では、湿潤雰囲気中
での絶縁抵抗の低下が1桁以下に止まり、かつその抵抗
値が従来の乾燥雰囲気中の絶縁抵抗値より高い値を示し
ており、実施例になる絶縁処理方法になる絶縁塗膜層が
ピンホ−ル等の欠陥が少なく耐湿性能に優れていること
を示している。Table 1 shows the moisture resistance performance of an insulating coating layer using an epoxy solvent-free resin varnish according to an embodiment of the present invention in comparison with that of an insulating coating layer using a conventional synthetic resin varnish. This is a characteristic table showing insulation resistance in a dry atmosphere (temperature 20°C, humidity 40%) and humid atmosphere (temperature 40°C).
C, insulation resistance at 90% humidity). In the table, in the conventional example using synthetic resin varnish, the resistance value in a humid atmosphere is 4 orders of magnitude lower than that in a dry atmosphere, and there are many defects such as pinholes in the insulating coating layer 7. This indicates low moisture resistance. On the other hand, in an example using an epoxy-based solvent-free resin varnish, the decrease in insulation resistance in a humid atmosphere was limited to less than one digit, and the resistance value was higher than the conventional insulation resistance value in a dry atmosphere. This shows that the insulating coating layer obtained by the insulation treatment method of the example has few defects such as pinholes and has excellent moisture resistance.
【0017】[0017]
【表1】[Table 1]
【0018】[0018]
【発明の効果】この発明は前述のように、 ビニルシ
クロヘキセンジオキサイドなどの環式脂肪族エポキシ樹
脂、ビスフェノ−ルF系エポキシ樹脂、あるいはトリメ
チロ−ルプロパントリグリシジルエ−テル等のグリシジ
ルエ−テル樹脂などの粘度が360〜1500cps
前後のエポキシ系樹脂を主体とする無溶剤樹脂ワニスを
使用し、突極界磁巻線を所定の温度に加熱した後、前記
エポキシ樹脂系の無溶剤樹脂ワニスを塗布し、しかる後
塗布膜を加熱硬化処理して絶縁塗膜層を形成すれよう構
成した。その結果、無溶剤樹脂ワニスの粘度が多少高く
ても、塗布面の温度が高いので容易に塗布できるととも
に、無溶剤樹脂ワニスのゲル化が促進され、ワニスが垂
れ落ちることなく比較的厚い絶縁塗膜層を1回の塗布作
業によって形成することが可能になり、合成樹脂ワニス
を用いた従来の絶縁処理方法に比べて絶縁処理作業を大
幅に省力化,省時間化できる利点が得られる。また、加
熱硬化工程では無溶剤であるためにピンホ−ルなどの欠
陥が生じがたく、湿潤雰囲気中でも絶縁抵抗が殆ど低下
しない極めて耐湿性能に優れた絶縁塗膜層を形成できる
。したがって、従来の絶縁処理方法で耐湿性能が低いこ
とにより発生した界磁巻線の地絡事故等のトラブルが排
除され、長期絶縁信頼性に優れた絶縁塗膜層を有する突
極界磁巻線を経済的にも有利に提供することができる。Effects of the Invention As described above, the present invention can be applied to cycloaliphatic epoxy resins such as vinyl cyclohexene dioxide, bisphenol F-based epoxy resins, or glycidyl ether resins such as trimethylolpropane triglycidyl ether. The viscosity is 360~1500cps
After heating the salient pole field winding to a predetermined temperature using a solvent-free resin varnish mainly made of epoxy resin on the front and rear, apply the epoxy resin-based solvent-free resin varnish, and then apply the coating film. It was configured to be heat-cured to form an insulating coating layer. As a result, even if the viscosity of the solvent-free resin varnish is somewhat high, it can be applied easily because the temperature of the application surface is high, and gelation of the solvent-free resin varnish is promoted, so that the varnish does not drip and can be applied to a relatively thick insulation coating. It is now possible to form a film layer in a single coating operation, and compared to conventional insulation treatment methods using synthetic resin varnishes, this method has the advantage of significantly saving labor and time in insulation treatment operations. In addition, since no solvent is used in the heat curing process, defects such as pinholes are unlikely to occur, and an insulating coating layer with extremely excellent moisture resistance can be formed with almost no drop in insulation resistance even in a humid atmosphere. Therefore, troubles such as ground faults in field windings caused by low moisture resistance with conventional insulation treatment methods are eliminated, and salient pole field windings with an insulating coating layer with excellent long-term insulation reliability can be used. can be provided economically.
