JPH04308001A - Production of electrically conductive particles - Google Patents

Production of electrically conductive particles

Info

Publication number
JPH04308001A
JPH04308001A JP3100370A JP10037091A JPH04308001A JP H04308001 A JPH04308001 A JP H04308001A JP 3100370 A JP3100370 A JP 3100370A JP 10037091 A JP10037091 A JP 10037091A JP H04308001 A JPH04308001 A JP H04308001A
Authority
JP
Japan
Prior art keywords
particles
particle size
core
average particle
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3100370A
Other languages
Japanese (ja)
Other versions
JP2768039B2 (en
Inventor
Yoshiyasu Ito
善康 伊藤
Teruo Kazama
風間 晃夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink SC Holdings Co Ltd
Original Assignee
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Mfg Co Ltd filed Critical Toyo Ink Mfg Co Ltd
Priority to JP3100370A priority Critical patent/JP2768039B2/en
Publication of JPH04308001A publication Critical patent/JPH04308001A/en
Application granted granted Critical
Publication of JP2768039B2 publication Critical patent/JP2768039B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To produce electrically conductive particles useful as an electrically conductive filler for an electromagnetic wave shielding material, electrically conductive paste, etc. CONSTITUTION:Fine metal particles of 0.01-10mum average particle size obtd. by processing an aq. dispersion of metal particles with a cavitation type dispersion grinder and carrying out freeze drying are added to core particles of 1-200mum average particle size, other fine particles are further added as required and they are dry-mixed under mechanical strain stress. By this mixing, metal layers are formed on the surfaces of the core particles and electrically conductive particles are produced.

Description

【発明の詳細な説明】[Detailed description of the invention]

【産業上の利用分野】本発明は電磁波シールド材料,導
電性ペースト材料等の導電性フィラーとして有用な導電
性粒子の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing conductive particles useful as conductive fillers for electromagnetic shielding materials, conductive paste materials, and the like.

【0002】0002

【従来の技術】従来,導電性粉末としては,銀,銅など
の金属粉が主体であり,これらは電解法,還元法,粉霧
法,機械的粉砕法等によって製造されている。しかし,
これらの金属粉は,導電性粒子として使用する限りにお
いては,高価な金属粒子の表面のみを利用するに過ぎな
い。また,金属によっては製造の困難なサイズがあり,
製造コストが高くついてしまう場合もある。さらに,こ
れら導電性粒子の比重は7〜10と樹脂と比べて著しく
高いため分散が困難で安定した導電性能が得られ難いと
いう欠点があった。
BACKGROUND OF THE INVENTION Conventionally, conductive powders have mainly been metal powders such as silver and copper, and these have been produced by electrolytic methods, reduction methods, atomization methods, mechanical pulverization methods, and the like. but,
As far as these metal powders are used as conductive particles, only the surfaces of expensive metal particles are used. Also, some metals have sizes that are difficult to manufacture.
Manufacturing costs may be high in some cases. Furthermore, since the specific gravity of these conductive particles is 7 to 10, which is significantly higher than that of resin, it is difficult to disperse them and it is difficult to obtain stable conductive performance.

【0003】この欠点を解決するために,最近はカーボ
ンブラック,炭素繊維,無電解メッキ等により導電性物
質の皮膜を形成させた有機高分子粒状物等,比重の小さ
な導電性フィラーが開発されている。しかしながら,カ
ーボンブラックや炭素繊維は導電性能が金属等に比べて
劣り,また有機高分子粒状物上に導電性被膜を形成させ
るには,多量の薬品を使用しなければ均一で良好な導電
性能が期待できず,薬品のムダが多く廃液処理にかかる
コストが高くなるという問題点を有している。
[0003] In order to solve this drawback, conductive fillers with low specific gravity have recently been developed, such as carbon black, carbon fiber, and organic polymer particles in which a film of conductive material is formed by electroless plating. There is. However, carbon black and carbon fibers have inferior conductivity compared to metals, and in order to form a conductive film on organic polymer particles, uniform and good conductivity cannot be achieved unless a large amount of chemicals are used. However, there are problems in that there is a lot of wastage of chemicals and the cost of waste liquid treatment increases.

【0004】先に,本発明者等は,かかる従来技術にお
ける問題点を解決すべく,平均粒径1〜200μmのコ
ア粒子(A)と,平均粒径0.01〜10μmの金属微
粒子(B)および必要ならばその他の微粒子(C)とを
乾式で機械的歪力をもって混合し,コア粒子(A)の表
面に金属層を形成する導電性粒子の製造方法を発明し(
特願平2−162204号),低比重,低コストでかつ
均一な導電性能を付与した導電性粒子及びその製造方法
を提供した。しかし,金属粒子(B)が凝集し易く,良
好な導電性が必ずしも得られないという欠点があった。
[0004] First, in order to solve the problems in the prior art, the present inventors prepared core particles (A) with an average particle size of 1 to 200 μm and metal fine particles (B) with an average particle size of 0.01 to 10 μm. ) and, if necessary, other fine particles (C), in a dry process with mechanical strain to form a metal layer on the surface of the core particles (A).
(Japanese Patent Application No. 2-162204), the present invention provides conductive particles having low specific gravity, low cost, and uniform conductivity, and a method for producing the same. However, there was a drawback that the metal particles (B) tended to aggregate and good conductivity was not necessarily obtained.

【0005】[0005]

【発明が解決しようとする課題】本発明は,金属粒子(
B)の再凝集を防ぎ,導電性が良好な導電性粒子を得る
べく,金属粒子の水分散体をキャビテーションタイプ分
散・粉砕機で処理し,凍結乾燥することにより,課題を
解決したものである。
[Problems to be Solved by the Invention] The present invention provides metal particles (
In order to prevent the re-agglomeration of B) and obtain conductive particles with good conductivity, the problem was solved by treating an aqueous dispersion of metal particles with a cavitation-type dispersion/pulverizer and freeze-drying. .

【0006】[0006]

【課題を解決するための手段】本発明は,平均粒径1〜
200μmのコア粒子(A)と,金属粒子の水分散体を
,キャビテーションタイプ分散・粉砕機で処理した後,
凍結乾燥してなる平均粒径0.01〜10μmの金属微
粒子(B)およびその他の微粒子(C)とを微粒子(B
)が1次粒子であると仮定した場合,コア粒子(A)を
0.2〜10層被覆する範囲で乾式で機械的歪力をもっ
て混合し,微粒子(B)の延展性を利用することにより
,コア粒子(A)の表面30〜100%好ましくは90
%以上が微粒子(B)によって被覆してなる導電性粒子
の製造方法であり,この微粒子(B)の被膜は,コア粒
子(A)表面に密着している。膜厚は,微粒子(B)の
粒径と使用量を変えることで0.1〜3μm程度に調整
する。0.1μm未満の膜厚では,コア粒子(A)表面
の凹凸が影響し,被膜を形成する効果が不十分となり,
導電性が低下してしまい,3μmを越える場合は不経済
である。
[Means for Solving the Problems] The present invention has an average particle size of 1 to 1.
After processing the 200 μm core particles (A) and the water dispersion of metal particles with a cavitation type dispersion/pulverizer,
Metal fine particles (B) having an average particle diameter of 0.01 to 10 μm and other fine particles (C) obtained by freeze-drying are mixed into fine particles (B).
) are primary particles, by dry mixing with mechanical strain to cover 0.2 to 10 layers of core particles (A) and utilizing the spreadability of fine particles (B). , 30 to 100% of the surface of the core particle (A), preferably 90%
This is a method for producing conductive particles in which % or more of the conductive particles are coated with fine particles (B), and the coating of the fine particles (B) is in close contact with the surface of the core particle (A). The film thickness is adjusted to about 0.1 to 3 μm by changing the particle size and usage amount of the fine particles (B). If the film thickness is less than 0.1 μm, the unevenness of the surface of the core particle (A) will be affected, and the effect of forming the film will be insufficient.
The conductivity decreases, and if the thickness exceeds 3 μm, it is uneconomical.

【0007】本発明において用いられるコア粒子(A)
としては,平均粒径が1μm以上のものが使用でき,例
えばポリエチレン,ナイロン,ポリスチレン,エポキシ
樹脂等の各種プラスチック類の粉末でも良いし,シリカ
,ガラス等でも良い。また,鉄やその酸化物の粉末でも
良いし,導電性の金属も使用できる。これらコア粒子(
A)は耐熱性,分散性等要求される特性に応じて自由に
選択することが出来る。
Core particles (A) used in the present invention
For example, powders of various plastics such as polyethylene, nylon, polystyrene, and epoxy resins, silica, glass, etc. may be used. Further, powders of iron or its oxides may be used, or conductive metals may also be used. These core particles (
A) can be freely selected depending on required properties such as heat resistance and dispersibility.

【0008】微粒子(B)としては,粒径がコア粒子(
A)の1/10以下,好ましくは1/20以下の導電性
を有する各種の金属や合金等が使用できる。例えば,銅
,銀,金,白金,パラジウム,ニッケル,コバルト,ア
ルミニウム,錫,亜鉛などが使用できる。これらは単独
もしくは多層構造の構成として使用できる。平均粒径2
μm以上の微粒子(B)では,コア粒子(A)の表面上
の膜厚が厚くなりすぎ,不経済である。
[0008] The fine particles (B) have a particle size similar to that of the core particle (
Various metals, alloys, etc. having conductivity of 1/10 or less, preferably 1/20 or less of A) can be used. For example, copper, silver, gold, platinum, palladium, nickel, cobalt, aluminum, tin, zinc, etc. can be used. These can be used alone or in a multilayer structure. Average particle size 2
Fine particles (B) having a diameter of μm or more are uneconomical because the film thickness on the surface of the core particle (A) becomes too thick.

【0009】導電性の良好な粒子をつくるには,処理前
の予備処理が必要である。予備処理として,金属粒子の
水分散体をキャビテーションタイプの分散・粉砕機によ
り処理し,凍結乾燥する。キャビテーションタイプの分
散・粉砕機としては,ホモジナイザー(AVP GOU
LIN社) などである。この分散・粉砕機では,ポン
プによって加圧された処理液がシートとバルブとの間隙
をこじ開けて通貨する。間隙の開度は任意に設定可能で
,開度に応じた背圧が圧力計に表示される。処理液は高
圧下で圧縮された後, シートとバルブの微細間隙を超
音速域の高速流となって大気中に放出される。この圧力
変化は数マイクロセカンドと瞬間的に起こり処理液は局
部的に気化状態となり,いわゆるキャビテーション現象
が発生, 高いエネルギーが分散粒子や液滴に加わり,
 粒子の微細化が可能となる。
[0009] In order to produce particles with good conductivity, preliminary treatment is necessary before treatment. As a preliminary treatment, an aqueous dispersion of metal particles is processed using a cavitation-type dispersion/pulverizer, and then freeze-dried. As a cavitation type dispersion/pulverizer, homogenizer (AVP GOU
LIN Inc.) etc. In this dispersion/pulverizer, the processing liquid pressurized by a pump is forced into the gap between the seat and the valve. The opening degree of the gap can be set arbitrarily, and the back pressure corresponding to the opening degree is displayed on the pressure gauge. After the processing liquid is compressed under high pressure, it is released into the atmosphere through the minute gap between the seat and the valve as a high-speed flow in the supersonic range. This pressure change occurs instantaneously, over a few microseconds, and the processing liquid locally becomes vaporized, causing a so-called cavitation phenomenon, where high energy is applied to dispersed particles and droplets.
It becomes possible to make particles finer.

【0010】さらに,金属粒子を予備処理するに際し,
分散助材を用いることもできる。分散助材としては平均
粒径0.3μm以下のPMMA(ポリメチルメタクリレ
ート),ポリフッ化ビニリデン,シリカ,アルミナなど
を使用する。これは,予備混合でコア粒子(A)に微粒
子(B)を付着しやすくするものであり,その後の混合
,被覆を安定化するために有利である。微粒子(C)は
,コア粒子(A)の表面を0.2〜1層程度被覆する量
が好ましい。
[0010] Furthermore, when pre-treating the metal particles,
Dispersion aids can also be used. As the dispersion aid, PMMA (polymethyl methacrylate), polyvinylidene fluoride, silica, alumina, etc. with an average particle size of 0.3 μm or less are used. This makes it easier for the fine particles (B) to adhere to the core particles (A) during premixing, and is advantageous for stabilizing the subsequent mixing and coating. The amount of the fine particles (C) is preferably such that the surface of the core particles (A) is coated with about 0.2 to 1 layer.

【0011】本発明において,上記のコア粒子(A)に
微粒子(B)を機械的歪力を以て被覆させる条件として
は歪力が大き過ぎてコア粒子(A)が微細に粉砕された
りすることがない条件であり,このような条件を満たす
具体的な方法としては,工業的にはボールミル,サンド
ミルなどの分散機などの運転条件,処理量,分散媒体な
どの条件を上記の目的が達成されるように変更すればよ
い。
In the present invention, the conditions for coating the core particles (A) with the fine particles (B) using mechanical strain force are such that the strain force is so large that the core particles (A) may be finely pulverized. Industrially, the specific method to meet these conditions is to adjust the operating conditions of dispersion machines such as ball mills and sand mills, throughput, dispersion medium, etc. to achieve the above objectives. You can change it like this.

【0012】しかしながら,ボールミル,サンドミルで
は長時間を要するため,工業的には粉体が流動床状態で
,気流と共に高速で運動するような混合機または衝撃を
与える羽根,ハンマーなどが取り付けられているような
混合機であり,このような混合機の例としては,SIミ
ル(東洋インキ製造(株)製,その概要は特公昭57−
43051号参照),アトマイザー,自由粉砕機((株
)奈良機械製作所),KTM−1型粉砕機(川崎重工業
(株)製),ハイブリダイザー((株)奈良機械製作所
),などを例示することができ,これらの装置は,その
まま,もしくは適宜本発明の目的に合わせて改良して使
用することができる。できれば循環式であり,密閉系の
装置,例えばハイブリダイザーが望ましい。
However, since ball mills and sand mills require a long time, industrially, the powder is in a fluidized bed state, and mixers that move the powder at high speed with airflow, or blades or hammers that give impact are installed. An example of such a mixer is the SI Mill (manufactured by Toyo Ink Mfg. Co., Ltd., the outline of which is published in the Japanese Patent Publication No. 57-1983).
43051), atomizer, free crusher (Nara Kikai Seisakusho Co., Ltd.), KTM-1 type crusher (manufactured by Kawasaki Heavy Industries, Ltd.), hybridizer (Nara Kikai Seisakusho Co., Ltd.), etc. These devices can be used as they are or modified as appropriate to meet the purpose of the present invention. Preferably, it is a circulation type and closed system device, such as a hybridizer.

【0013】また,コア粒子(A)と,微粒子(B)お
よび,必要に応じてその他の微粒子(C)とは,上記混
合処理よりも弱い攪拌条件,例えばマルチブレンダーミ
ル((株)日本精機製作所製)で予備混合することが好
ましい。このような予備混合により,コア粒子(A)に
,微粒子(B)を物理的に付着せしめておくと混合処理
がスムースに行える。このような混合処理によってコア
粒子(A)表面に微粒子(B)の被膜が形成されるのは
,金属の延展性を利用して微粒子(B)がコア粒子(A
)表面に,延ばしつけられるためである。なお,この混
合処理によって系が高温になることがあり,外部ジャケ
ットなどにより,系を冷却することも場合によっては必
要となる。
[0013] The core particles (A), fine particles (B), and other fine particles (C) as needed may be mixed under weaker stirring conditions than the above-mentioned mixing treatment, such as a multi-blender mill (Nippon Seiki Co., Ltd.). It is preferable to pre-mix the mixture using a premix (manufactured by Seisakusho). If the fine particles (B) are physically attached to the core particles (A) through such premixing, the mixing process can be performed smoothly. The reason why a film of fine particles (B) is formed on the surface of core particles (A) by such a mixing process is that the fine particles (B) are coated with the core particles (A) by utilizing the ductility of metal.
) because it can be spread on the surface. Note that this mixing process may cause the system to reach a high temperature, and it may be necessary to cool the system using an external jacket or the like.

【0014】[0014]

【発明の効果】以上の説明により理解されるように,本
発明の導電性複合粒子は粒子表面に存在する金属膜の導
電性を利用するため,少量の金属量で効果的な導電性能
を付与できる。また,乾式による導電性複合粒子製造方
法である為,無電解メッキ法と比べて作業性に優れ,低
コストでかつ幅広い種類の複合粒子を製造することが出
来る。さらに,コア粒子として低比重かつ球形の粒子を
選べるので,混練り作業性,分散安定性に優れ,従来の
フィラーと比べて樹脂中に高充填が可能となり安定した
導電性能,シールド効果を得ることが出来る。
[Effects of the Invention] As understood from the above explanation, the conductive composite particles of the present invention utilize the conductivity of the metal film present on the particle surface, so they can provide effective conductivity with a small amount of metal. can. Furthermore, since it is a dry method for producing conductive composite particles, it has superior workability compared to electroless plating, and can produce a wide variety of composite particles at low cost. Furthermore, since spherical particles with low specific gravity can be selected as core particles, they have excellent kneading workability and dispersion stability, and compared to conventional fillers, it is possible to fill the resin at a higher level, resulting in stable conductive performance and shielding effects. I can do it.

【0015】[0015]

【実施例】以下,本発明をさらに具体的に説明するため
に実施例を示すが,本発明はこれらの実施例に限定され
るものではない。実施例中,部,%は,重量部,%を示
し,粒径の測定は,電顕観察(SEM)による。
EXAMPLES Examples will be shown below to explain the present invention more specifically, but the present invention is not limited to these examples. In the examples, parts and % indicate parts by weight, and particle diameters were measured by electron microscopy (SEM).

【0016】実  施  例  1 平均粒径5.2μmのポリエチレン真球微粒子(製鉄化
学工業(株)製,商品名  フロービーズ  LE−1
080)4部, 水分散タイプの銀(福田金属箔粉工業
(株)製,商品名AgC−H)をホモジナイザー( A
VP GOULIN製) を使用し,圧力(500〜6
00KGF/cm2) で10回通過させた後, これ
を凍結乾燥して得た平均粒径0.1μmの銀微粒子14
.0部をマルチブレンダーミル((株)日本精機製作所
製,BL−1型)で予備混合し,混合物(A1)を得た
。上記混合物(A1)13gをハイブリダイザーNHS
−0型で16200rpmで5分間処理して平均粒径が
5.8μmの導電性複合粒子を得た。この複合粒子を円
筒形状のテフロン製セルに入れ軽く圧接し,断面積2c
m2 の金メッキ電極を用い,デジタルマルチメーター
TR−4101(アドバンテスト(株)製)で電気抵抗
値を測定したところ,1.5×10−4Ω・cmであっ
た。
[0016] Example 1 Polyethylene true spherical fine particles with an average particle size of 5.2 μm (manufactured by Seitetsu Kagaku Kogyo Co., Ltd., trade name: Flow Beads LE-1)
080) 4 parts, water dispersion type silver (manufactured by Fukuda Metal Foil & Powder Industries Co., Ltd., trade name AgC-H) in a homogenizer (A
(manufactured by VP GOULIN) and pressure (500~6
00 KGF/cm2) 10 times, and then freeze-dried the silver particles 14 with an average particle size of 0.1 μm.
.. 0 parts were premixed in a multi-blender mill (manufactured by Nippon Seiki Seisakusho Co., Ltd., model BL-1) to obtain a mixture (A1). 13 g of the above mixture (A1) was added to a hybridizer NHS.
-0 type at 16,200 rpm for 5 minutes to obtain conductive composite particles with an average particle size of 5.8 μm. The composite particles were placed in a cylindrical Teflon cell and lightly pressed together, with a cross-sectional area of 2 cm.
The electrical resistance value was measured using a digital multimeter TR-4101 (manufactured by Advantest Co., Ltd.) using a gold-plated electrode of 1.5 x 10 -4 Ω·cm.

【0017】実  施  例  2 平均粒径11.9μmのポリエチレン真球微粒子(製鉄
化学工業(株)製,商品名フロービーズCL−2080
)2部および,水分散タイプの金粉をホモジナイザーを
使用し,実施例1と同様に処理し,凍結乾燥して得た平
均粒径0.5μmの金粉(徳力化学研究所(株)製,商
品名TA−2)10部をマルチブレンダーミル((株)
日本精機製作所製,BL−1型)で予備混合し,混合物
(A2)を得た。上記混合物(A2)12gをハイブリ
ダイザーNHS−0型で16200rpmで5分間処理
して平均粒径が12.8μmの導電性複合粒子を得た。 この複合粒子の電気抵抗値を実施例1と同様の方法で測
定したところ,4×10−3Ω・cmであった。
[0017] Example 2 Polyethylene true spherical fine particles with an average particle size of 11.9 μm (manufactured by Seitetsu Kagaku Kogyo Co., Ltd., trade name: Flow Beads CL-2080)
) and water-dispersed type gold powder using a homogenizer, treated in the same manner as in Example 1, and freeze-dried to obtain gold powder with an average particle size of 0.5 μm (manufactured by Tokuriki Kagaku Kenkyujo Co., Ltd., product). Mix 10 parts of TA-2) with Multi Blender Mill (Co., Ltd.)
The mixture was premixed using a Nippon Seiki Seisakusho (model BL-1) to obtain a mixture (A2). 12 g of the above mixture (A2) was treated with a hybridizer NHS-0 model at 16,200 rpm for 5 minutes to obtain conductive composite particles having an average particle size of 12.8 μm. The electrical resistance value of the composite particles was measured in the same manner as in Example 1 and was found to be 4 x 10-3 Ω·cm.

【0018】実  施  例  3 平均粒径4μmのガラス微粒子(東芝バロティーニ(株
)製,商品名MB−10)6部および実施例1と同様に
処理した平均粒径0.1μmの銀微粒子5.73部をマ
ルチブレンダーミル((株)日本精機製作所製,BL−
1型)で予備混合し,混合物(A3)を得た。上記混合
物(A3)12gをハイブリダイザーNHS−0型で1
6200rpmで5分間処理して平均粒径が4.3μm
の導電性複合粒子を得た。この複合粒子の電気抵抗値を
実施例1と同様の方法で測定したところ,2×10−3
Ω・cmであった。
Example 3 6 parts of glass fine particles with an average particle size of 4 μm (manufactured by Toshiba Ballotini Corporation, trade name MB-10) and 5 parts of silver fine particles with an average particle size of 0.1 μm treated in the same manner as in Example 1. 73 parts were mixed into a multi-blender mill (manufactured by Nippon Seiki Seisakusho Co., Ltd., BL-
1 type) to obtain a mixture (A3). 12g of the above mixture (A3) was mixed with a hybridizer NHS-0 type.
The average particle size was 4.3 μm after processing at 6200 rpm for 5 minutes.
Conductive composite particles were obtained. When the electrical resistance value of this composite particle was measured in the same manner as in Example 1, it was found to be 2 x 10-3
It was Ωcm.

【0019】実  施  例  4 平均粒径5μmのナイロン微粒子(東レ(株)製,商品
名SP−500)10部および実施例1と同様に処理し
た平均粒径0.1μmの銀微粒子16.47部をマルチ
ブレンダーミル((株)日本精機製作所製,BL−1型
)で予備混合し,混合物(A4)を得た。上記混合物(
A4)13gをハイブリダイザーNHS−0型で162
00rpmで5分間処理して平均粒径が5.3μmの導
電性複合粒子を得た。この複合粒子の電気抵抗値を実施
例1と同様の方法で測定したところ,2×10−3Ω・
cmであった。
Example 4 10 parts of nylon fine particles with an average particle size of 5 μm (manufactured by Toray Industries, Inc., trade name SP-500) and 16.47 parts of silver fine particles with an average particle size of 0.1 μm treated in the same manner as in Example 1. The mixture was premixed using a multi-blender mill (manufactured by Nippon Seiki Seisakusho Co., Ltd., Model BL-1) to obtain a mixture (A4). The above mixture (
A4) 13g with hybridizer NHS-0 type 162
Conductive composite particles having an average particle size of 5.3 μm were obtained by processing at 00 rpm for 5 minutes. The electrical resistance value of the composite particles was measured in the same manner as in Example 1 and was found to be 2×10-3Ω・
It was cm.

【0020】実  施  例  5 実施例1で得られた導電性粒子のエポキシ樹脂中の体積
濃度が50%になるように導電性粒子を配合し混合,分
散した後,注型,24時間熱硬化して電極付きのエポキ
シ分散体の試料を作製した。この試料の電気抵抗値を,
デジタルマルチメーターTR−4101(アドバンテス
ト(株)製)で測定したところ,1×10−3Ω・cm
であった。また,この試料1cm3中の銀量を求めたと
ころ1.2gであった。
Example 5 Conductive particles were mixed and dispersed so that the volume concentration of the conductive particles obtained in Example 1 in the epoxy resin was 50%, followed by casting and heat curing for 24 hours. A sample of an epoxy dispersion with an electrode was prepared using the following steps. The electrical resistance value of this sample is
When measured with a digital multimeter TR-4101 (manufactured by Advantest Co., Ltd.), it was 1 x 10-3 Ω・cm
Met. Further, the amount of silver in 1 cm3 of this sample was determined to be 1.2 g.

【0021】実  施  例  6 実施例1で得られた導電性粒子のアクリル樹脂中の体積
濃度が60%になるように導電性粒子を配合した以外は
,比較例2と同様の方法によって塗膜厚48μmの塗板
を作製した。この試料の電磁波シールド効果をスペクト
ラムアナライザーTR−4171,評価機TR−173
01A(アドバンテスト(株)製)で測定したところ,
500MHzの周波数での電界の減衰率47db,電界
の減衰率40dbと,良好な電磁波シールド効果を示し
た。
Example 6 A coating film was prepared in the same manner as in Comparative Example 2, except that the conductive particles obtained in Example 1 were blended so that the volume concentration in the acrylic resin was 60%. A coated plate with a thickness of 48 μm was prepared. The electromagnetic shielding effect of this sample was evaluated using spectrum analyzer TR-4171 and evaluation device TR-173.
When measured with 01A (manufactured by Advantest Co., Ltd.),
It exhibited a good electromagnetic shielding effect, with an electric field attenuation rate of 47 db and an electric field attenuation rate of 40 db at a frequency of 500 MHz.

【0022】実  施  例  7 実施例5において,実施例1の導電性粒子の替わりに実
施例3または4で得られた導電性粒子を仕様し,他は実
施例5と同様にしてエポキシ分散体の試料を作製したと
ころ,実施例5とほぼ同様の結果が得られた。
Example 7 In Example 5, the conductive particles obtained in Example 3 or 4 were used in place of the conductive particles in Example 1, and the epoxy dispersion was prepared in the same manner as in Example 5. When a sample was prepared, almost the same results as in Example 5 were obtained.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】  平均粒径1〜200μmのコア粒子(
A)と,金属粒子の水分散体を,キャビテーションタイ
プ分散・粉砕機で処理した後,凍結乾燥してなる平均粒
径0.01〜10μmの金属微粒子(B)および必要な
らばその他の微粒子(C)とを乾式で機械的歪力をもっ
て混合し,コア粒子(A)の表面に金属層を形成してな
ることを特徴とする導電性粒子の製造方法。
Claim 1: Core particles with an average particle diameter of 1 to 200 μm (
A) and an aqueous dispersion of metal particles are treated with a cavitation type dispersion/pulverizer, and then lyophilized to produce metal fine particles (B) with an average particle size of 0.01 to 10 μm, and if necessary, other fine particles ( A method for producing conductive particles, which comprises dry mixing C) with mechanical strain to form a metal layer on the surface of the core particles (A).
【請求項2】  複数の導電性金属微粒子(B)を順次
用いることによってコア粒子(A)表面上に多層の金属
層を形成することを特徴とする請求項1記載の導電性粒
子の製造方法。
2. The method for producing conductive particles according to claim 1, characterized in that a multilayer metal layer is formed on the surface of the core particle (A) by sequentially using a plurality of conductive metal fine particles (B). .
【請求項3】  コア粒子(A)をシリカまたはガラス
とすることを特徴とする請求項1または2記載の導電性
粒子の製造方法。
3. The method for producing conductive particles according to claim 1, wherein the core particles (A) are made of silica or glass.
【請求項4】  コア粒子(A)をプラスチックとする
ことを特徴とする請求項1または2記載の導電性粒子の
製造方法。
4. The method for producing conductive particles according to claim 1, wherein the core particles (A) are made of plastic.
【請求項5】  コア粒子(A)を金属または金属酸化
物とすることを特徴する請求項1または2記載の導電性
粒子の製造方法。
5. The method for producing conductive particles according to claim 1, wherein the core particle (A) is a metal or a metal oxide.
【請求項6】  微粒子(C)として,平均粒径0.3
μm以下のポリメチルメタクリレートおよびシリカから
選ばれる1種もしくは2種以上を使用することを特徴と
する請求項1ないし5いずれか記載の導電性粒子の製造
方法。 【0001】
[Claim 6] Fine particles (C) have an average particle size of 0.3.
The method for producing conductive particles according to any one of claims 1 to 5, characterized in that one or more selected from polymethyl methacrylate and silica having a particle size of 10 μm or less are used. 0001
JP3100370A 1991-04-05 1991-04-05 Method for producing conductive particles Expired - Fee Related JP2768039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3100370A JP2768039B2 (en) 1991-04-05 1991-04-05 Method for producing conductive particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3100370A JP2768039B2 (en) 1991-04-05 1991-04-05 Method for producing conductive particles

Publications (2)

Publication Number Publication Date
JPH04308001A true JPH04308001A (en) 1992-10-30
JP2768039B2 JP2768039B2 (en) 1998-06-25

Family

ID=14272163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3100370A Expired - Fee Related JP2768039B2 (en) 1991-04-05 1991-04-05 Method for producing conductive particles

Country Status (1)

Country Link
JP (1) JP2768039B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109880344A (en) * 2019-01-30 2019-06-14 中北大学 A kind of preparation method of the high shielding aqueous polyurethane electromagnetic shielding composite foam of low reflection

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109880344A (en) * 2019-01-30 2019-06-14 中北大学 A kind of preparation method of the high shielding aqueous polyurethane electromagnetic shielding composite foam of low reflection
CN109880344B (en) * 2019-01-30 2021-02-23 中北大学 Preparation method of low-reflection high-shielding waterborne polyurethane electromagnetic shielding composite foam

Also Published As

Publication number Publication date
JP2768039B2 (en) 1998-06-25

Similar Documents

Publication Publication Date Title
CN111230098A (en) Metal-based nano composite powder material, preparation method and application thereof
EP1897916A1 (en) Carbon black loaded composition, colorant composition and conductive composition
CN110883337A (en) Spray granulation Fe-Al2O3Preparation method of spraying composite powder
JPH0394078A (en) Production of electrically conductive particles
JP2006143532A (en) Method of improving dispersibility of carbon nanotube
EP1887050A1 (en) Carbon black
JPH04308001A (en) Production of electrically conductive particles
JP2002343135A (en) Copper powder for electric conductive paste and electric conductive paste, and manufacturing method of copper powder for conductive paste
CN114959392B (en) Nano titanium particle reinforced magnesium-based composite material and preparation method and application thereof
JP2916611B2 (en) Powder particle crushing method and particle modification method
JP2004027246A (en) Copper powder for conductive paste, and its manufacturing method
JP2002015622A (en) Copper powder for electro-conductive paste and its manufacturing method
JP2574174B2 (en) Amorphous alloy soft magnetic powder and magnetic shielding material
KR100408647B1 (en) Manufacturing Process of alloyed and composite nano-metal powder of a high degree of purity
CN107057466A (en) A kind of inkjet printing silver ink for paper base
JP2007088388A (en) Thermoforming electromagnetic wave absorption material
KR20060102368A (en) Polymer macroparticle of which surface is modified by mesoparticle and nanoparticle, nanoparticle-polymer composite using the same, and preparation thereof
Lo et al. Effects of mixing procedures on the volume fraction of silver particles in conductive adhesives
JPH02182809A (en) Production of fine granular copper powder
JP3840801B2 (en) Method for dispersing conductive particle agglomerates
CN102070914A (en) Inorganic particle-coated plastic granules and preparation method and application thereof
CN107216775B (en) A kind of electromagnetic screen coating and preparation method thereof
JPH0649269A (en) Flaky ag-pd alloy filler material having electrical conductivity and product containing the filler
CN116060610B (en) Silver-coated copper powder and preparation method and application thereof
Satoh et al. Application of a powder coating method to dispersion of fine Ni powders into Ag Ni alloy matrix

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees