JPH04308013A - Method for operating blast furnace - Google Patents

Method for operating blast furnace

Info

Publication number
JPH04308013A
JPH04308013A JP9975191A JP9975191A JPH04308013A JP H04308013 A JPH04308013 A JP H04308013A JP 9975191 A JP9975191 A JP 9975191A JP 9975191 A JP9975191 A JP 9975191A JP H04308013 A JPH04308013 A JP H04308013A
Authority
JP
Japan
Prior art keywords
furnace
blast furnace
range
wall
protrusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9975191A
Other languages
Japanese (ja)
Inventor
Morimasa Ichida
一田 守政
Kenji Tamura
健二 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9975191A priority Critical patent/JPH04308013A/en
Publication of JPH04308013A publication Critical patent/JPH04308013A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To make lowering speed of charging materials and heat flow ratio controllable by providing plural steps of projections in the inside wall of a bosh part in a blast furnace. CONSTITUTION:The plural projections 1 capable of advancing/retreating toward a furnace center, are disposed in the vicinity of the furnace wall of the bosh part from a lower shaft part in the blast furnace, and protruded length in a horizontal direction is independently made to controllable with this driving part 5. By the disturbance of the shape in the furnace inside wall with the projections 1, the lowering behaivior and the lowering speed of the charging materials and the heat flow ratio are controlled and the furnace control is always kept to a stable condition, and the operation having low fuel rate and high iron tapping rate can be efficiently executed, and at the same time, the service life of the blast furnace can be prolonged more than that of a conventional furnace.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、高炉の操業方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of operating a blast furnace.

【0002】0002

【従来の技術】高炉内の装入物の降下挙動すなわち炉壁
近傍の混合層や停滞層の形成挙動に及ぼす高炉の内壁面
形状の影響が大きいことが文献に報告されている。たと
えば、「鉄と鋼」(69(1983)4,S61)では
、シャフト部に数段の突起物を設置した場合に炉壁近傍
に混合層が形成されるために、炉壁近傍のガス流速が増
加することが報告され、「鉄と鋼」(71(1985)
4、S75)では、炉腹部以下の炉下部に突起物を設置
した場合に、突起物直上の炉壁近傍に停滞層が形成され
ることが報告されている。
BACKGROUND OF THE INVENTION It has been reported in the literature that the shape of the inner wall surface of a blast furnace has a large influence on the descending behavior of the charge in the blast furnace, that is, the formation behavior of a mixed layer and a stagnant layer near the furnace wall. For example, in "Tetsu to Hagane" (69 (1983) 4, S61), when several stages of protrusions are installed on the shaft part, a mixed layer is formed near the furnace wall, so the gas flow rate near the furnace wall is It was reported that there was an increase in
4, S75), it has been reported that when protrusions are installed in the lower part of the furnace below the furnace belly, a stagnation layer is formed near the furnace wall directly above the protrusions.

【0003】一方、高炉は火入れ以降の稼働年数の経過
に伴い、炉体レンガの損耗、脱落により、内壁面形状の
炉高方向および円周方向の不均一化が進行する。このよ
うな内壁面形状の乱れは、炉壁近傍の混合層や停滞層を
形成させ、高炉操業を不安定化するために、高炉に内壁
面形状の乱れが発生した場合には、その都度内壁面形状
の不均一な乱れを種々の補修技術により修理することが
一般的に実施されている。そして、特公昭63−315
23号公報では、現在の補修技術ではきわめて修理困難
な炉腹部以下の炉下部に内壁面形状の乱れが発生した場
合には、炉壁近傍のOre/Cokeを大きくすること
により、炉壁近傍に形成される停滞層を縮小できること
が開示されている。
On the other hand, as the blast furnace has been in operation for a number of years since it was fired, the shape of the inner wall surface becomes increasingly uneven in the furnace height direction and in the circumferential direction due to wear and tear of the furnace bricks. Such disturbances in the shape of the inner wall surface form a mixed layer or stagnation layer near the furnace wall, which destabilizes blast furnace operation. It is common practice to repair non-uniform disturbances in wall surface shape using various repair techniques. And, special public service 63-315
In Publication No. 23, if a disturbance in the shape of the inner wall surface occurs in the lower part of the furnace below the furnace belly, which is extremely difficult to repair using current repair techniques, the Ore/Coke near the furnace wall can be increased. It is disclosed that the stagnant layer formed can be reduced.

【0004】0004

【発明が解決しようとする課題】しかし、従来実施され
ている補修の方法では、高炉寿命の中間から末期の炉体
レンガの損耗、脱落により、内壁面形状の炉高方向およ
び円周方向の不均一化が進行した場合には、休風時の補
修の実施回数が大幅に増加し、補修費用の増大と補修材
料のロスによる炉内への持ち込み粉の増大に起因する休
風からの送風立ち上げ時の通風トラブルの発生の問題が
あり、高炉の安定操業の維持のためには、根本的な解決
策とはなっていない。そして、前述の特公昭63−31
523号公報の方法では、オールコークス操業のように
炉壁近傍のOre/Cokeを大きくできない操業の場
合には有効な手段となりえないという問題点がある。
[Problems to be Solved by the Invention] However, with conventional repair methods, the inner wall shape is damaged in the furnace height direction and circumferential direction due to wear and fall of the furnace bricks from the middle to the end of the blast furnace life. If uniformity progresses, the number of repairs performed during wind breaks will increase significantly, resulting in an increase in repair costs and loss of repair materials, resulting in an increase in powder brought into the furnace. There is a problem of ventilation problems during raising, and it is not a fundamental solution for maintaining stable operation of the blast furnace. And the aforementioned special public service 1986-31
The method disclosed in Japanese Patent No. 523 has a problem in that it cannot be an effective means for operations where Ore/Coke near the furnace wall cannot be increased, such as all-coke operations.

【0005】そこで、本発明は、現状で高炉の安定操業
にとって問題とされている内壁面形状の乱れを逆に積極
的につくり、かつ、その内壁面形状の乱れを調整するこ
とにより、装入物の降下挙動の円周バランスを制御し高
炉の安定操業を行うことを目的とする。
Therefore, the present invention actively creates disturbances in the shape of the inner wall surface, which are currently a problem for stable operation of blast furnaces, and adjusts the disturbances in the shape of the inner wall surface. The purpose is to control the circumferential balance of the descending behavior of materials to ensure stable operation of blast furnaces.

【0006】[0006]

【課題を解決するための手段】本発明は、現状では高炉
の安定操業にとって問題とされている内壁面形状の乱れ
を、逆に積極的のつくり、かつ、その内壁面形状の乱れ
を調整することにより、装入物が降下する稼働面プロフ
ィルを制御しさらに炉壁近傍での装入物の降下速度およ
び熱流比を制御しようとするものである。
[Means for Solving the Problems] The present invention actively creates and adjusts the disturbance in the shape of the inner wall surface, which is currently a problem for the stable operation of blast furnaces. This aims to control the working surface profile of the charge as it descends, as well as the rate of descent of the charge near the furnace wall and the heat flow ratio.

【0007】具体的には、本発明は、高炉のシャフト下
部から朝顔部の炉壁近傍に、炉高および円周方向に複数
に分割した範囲毎に設置した数段の突起物を炉中心に向
かって前後進させることにより、その突起物の突出し長
さを炉高および円周方向の複数に分割した範囲毎にそれ
ぞれ独立して調整し、稼働面のプロフィルおよび炉壁近
傍の降下速度および熱流比を制御する方法である。
Specifically, the present invention provides several steps of protrusions installed in each of a plurality of areas divided in the furnace height and circumferential direction from the bottom of the shaft of the blast furnace to the vicinity of the furnace wall of the bosh section. By moving the protrusion forward and backward toward the furnace, the protruding length of the protrusion can be adjusted independently for each of the multiple divided ranges in the furnace height and circumferential direction, and the profile of the operating surface, the descending speed near the furnace wall, and the heat flow can be adjusted independently. This is a method of controlling the ratio.

【0008】本発明の方法により、高炉操業上従来問題
とされてきた内壁面形状の乱れが生じた場合に、シャフ
ト下部から朝顔部の任意の範囲の炉壁近傍に厚みの小さ
い停滞層を形成させることが可能となる。さらに、シャ
フト下部から朝顔部の任意な範囲の炉壁近傍の装入物を
ゆっくり降下させることにより、熱的に最も厳しい炉下
部の任意な範囲での装入物と高温の還元ガスとの熱交換
の時間の短縮を防止することが可能となる。本発明では
、本発明に用いる突起物をシャフト下部から朝顔部の炉
高方向の全範囲、かつ、全円周に設置する場合について
説明したが、局部的に上記突起物を設置する場合も考え
られる。
[0008] The method of the present invention can form a thin stagnant layer in the vicinity of the furnace wall in any range from the bottom of the shaft to the bosh section when the inner wall surface shape is disturbed, which has conventionally been a problem in blast furnace operation. It becomes possible to do so. Furthermore, by slowly lowering the charge near the furnace wall in an arbitrary range from the bottom of the shaft to the morning glory section, the heat between the charge and the high-temperature reducing gas can be increased in the arbitrary range of the lower part of the furnace, which is the most thermally severe. It is possible to prevent the replacement time from shortening. In the present invention, a case has been described in which the protrusions used in the present invention are installed in the entire range from the bottom of the shaft to the morning glory in the direction of the furnace height, and around the entire circumference, but it is also possible to install the protrusions locally. It will be done.

【0009】[0009]

【実施例】本発明の実施例について、作用とともに図面
に基づいて説明する。本発明の方法は、以下に説明する
実験結果から得られた知見をもとになされた方法である
。本発明者等は、図3に示すような縦断面の構造をもち
現実の高炉の20分の1程度の大きさの模型装置を使用
して実験を行った。この模型装置の炉床径は345ミリ
メートルであり、炉腹径は379ミリメートル、羽口か
らシャフト上端までの有効高さは1217ミリメートル
であった。また、模型装置の前面には、コークスや擬似
鉱石(固液の流量比および充填物の密度が実際の高炉の
条件と近似するように調整した易融合金とステアリン酸
の混合物)の降下と溶融の挙動を観察できるように耐熱
性のガラスを装着した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described with reference to the drawings and their functions. The method of the present invention is a method based on knowledge obtained from experimental results described below. The present inventors conducted an experiment using a model device that has a vertical cross-sectional structure as shown in FIG. 3 and is approximately one-twentieth the size of an actual blast furnace. The hearth diameter of this model device was 345 mm, the furnace belly diameter was 379 mm, and the effective height from the tuyere to the upper end of the shaft was 1217 mm. In addition, on the front of the model device, the falling and melting of coke and pseudo-ore (a mixture of easily melted metal and stearic acid whose solid-liquid flow rate ratio and packing density are adjusted to approximate actual blast furnace conditions) are shown. A heat-resistant glass was attached to the device so that its behavior could be observed.

【0010】コークス6および擬似鉱石7は、模型装置
上部のベル8からムーバブルアーマー9を介して交互に
層状に装入された。他方、180度Cの加熱空気を装置
下部の18本の羽口10から吹込み、擬似鉱石を溶融滴
下させた。溶融物は、炉床に溜められた後に、出銑口1
1から排出された。コークスは、レースウエイ12直下
に設けた6台のロータリーフィーダー13によって下部
ホッパーに運ばれ、さらにチューブラコンベア14によ
って密閉庫内に排出された。この高炉模型装置において
、炉内の温度状態、通気性、壁面近傍の応力状態および
ガス流れを検出するため、温度計、圧力計および熱線風
速計を、それぞれ炉壁面あるいは炉内に設置し、装入物
の降下状態を検出するため、等時間線用のトレーサーと
して着色コークスを装入した。
Coke 6 and pseudo ore 7 were alternately charged in layers from a bell 8 at the top of the model device via a movable armor 9. On the other hand, heated air at 180 degrees Celsius was blown through 18 tuyeres 10 at the bottom of the device to cause the pseudo ore to melt and drip. After the molten material is collected in the hearth, it is passed through the tap hole 1.
It was ejected from 1. The coke was transported to a lower hopper by six rotary feeders 13 provided directly below the raceway 12, and further discharged into a closed storage by a tubular conveyor 14. In this blast furnace model device, a thermometer, a pressure gauge, and a hot wire anemometer are installed on the furnace wall or inside the furnace to detect the temperature state, air permeability, stress state near the wall, and gas flow inside the furnace. Colored coke was charged as a tracer for the isochrone line in order to detect the falling state of the loaded material.

【0011】図1は、本発明に用いる突起物の作動を説
明する図である。1は高炉のシャフト下部から朝顔部の
炉高および円周方向に複数に分割した範囲毎に設置され
た炉中心に向かって水平方向に前後進が可能な突起物で
あり、2はレンガおよびステーブ、3は鉄皮、4は炉内
、そして5はその突起物の駆動装置である。そして、図
2は図1のA−A’断面図であるが、これでもわかるよ
うに炉中心に向かって水平方向への前後進の調整が、炉
高および円周方向の複数に分割した範囲毎にそれぞれ独
立して調整可能になっている。
FIG. 1 is a diagram illustrating the operation of the protrusion used in the present invention. 1 is a protrusion that can move back and forth in the horizontal direction from the bottom of the shaft of the blast furnace to the furnace height of the morning glory part and the furnace center installed in each area divided into multiple areas in the circumferential direction, and 2 is a protrusion that can move back and forth in the horizontal direction , 3 is the iron shell, 4 is the inside of the furnace, and 5 is a driving device for the protrusion. FIG. 2 is a cross-sectional view taken along line A-A' in FIG. Each can be adjusted independently.

【0012】突起物1により、シャフト下部から朝顔部
の任意の範囲の炉壁近傍に厚みの小さい停滞層を形成さ
せ、シャフト下部から朝顔部の任意の範囲での突起物の
突出し長さと炉壁近傍の降下速度および炉壁温度の関係
を求めた。図4に示すように、シャフト下部から朝顔部
の任意の範囲での停滞層の厚さは図1および図2に示し
た突起物1の突出し長さにほぼ比例して増加することが
判明した。
[0012] The protrusion 1 forms a thin stagnant layer near the furnace wall in an arbitrary range from the lower part of the shaft to the morning glory part, and the protrusion length of the projection and the furnace wall in an arbitrary range from the lower part of the shaft to the morning glory part are formed. The relationship between the nearby fall rate and the furnace wall temperature was determined. As shown in Fig. 4, it was found that the thickness of the stagnant layer in any range from the bottom of the shaft to the morning glory part increases approximately in proportion to the protruding length of protrusion 1 shown in Figs. 1 and 2. .

【0013】上記の知見に基づいて、本発明者等は、突
起物の突出し長さによって停滞層の厚みを制御できると
の考えに至った。そして高炉模型装置のシャフト下部か
ら朝顔部の範囲の炉内に、本発明の方法のシャフト下部
から朝顔部の炉高および円周方向に複数に分割した範囲
毎に設置された水平方向駆動式の突起物1を設置した。 突起物1はシャフト下部から朝顔部に炉高および円周方
向に複数に分割した範囲毎に数段からなる。
Based on the above findings, the present inventors came up with the idea that the thickness of the stagnant layer can be controlled by the protruding length of the protrusions. Then, in the furnace in the range from the bottom of the shaft to the morning glory section of the blast furnace model device, a horizontally driven type is installed at each range divided into a plurality of areas in the furnace height and the circumferential direction from the bottom of the shaft to the morning glory section of the method of the present invention. Protrusion 1 was installed. The protrusion 1 consists of several stages for each region divided into a plurality of regions in the furnace height and circumferential direction from the lower part of the shaft to the morning glory part.

【0014】図5に示すように炉腹部の任意の範囲での
炉内側への突起物の突出し長さを0ミリメートルから5
ミリメートル(実炉換算値:100ミリメートル)にし
た結果、炉壁近傍に厚み10ミリメートル(実炉換算値
:200ミリメートル)の停滞層が形成され、炉腹部の
任意の範囲での炉壁から25ミリメートル(実炉換算値
:500ミリメートル)での装入物の下降速度および熱
流比は、突出し長さが0ミリメートルの場合に比べて、
それぞれ70パーセント、80パーセントに減少し、炉
腹部の任意の範囲での炉壁温度は、突出し長さが0ミリ
メートルの場合に比べて、15パーセント低下した。
As shown in FIG. 5, the protrusion length of the protrusion toward the inside of the furnace in any range of the furnace belly is set from 0 mm to 5 mm.
As a result, a stagnation layer with a thickness of 10 mm (actual furnace equivalent: 200 mm) is formed near the furnace wall, and a stagnation layer of 25 mm from the furnace wall is formed in an arbitrary range of the furnace belly. (Actual furnace conversion value: 500 mm) The descending speed and heat flow ratio of the charge are compared to when the protrusion length is 0 mm.
70% and 80%, respectively, and the furnace wall temperature in any range of the furnace belly was 15% lower than when the protrusion length was 0 mm.

【0015】つぎに、炉内側への突起物の突出し長さを
5ミリメートル(実炉換算値:100ミリメートル)か
ら2.5ミリメートル(実炉換算値:50ミリメートル
)にした結果、炉腹部の任意の範囲での炉壁近傍の停滞
層の厚みは5ミリメートル(実炉換算値:100ミリメ
ートル)に縮小し、炉壁から25ミリメートル(実炉換
算値:500ミリメートル)の範囲での装入物の降下速
度および熱流比は、突出し長さが0ミリメートルの場合
に比べて、それぞれ80パーセント、85パーセントの
レベルに戻り、炉腹部の任意の範囲での炉壁温度は、突
出し長さが0ミリメートルに場合に比べて、90パーセ
ントのレベルに戻った。
Next, as a result of changing the protrusion length of the protrusion toward the inside of the furnace from 5 mm (actual furnace equivalent value: 100 mm) to 2.5 mm (actual furnace equivalent value: 50 mm), it was found that the The thickness of the stagnation layer near the furnace wall in the range of The descending speed and heat flow ratio return to levels of 80% and 85%, respectively, compared to when the protrusion length is 0 mm, and the furnace wall temperature in any range of the furnace belly is lower than when the protrusion length is 0 mm. The level has returned to 90% compared to the previous case.

【0016】このことから、本発明の方法により、シャ
フト下部から朝顔部の炉高および円周方向に複数に分割
した任意の範囲の炉壁近傍の装入物の降下速度、熱流比
、および装入物が降下する稼働面のプロフィルを制御す
ることができることがわかる。
[0016] From this, the method of the present invention can control the descending speed, heat flow ratio, and load of the charge near the furnace wall in an arbitrary range divided into a plurality of areas from the bottom of the shaft to the furnace height of the bosh section and the circumferential direction. It can be seen that the profile of the working surface on which the container descends can be controlled.

【0017】なお実炉では、シャフト下部から朝顔部の
範囲の炉高方向に5から15分割、円周方向に8から1
6分割した。油圧または空圧の駆動装置によって炉内中
心に向かって前後進が可能な突起物を設置し、その突起
物の突出し長さを、炉高および円周方向に複数に分割し
た範囲毎にそれぞれ独立して調節することにより、シャ
フト下部から朝顔部の炉高および円周方向に複数に分割
した任意の範囲の炉壁近傍の装入物の降下速度、熱流比
、および装入物が降下する稼働面のプロフィルを制御す
ることができる。
In an actual furnace, the range from the bottom of the shaft to the morning glory section is divided into 5 to 15 parts in the furnace height direction, and 8 to 1 parts in the circumferential direction.
Divided into 6 parts. A protrusion that can move forward and backward toward the center of the furnace is installed using a hydraulic or pneumatic drive device, and the protrusion length of the protrusion is set independently for each range divided into multiple areas in the furnace height and circumferential direction. By adjusting the lowering speed of the charge, the heat flow ratio, and the operation of lowering the charge from the bottom of the shaft to the furnace height of the morning glory section and the vicinity of the furnace wall in an arbitrary range divided into multiple areas in the circumferential direction. The surface profile can be controlled.

【0018】しかし、現実には、炉下部の炉壁近傍に停
滞層が形成されると、付着物に成長する可能性があり、
付着物に成長して炉下部での装入物の降下領域が狭くな
ると、装入物の降下挙動に悪影響を及ぼす。このような
停滞層が付着物に成長するような徴候は、炉壁温度、ス
テーブ温度の急激な低下等の情報により判定することが
できるので、その場合には、燃料比を高めに設定した後
に、シャフト下部から朝顔部の炉高および円周方向に複
数に分割した範囲毎に独立して設置した駆動式の突起物
を、シャフト下部から朝顔部の炉高および円周方向に複
数に分割した任意の範囲で炉内側に水平方向に挿入する
ことによって、操業状態を大きく乱すことなく、早期に
付着物を脱落させることができる。
However, in reality, if a stagnation layer is formed near the furnace wall in the lower part of the furnace, it may grow into deposits.
The growth of deposits that narrows the descending area of the charge in the lower part of the furnace has a negative effect on the descending behavior of the charge. Signs that such a stagnant layer is growing into deposits can be determined by information such as a sudden drop in furnace wall temperature or stave temperature, so in that case, after setting the fuel ratio higher, , drive-type protrusions were installed independently in each range divided into multiple areas from the bottom of the shaft to the furnace height and circumferential direction of the morning glory area. By horizontally inserting it into the inside of the furnace within an arbitrary range, deposits can be quickly removed without significantly disturbing the operating conditions.

【0019】[0019]

【発明の効果】以上に説明したように、本発明において
は、高炉の炉内のシャフト下部から朝顔部の範囲の炉壁
近傍に、シャフト下部から朝顔部の炉高および円周方向
に複数に分割した範囲毎に炉中心に向かって前後進可能
な突起物を設置し、シャフト下部から朝顔部の炉高およ
び円周方向に複数に分割した任意の範囲の突起物の水平
方向の突出し長さを、それぞれ独立して調整することに
より、シャフト下部から朝顔部の炉高および円周方向に
複数に分割した任意の範囲の炉壁近傍の装入物の降下速
度、熱流比、および装入物が降下する稼働面のプロフィ
ルを制御することができる。そのため、炉況を常に安定
な状態に維持できるため、低燃料比、高出銑比で効率よ
く操業することが可能となり、同時に、高炉の寿命を従
来より長くすることが可能となる。
Effects of the Invention As explained above, in the present invention, there are a plurality of areas near the furnace wall in the range from the bottom of the shaft to the morning glory section in the blast furnace, and from the bottom of the shaft to the furnace height of the morning glory section and in the circumferential direction. A protrusion that can move back and forth toward the center of the furnace is installed in each divided area, and the horizontal protrusion length of the protrusion in any range divided into multiple areas from the bottom of the shaft to the furnace height of the morning glory part and the circumferential direction. By adjusting each independently of can control the profile of the working surface on which it descends. Therefore, since the furnace condition can always be maintained in a stable state, it is possible to operate efficiently with a low fuel ratio and high iron production ratio, and at the same time, it is possible to extend the life of the blast furnace than before.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明に用いる突起物の概念図[Figure 1] Conceptual diagram of protrusions used in the present invention

【図2】図1の
A−A’断面図
[Figure 2] AA' cross-sectional view in Figure 1

【図3】本発明において使用した高炉模型[Figure 3] Blast furnace model used in the present invention

【図4】シャ
フト下部から朝顔部の任意の範囲での突起物の突出し長
さと炉壁停滞層の厚みとの関係を表したグラフ
[Figure 4] Graph showing the relationship between the protrusion length of the protrusion and the thickness of the furnace wall stagnation layer in any range from the bottom of the shaft to the morning glory part

【図5】本発明の方法による装入物が降下する稼働面の
プロフィル、炉壁近傍の装入物の降下速度、熱流比、お
よび炉壁温度の変化を示す図
FIG. 5 is a diagram showing the profile of the working surface where the charge falls, the rate of fall of the charge near the furnace wall, the heat flow ratio, and the changes in the furnace wall temperature according to the method of the present invention.

【符号の説明】[Explanation of symbols]

1  突起物 2  レンガおよびステーブ 3  鉄皮 4  炉内 5  駆動装置 1.Protrusions 2. Bricks and staves 3 Iron skin 4 Inside the furnace 5 Drive device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  高炉内のシャフト下部から朝顔部の範
囲の炉壁近傍に、炉中心に向かって前後進可能な突起物
を炉高および円周方向に複数に分割して設置し、複数に
分割した範囲毎に前記突起物の水平方向の突出し長さを
それぞれ独立して調整することにより、炉高および円周
方向の任意の範囲の炉壁近傍の装入物の降下速度および
熱流比を制御することを特徴とする高炉操業方法。
Claim 1: A protrusion that can be moved back and forth toward the center of the furnace is installed in the vicinity of the furnace wall in the range from the bottom of the shaft to the morning glory section in the blast furnace, divided into multiple parts in the furnace height and circumferential direction. By independently adjusting the horizontal protrusion length of the protrusions for each divided range, the descending speed and heat flow ratio of the charge near the furnace wall in any range in the furnace height and circumferential direction can be adjusted. A blast furnace operating method characterized by controlling.
【請求項2】  高炉内のシャフト下部から朝顔部の範
囲の炉壁近傍に、炉中心に向かって前後進可能な突起物
を炉高および円周方向に複数に分割して設置し、複数に
分割した範囲毎に前記突起物の水平方向の突出し長さを
それぞれ独立して調整することにより、炉高および円周
方向の任意の範囲の装入物が降下する稼働面のプロフィ
ルを制御することを特徴とする高炉操業方法。
[Claim 2] A protrusion that can be moved back and forth toward the center of the furnace is installed in the vicinity of the furnace wall in the range from the bottom of the shaft to the morning glory section in the blast furnace, divided into a plurality of parts in the furnace height and circumferential direction. By independently adjusting the horizontal protrusion length of the protrusions for each divided range, the profile of the operating surface on which the charge descends in any range in the furnace height and circumferential direction is controlled. A blast furnace operating method characterized by:
JP9975191A 1991-04-05 1991-04-05 Method for operating blast furnace Withdrawn JPH04308013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9975191A JPH04308013A (en) 1991-04-05 1991-04-05 Method for operating blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9975191A JPH04308013A (en) 1991-04-05 1991-04-05 Method for operating blast furnace

Publications (1)

Publication Number Publication Date
JPH04308013A true JPH04308013A (en) 1992-10-30

Family

ID=14255699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9975191A Withdrawn JPH04308013A (en) 1991-04-05 1991-04-05 Method for operating blast furnace

Country Status (1)

Country Link
JP (1) JPH04308013A (en)

Similar Documents

Publication Publication Date Title
JP2003105415A (en) Method and device for producing molten metal
JP2007002305A (en) Method for smelting molten pig iron using cupola
JPH04308013A (en) Method for operating blast furnace
JP2002003910A (en) Method for operating blast furnace
JPH03291316A (en) Method for operating blast furnace
JPH03281711A (en) Method for operating blast furnace
JPH09256018A (en) Method for charging raw material into vertical type iron scrap melting furnace
JP3171066B2 (en) Blast furnace operation method
KR960006322B1 (en) Method for removing stuck material on furnace wall in blast-furnace
JP2002115007A (en) Structure for inner wall surface at lower part in blast furnace
JP2000256712A (en) Method for controlling distribution of charged material in furnace opening part of blast furnace
JPH07278634A (en) Operation of scrap melting furnace
JP3779815B2 (en) Blast furnace operation method
JPH11269513A (en) Charging of charging material into center part of blast furnace
EP1414759B1 (en) Method of preparing a fiberizable melt of a mineral material
KR100418978B1 (en) Layer injection method for preventing complex layer to radial direction in blast furnace
JPH07197114A (en) Coke packing layer type vertical smelting furnace
JP2000199005A (en) Method for controlling center gas flow in blast furnace
JPH05179324A (en) Operating method for blast furnace
JPS5941402A (en) Operation of blast furnace
JPH11217605A (en) Method for charging charging material into blast furnace
JP2000212613A (en) Control of distribution of charged material in blast furnace
JP2000178615A (en) Method for controlling flow of molten iron and slag on furnace hearth part in blast furnace
JPH058246B2 (en)
JPH0941008A (en) Furnace body structure of blast furnace

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980711