【0019】また、加熱された界磁巻線に硬化促進剤を
塗布した後、無溶剤樹脂ワニスを塗布するよう構成すれ
ば、塗布された無溶剤樹脂ワニスの内側から樹脂のゲル
化が始まってワニスの流動を拘束するので、従来より厚
みがより厚く耐湿性能に優れた絶縁塗膜層を、省力化,
省時間化した絶縁処理方法によって形成できる利点が得
られる。さらに、塗布面をあらかじめ粗面化処理してお
くことにより、界磁巻線に強固に固着し、突極界磁巻線
に作用する遠心力,振動,および熱応力に対する耐久性
の高い絶縁塗膜層を形成できる利点が得られる。[0019] Furthermore, if the structure is such that the solvent-free resin varnish is applied after the hardening accelerator is applied to the heated field winding, gelation of the resin starts from the inside of the applied solvent-free resin varnish. Because it restricts the flow of varnish, we have created an insulating coating layer that is thicker and has better moisture resistance than before, saving labor.
The advantage is that it can be formed using a time-saving insulation treatment method. Furthermore, by roughening the coated surface in advance, the insulating coating firmly adheres to the field winding and has high durability against centrifugal force, vibration, and thermal stress that act on the salient pole field winding. This provides the advantage of being able to form a membrane layer.
【図1】この発明の実施例絶縁処理方法になる突極界磁
巻線の断面図[Fig. 1] A cross-sectional view of a salient pole field winding according to an embodiment of the insulation treatment method of the present invention.
【図2】図1におけるA部の拡大図[Figure 2] Enlarged view of section A in Figure 1
【図3】従来の突極界磁巻線を示す断面図[Figure 3] Cross-sectional view showing a conventional salient pole field winding
1 磁極鉄心 2 界磁巻線 2A コイル導体(裸導帯) 3 端部絶縁 4 タ−ン間絶縁 5 鉄心絶縁 7 絶縁塗膜層 17 絶縁塗膜層 1 Magnetic pole iron core 2 Field winding 2A Coil conductor (bare conductor band) 3 End insulation 4 Inter-turn insulation 5 Iron core insulation 7 Insulating coating layer 17 Insulating coating layer
Claims (3)
巻回間にタ−ン間絶縁を介装してなる界磁巻線が、H字
状に近い断面形状の磁極鉄心の凹所内に強固に絶縁支持
され、前記磁極鉄心の外周面を含む前記界磁巻線の外周
部分がエポキシ樹脂系の無溶剤樹脂ワニスの硬化膜から
なる絶縁塗膜層に覆われた突極界磁巻線において、前記
突極界磁巻線を所定の温度に加熱した後、前記エポキシ
樹脂系の無溶剤樹脂ワニスを塗布し、しかる後塗布膜を
加熱硬化処理して絶縁塗膜層を形成することを特徴とす
る突極界磁巻線の絶縁処理方法。Claim 1: A field winding formed by winding a bare copper strip multiple times edgewise with inter-turn insulation interposed between each winding is a concave part of a magnetic pole core with a cross-sectional shape close to an H-shape. a salient pole field magnet that is firmly insulated and supported within a space, and the outer peripheral portion of the field winding including the outer peripheral surface of the pole core is covered with an insulating coating layer made of a cured film of an epoxy resin-based solvent-free resin varnish; In the winding, after heating the salient pole field winding to a predetermined temperature, the epoxy resin-based solvent-free resin varnish is applied, and then the coating film is heat-cured to form an insulating coating layer. A method for insulating a salient pole field winding, characterized by:
まず硬化促進剤を塗布し、しかる後エポキシ樹脂系の無
溶剤樹脂ワニスを塗布することを特徴とする請求項1記
載の突極界磁巻線の絶縁処理方法。Claim 2: After heating the salient pole field winding to a predetermined temperature,
2. The method for insulating a salient pole field winding according to claim 1, wherein a curing accelerator is first applied, and then an epoxy resin-based solvent-free resin varnish is applied.
面をあらかじめ粗面化処理する工程を含むことを特徴と
する請求項1または請求項2記載の突極界磁巻線の絶縁
処理方法。3. A method for insulating a salient pole field winding according to claim 1 or claim 2, which comprises the step of roughening the surface coated with an epoxy resin-based solvent-free resin varnish in advance. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03070701A JP3133090B2 (en) | 1991-04-03 | 1991-04-03 | Insulation method for salient field winding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03070701A JP3133090B2 (en) | 1991-04-03 | 1991-04-03 | Insulation method for salient field winding |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04308443A true JPH04308443A (en) | 1992-10-30 |
JP3133090B2 JP3133090B2 (en) | 2001-02-05 |
Family
ID=13439179
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03070701A Expired - Fee Related JP3133090B2 (en) | 1991-04-03 | 1991-04-03 | Insulation method for salient field winding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3133090B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007159289A (en) * | 2005-12-06 | 2007-06-21 | Fanuc Ltd | Motor drive unit |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4994798A (en) * | 1972-11-29 | 1974-09-09 | ||
JPS57151251A (en) * | 1981-03-12 | 1982-09-18 | Toshiba Corp | Chemical resistant rotary electric machine and manufacture thereof |
JPS60255029A (en) * | 1984-05-28 | 1985-12-16 | Mitsubishi Electric Corp | Coil of rotary electric machine |
JPS61101449U (en) * | 1984-11-08 | 1986-06-28 | ||
JPS61142947A (en) * | 1984-12-13 | 1986-06-30 | Toshiba Corp | Preparation of varnish for rotary electric machine |
-
1991
- 1991-04-03 JP JP03070701A patent/JP3133090B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4994798A (en) * | 1972-11-29 | 1974-09-09 | ||
JPS57151251A (en) * | 1981-03-12 | 1982-09-18 | Toshiba Corp | Chemical resistant rotary electric machine and manufacture thereof |
JPS60255029A (en) * | 1984-05-28 | 1985-12-16 | Mitsubishi Electric Corp | Coil of rotary electric machine |
JPS61101449U (en) * | 1984-11-08 | 1986-06-28 | ||
JPS61142947A (en) * | 1984-12-13 | 1986-06-30 | Toshiba Corp | Preparation of varnish for rotary electric machine |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007159289A (en) * | 2005-12-06 | 2007-06-21 | Fanuc Ltd | Motor drive unit |
Also Published As
Publication number | Publication date |
---|---|
JP3133090B2 (en) | 2001-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103563220B (en) | Electric rotating machine and manufacture method thereof | |
US3151262A (en) | Dynamoelectric machine | |
US5416373A (en) | Electrically insulated coils and a method of manufacturing thereof | |
JP2010158113A (en) | Electrical insulating member, stator coil for rotating electrical machine, and rotating electrical machine | |
JPH04308443A (en) | Method for insulating salient pole field winding | |
JP4298174B2 (en) | Manufacturing method of impregnable micro mica tape mixed with accelerator | |
JP3167479B2 (en) | Coil insulation of rotating electric machine | |
JP3030162B2 (en) | Rotating electric machine and method of manufacturing the same | |
JP2002315249A (en) | Stator coil of rotary machine | |
JPS624937B2 (en) | ||
JPS62247740A (en) | Manufacture of field winding | |
JPS62196052A (en) | Manufacture of electrical insulated coil | |
JPS6118334A (en) | Insulating method for coil of rotary electric machine | |
JPS6122739A (en) | Coil insulating method of rotary electric machine | |
JPS6020761A (en) | Electrically insulating coil | |
JPS5839252A (en) | Insulating method for rotary machine coil | |
JPH08163839A (en) | Manufacture of insulated coil for high voltage electric rotating machine | |
JPS59113748A (en) | Insulating method for coil of rotary electric machine | |
JPS6118333A (en) | Insulating method for coil of rotary electric machine | |
JPS59201657A (en) | Insulating method of winding for electric machine | |
JPS6059948A (en) | Coil insulating method of rotary electric machine | |
JPS59113747A (en) | Insulating method for coil of rotary electric machine | |
JPS6118331A (en) | Insulating method for coil of rotary electric machine | |
JPS6118335A (en) | Insulating method for coil of rotary electric machine | |
JPS6243533B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |