JPH04306676A - Member for electrification - Google Patents

Member for electrification

Info

Publication number
JPH04306676A
JPH04306676A JP9604891A JP9604891A JPH04306676A JP H04306676 A JPH04306676 A JP H04306676A JP 9604891 A JP9604891 A JP 9604891A JP 9604891 A JP9604891 A JP 9604891A JP H04306676 A JPH04306676 A JP H04306676A
Authority
JP
Japan
Prior art keywords
charging member
layer
conductive elastic
conductive
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9604891A
Other languages
Japanese (ja)
Other versions
JP2921716B2 (en
Inventor
Hisami Tanaka
久巳 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP9604891A priority Critical patent/JP2921716B2/en
Publication of JPH04306676A publication Critical patent/JPH04306676A/en
Application granted granted Critical
Publication of JP2921716B2 publication Critical patent/JP2921716B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Discharging, Photosensitive Material Shape In Electrophotography (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Abstract

PURPOSE:To stably supply a high definition image without dotted fogging due to non-uniform electrification, and to obtain a member for electrification of excellent durability. CONSTITUTION:A member for electrification is used for primary electrification, transfer electrification, and for elimination electrification in electron photographing method, and is formed out of a conductive supporting material 1 and a conductive elastic material 2 provided thereon, while a ZnO whisker is characteristically included in the conductive elastic material 2. The member has good flexibility, and when this is used for electron photographing device or for a copying machine, noise is at low level, and a high quality image is obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は直接帯電用部材に関し、
特に電子写真法における1次帯電用、転写帯電用、除電
帯電用に用いられる帯電用部材に関する。
[Industrial Application Field] The present invention relates to a direct charging member,
In particular, the present invention relates to a charging member used for primary charging, transfer charging, and neutralizing charging in electrophotography.

【0002】0002

【従来の技術】電子写真感光体を用いた電子写真プロセ
スにおける帯電プロセスは、従来より殆ど金属ワイヤー
に高電圧(DC5〜8kV)を印加して発生するコロナ
により帯電を行なっている。しかし、この方法ではコロ
ナ発生時に、オゾンやNOx等のコロナ生成物により感
光体表面を変質させ、画像ボケや劣化を進行させたり、
ワイヤーの汚れが画像品質に影響し、画像白抜けや黒ス
ジを生じる等の問題があった。一方、電力的にも、感光
体に向う電流は、全電流の5〜30%にすぎず、多くは
シールド板に流れるため、帯電手段としては効果の悪い
ものであった。
2. Description of the Related Art Charging processes in electrophotographic processes using electrophotographic photoreceptors have heretofore mostly been carried out using corona generated by applying a high voltage (5 to 8 kV DC) to a metal wire. However, with this method, when corona occurs, the surface of the photoreceptor is altered by corona products such as ozone and NOx, causing image blurring and deterioration.
Dirt on the wires affected the image quality, causing problems such as white spots and black lines in the image. On the other hand, in terms of electric power, the current flowing to the photoreceptor is only 5 to 30% of the total current, and most of it flows to the shield plate, making it ineffective as a charging means.

【0003】こうした欠点を補うために、直接帯電させ
る方法が研究され、多数提案されている(たとえば特開
昭57−178267号公報、特開昭56−10435
1号公報、特開昭58−40566号公報、特開昭58
−139156号公報、特開昭58−150975号公
報等)。
In order to compensate for these drawbacks, direct charging methods have been researched and many proposals have been made (for example, Japanese Patent Laid-Open Nos. 57-178267 and 1982-10435).
1 Publication, JP-A-58-40566, JP-A-58
-139156, JP-A-58-150975, etc.).

【0004】0004

【発明が解決しようとする課題】しかしながら上記のよ
うな直接帯電法によって感光体を帯電処理しても、実際
には感光体の表面全体にわたる均一な帯電はなされず、
斑点状の帯電ムラが生じるのを避けられない。このよう
な斑点状帯電ムラのある感光体に光像露光およびこれに
つづくプロセスを適用した場合、得られる出力画像は、
反転現像方式では、斑点状帯電ムラに対応した斑点状の
黒点画像、正規像方式では斑点状の白点画像となり、高
品位な画像は得られない。
[Problems to be Solved by the Invention] However, even if the photoreceptor is charged by the above-mentioned direct charging method, uniform charging is not achieved over the entire surface of the photoreceptor;
Spot-like charging unevenness cannot be avoided. When photoimage exposure and subsequent processes are applied to a photoconductor with such spotty charging unevenness, the resulting output image is
The reversal development method produces a speckled black dot image corresponding to spotty charging unevenness, and the regular image method produces a speckled white dot image, making it impossible to obtain a high-quality image.

【0005】また直接帯電法は、多数の提案があるにも
かかわらず、市場実績が全くない。その理由として、帯
電の不均一性、および電圧の直接印加による感光体の放
電による絶縁破壊の発生などが挙げられる。放電による
絶縁破壊で生じた破壊点は、たとえば円筒状感光体の場
合、帯電電荷がその破壊点に向かって軸方向に流れ、帯
電しなくなる欠点を生じる。
[0005]Also, although there are many proposals for the direct charging method, there is no market experience at all. Reasons for this include non-uniform charging and occurrence of dielectric breakdown due to discharge of the photoreceptor due to direct application of voltage. For example, in the case of a cylindrical photoreceptor, a breakdown point caused by dielectric breakdown due to discharge causes the charged charge to flow in the axial direction toward the breakdown point, resulting in a disadvantage that the photoconductor is no longer charged.

【0006】さらに、帯電部材の硬度によって、重畳印
加する交流電圧の周波数により帯電部材の振動が起こり
、この振動が密着する感光体に伝わって、感光体から不
快な騒音が発生してしまうという問題点もあった。
Furthermore, due to the hardness of the charging member, the frequency of the superimposed alternating current voltage causes the charging member to vibrate, and this vibration is transmitted to the photoreceptor that is in close contact with it, causing unpleasant noise to be generated from the photoreceptor. There were also points.

【0007】本発明は上述のような従来の帯電用部材が
有している課題を解決するためになされたもので、不均
一な帯電による斑点状カブリのない高品位の画像を安定
して供給でき、しかも耐久性にすぐれた帯電用部材を提
供することを目的とする。
The present invention has been made to solve the above-mentioned problems with conventional charging members, and is capable of stably supplying high-quality images without spotty fog caused by non-uniform charging. To provide a charging member that can be used for charging and has excellent durability.

【0008】[0008]

【課題を解決するための手段】本発明は、導電性支持体
およびその上に設けられた導電性弾性体からなる直接帯
電用部材において、導電性弾性体の中に、ZnOウィス
カーを含有することを特徴とする。
[Means for Solving the Problems] The present invention provides a direct charging member comprising a conductive support and a conductive elastic body provided thereon, in which the conductive elastic body contains ZnO whiskers. It is characterized by

【0009】以下に本発明について図面を参照してさら
に詳しく説明する。
The present invention will be explained in more detail below with reference to the drawings.

【0010】本発明の帯電用部材は、たとえば図1に示
すようなローラ状のもので、軸の形態をなす導電性支持
体1およびその周囲に設けられた導電性弾性層2を備え
ている。また図2に示すように、導電性弾性層2上に樹
脂層3が設けられてもよい。あるいは本発明の帯電用部
材は、図3に示すように、平板の形態をなす導電性支持
体1に導電性弾性層2支持させたものでもよく、また図
4に示すように、導電性弾性層2上に樹脂層3が設けら
れてもよい。さらに本発明の帯電用部材は、図5に示す
ように、一対の平行な軸の形態をなす導電性支持体1に
エンドレスベルト状の導電性弾性層2支持させたもので
もよい。ただし導電性弾性層2は、バインダー樹脂に、
ZnOウィスカーを混入した材料で構成される。
The charging member of the present invention is in the form of a roller, for example as shown in FIG. 1, and includes a conductive support 1 in the form of a shaft and a conductive elastic layer 2 provided around the support. . Further, as shown in FIG. 2, a resin layer 3 may be provided on the conductive elastic layer 2. Alternatively, the charging member of the present invention may have a conductive elastic layer 2 supported on a conductive support 1 in the form of a flat plate, as shown in FIG. A resin layer 3 may be provided on the layer 2. Furthermore, as shown in FIG. 5, the charging member of the present invention may be one in which an endless belt-shaped conductive elastic layer 2 is supported on a conductive support 1 in the form of a pair of parallel shafts. However, the conductive elastic layer 2 is made of binder resin,
It is composed of a material mixed with ZnO whiskers.

【0011】すなわち本発明の帯電用部材は、導電性弾
性層中にZnOウィスカーを混入した樹脂層を有するの
で、柔軟性に優れ、高画質の画像を与え、帯電音も小さ
く、かつ耐久性のある帯電用部材として有利に使用する
ことができる。
That is, since the charging member of the present invention has a resin layer in which ZnO whiskers are mixed in the conductive elastic layer, it has excellent flexibility, provides high-quality images, has low charging noise, and has excellent durability. It can be advantageously used as a certain charging member.

【0012】さらに、本発明の目的は、印加する交流電
圧に伴なう振動による不快な騒音を防止する帯電部材、
接触帯電装置および電子写真装置を提供することである
A further object of the present invention is to provide a charging member that prevents unpleasant noises caused by vibrations caused by applied alternating current voltage;
An object of the present invention is to provide a contact charging device and an electrophotographic device.

【0013】これに対して従来の帯電用部材は、導電材
として導電性カーボンあるいは金属粉、金属酸化物粉よ
り構成されていたため、導電性弾性層の抵抗が不均一で
あったり、抵抗を下げるため、導電材の含有量を増やす
と表面が硬くなりしわを発生させたりして、画像欠陥を
生じていた。本発明によれば、このような欠点はすべて
解消される。
On the other hand, since conventional charging members are composed of conductive carbon, metal powder, or metal oxide powder as a conductive material, the resistance of the conductive elastic layer may be uneven, or the resistance may be lowered. Therefore, when the content of the conductive material is increased, the surface becomes hard and wrinkles occur, resulting in image defects. According to the invention, all such drawbacks are eliminated.

【0014】以下、本発明の帯電部材の構成について説
明する。
The structure of the charging member of the present invention will be explained below.

【0015】導電性基体としては、鉄、銅、ステンレス
などの金属、カーボン分散樹脂、金属粒子分散樹脂など
の導電性樹脂等を用いることができ、その形状としては
、棒状、板状などが使用できる。
[0015] As the conductive substrate, metals such as iron, copper, and stainless steel, conductive resins such as carbon-dispersed resins, metal particle-dispersed resins, etc. can be used, and the shape thereof can be rod-like, plate-like, etc. can.

【0016】導電性弾性層はゴム、スポンジ、サーモプ
ラスチックエラストマー等の弾性体にZnOエィスカー
を1重量%〜30重量%分散させて形成できる。
The conductive elastic layer can be formed by dispersing 1% to 30% by weight of ZnO askers in an elastic body such as rubber, sponge, or thermoplastic elastomer.

【0017】弾性体は、クロロプレンゴム、イソプレン
ゴム、EPDMゴム、ポリウレタンゴム、エポキシゴム
、ブチルゴムなどのゴムないしはスポンジや、スチレン
−ブタジエンサーモプラスチックエラストマー、ポリウ
レタン系サーモプラスチックエラストマー、ポリエステ
ル系サーモプラスチックエラストマー、エチレン−酢酸
ビニル系サーモプラスチックエラストマーなどのサーモ
プラスチックエラストマー等を用いることができる。
The elastic body may be rubber or sponge such as chloroprene rubber, isoprene rubber, EPDM rubber, polyurethane rubber, epoxy rubber, butyl rubber, styrene-butadiene thermoplastic elastomer, polyurethane thermoplastic elastomer, polyester thermoplastic elastomer, or ethylene. - Thermoplastic elastomers such as vinyl acetate thermoplastic elastomers can be used.

【0018】導電性弾性層の硬度は、柔軟性による被帯
電体との密着性および振動吸収性の点から、JISK−
6301の測定法に準拠した、JIS−A型測定器(商
品名「テクロックGS−706」、テクロック社製)に
より測定したゴム硬度で30度以下が好ましい。また、
導電性弾性層の膜厚も前記の点から1.5mm以上、特
には2mm以上であることが好ましい。
The hardness of the conductive elastic layer is determined according to JIS K-1 from the viewpoint of adhesion to the charged object due to its flexibility and vibration absorption properties.
It is preferable that the rubber hardness is 30 degrees or less as measured by a JIS-A type measuring device (trade name "Techlock GS-706", manufactured by Techlock Co., Ltd.) in accordance with the measurement method of 6301. Also,
From the above point, the thickness of the conductive elastic layer is preferably 1.5 mm or more, particularly 2 mm or more.

【0019】このバインダー樹脂に混合されるZnOウ
ィスカーはテトラポット形状または針状の結晶でウィス
カーの太さは0.5〜5μmであり、ウィスカーの長さ
は1〜50μmが好ましい。ZnOウィスカーはZn粉
末を酸素存在下で熱処理によって製造される。松下産業
機器より市販のテトラポット形状のZnOウィスカー「
パナテトラ」などが用いられる。
The ZnO whiskers mixed in the binder resin are tetrapod-shaped or needle-shaped crystals, and the thickness of the whiskers is 0.5 to 5 μm, and the length of the whiskers is preferably 1 to 50 μm. ZnO whiskers are produced by heat treating Zn powder in the presence of oxygen. Tetrapot-shaped ZnO whiskers commercially available from Matsushita Industrial Equipment Co., Ltd.
"Panatetra" etc. are used.

【0020】針状の場合は、テトラポット形状のZnO
ウィスカーを機械的に粉砕したものなどが用いられる。
[0020] In the case of needle-like, tetrapod-shaped ZnO
Mechanically crushed whiskers are used.

【0021】本発明の導電性弾性層2の体積抵抗率とし
ては、100〜1011Ω・cm、とくに102〜10
10Ω・cmの範囲が好ましい。
The volume resistivity of the conductive elastic layer 2 of the present invention is 100 to 1011 Ω·cm, particularly 102 to 10
A range of 10 Ω·cm is preferable.

【0022】抵抗層は、導電層よりも抵抗が高くなるよ
うに形成されており、体積抵抗率が106〜1012Ω
・cm、好ましくは107〜1011Ω・cmの層であ
り、半導電性樹脂、導電性粒子分散絶縁樹脂などを用い
ることができる。半導電性樹脂としては、エチルセルロ
ース、ニトロセルロース、メトキシメチル化ナイロン、
エトキシメチル化ナイロン、共重合ナイロン、ポリビニ
ルピロリドン、カゼイン等の樹脂あるいはこれらの樹脂
の混合物などが挙げられる。導電性粒子分散絶縁樹脂と
しては、カーボン、アルミニウム、酸化インジウム、酸
化チタン等の導電性粒子をウレタン、ポリエステル、酢
酸ビニル−塩化ビニル共重合体、ポリメタクリル酸等の
絶縁樹脂中に、少量分散して抵抗を調節したものなどが
挙げられる。これらの中でも抵抗層表面の均質性、平滑
性を考慮すれば、樹脂単独で形成される半導電性樹脂が
好ましい。
The resistance layer is formed to have a higher resistance than the conductive layer, and has a volume resistivity of 106 to 1012Ω.
・cm, preferably 10 7 to 10 11 Ω·cm, and semiconductive resin, conductive particle-dispersed insulating resin, etc. can be used. Semiconductive resins include ethyl cellulose, nitrocellulose, methoxymethylated nylon,
Examples include resins such as ethoxymethylated nylon, copolymerized nylon, polyvinylpyrrolidone, casein, and mixtures of these resins. The conductive particle-dispersed insulating resin is made by dispersing a small amount of conductive particles such as carbon, aluminum, indium oxide, titanium oxide, etc. in an insulating resin such as urethane, polyester, vinyl acetate-vinyl chloride copolymer, polymethacrylic acid, etc. For example, the resistance can be adjusted by adjusting the resistance. Among these, in consideration of the homogeneity and smoothness of the surface of the resistance layer, semiconductive resins formed from resin alone are preferable.

【0023】また、抵抗層の膜厚は帯電性の点から1μ
m〜500μm、特には50μm〜200μmが好まし
い。
In addition, the thickness of the resistance layer is 1 μm from the viewpoint of charging property.
m to 500 μm, particularly preferably 50 μm to 200 μm.

【0024】これらの層の他に、各層の接着性の向上さ
せる接着層などの他の層を設けてもよい。
[0024] In addition to these layers, other layers such as an adhesive layer for improving the adhesion of each layer may be provided.

【0025】本発明による帯電部材はたとえば、以下の
ようにして製造される。
The charging member according to the present invention is manufactured, for example, as follows.

【0026】まず、帯電部材の導電性基体として金属棒
を用意する。導電性弾性層の材料を金属棒の上に熔融成
型、注入成型、浸漬塗工あるいはスプレー塗工等により
成型し導電性弾性層を設ける。
First, a metal rod is prepared as a conductive base of a charging member. The material for the conductive elastic layer is formed on a metal rod by melt molding, injection molding, dip coating, spray coating, etc. to provide the conductive elastic layer.

【0027】抵抗層の材料を導電層の上に浸漬塗工、ス
プレー塗工、グラビア塗工等により塗装し抵抗層を設け
る。
A material for the resistive layer is applied onto the conductive layer by dip coating, spray coating, gravure coating, etc. to form a resistive layer.

【0028】さらに帯電用部材は、樹脂層3を保護する
ための保護層を最外層に有していてもよい。この保護層
は、その内部に、導電性を制御するための導電粒子、あ
るいは表面粗さを制御するための不溶性の樹脂粒子など
の粒子を混入したものでもよい。
Furthermore, the charging member may have a protective layer for protecting the resin layer 3 as the outermost layer. This protective layer may contain particles such as conductive particles for controlling conductivity or insoluble resin particles for controlling surface roughness.

【0029】帯電用部材の形状は、ローラー形状やブレ
ード形状などいずれでもよいが、均一帯電の点ではロー
ラー形状が好ましい。
The charging member may have any shape such as a roller shape or a blade shape, but a roller shape is preferable from the viewpoint of uniform charging.

【0030】本発明の構成により柔軟性と導電性をそれ
ぞれコントロールすることができ、従来軟質化の難しい
導電性ゴムの問題を解決した。このような構成をもった
本発明の帯電部材は、導電性弾性層によって充分な導電
性を維持し、しかも柔軟性と、抵抗層の表面平滑性によ
って感光体に対する均一な密着性を得ることができるの
で、帯電ムラのない均一な帯電を行うことができる。
The structure of the present invention makes it possible to control both flexibility and conductivity, thus solving the problem of conventional conductive rubbers that are difficult to soften. The charging member of the present invention having such a structure maintains sufficient conductivity due to the conductive elastic layer, and can obtain uniform adhesion to the photoconductor due to the flexibility and surface smoothness of the resistance layer. Therefore, uniform charging without uneven charging can be performed.

【0031】さらに、本発明の帯電部材は、外部電源よ
り印加重畳する交流電圧の交流波による騒音を防止また
は低減することができる。すなわち、外部より直流電圧
と交流電圧を重畳印加された帯電部材は、導電性基体と
導電層の間にある弾性層の柔軟性によって脈流印加電圧
に伴なう振動を吸収する。このため、帯電部材に接触し
ている感光体には振動が伝わらなくなるので、振動に伴
なう感光体および感光体内部からの不快な騒音を防止ま
たは低減することができる。
Furthermore, the charging member of the present invention can prevent or reduce noise caused by alternating current waves of alternating current voltage applied and superimposed from an external power source. That is, the charging member to which a direct current voltage and an alternating current voltage are applied from the outside in a superimposed manner absorbs vibrations caused by the applied pulsating voltage due to the flexibility of the elastic layer between the conductive base and the conductive layer. Therefore, vibrations are not transmitted to the photoreceptor that is in contact with the charging member, so that unpleasant noise from the photoreceptor and the inside of the photoreceptor accompanying the vibration can be prevented or reduced.

【0032】さらに、抵抗層を設けることにより、感光
体の内部欠陥に起因する絶縁破壊を防止し、またピンホ
ールがある場合にも正現像方式においては接触部分の長
手方向にわたる白ヌケ、反転現像方式においては黒スジ
等の画像欠陥を防止して優れた画像を得ることができる
Furthermore, by providing a resistive layer, dielectric breakdown caused by internal defects in the photoreceptor can be prevented, and even if there is a pinhole, white spots extending in the longitudinal direction of the contact area and reverse development can be prevented in the normal development method. In this method, image defects such as black lines can be prevented and excellent images can be obtained.

【0033】これに対して、導電性基体上に、導電性弾
性層および抵抗層を設けた帯電部材とすることにより、
感光体との接触部分が抵抗層であるため、電荷が分散さ
れ欠陥部分の絶縁破壊を防止することができる。また、
感光体のピンホール部分で導通していても、抵抗層の存
在によって印加電圧に対する抵抗が保たれるので外部電
源部に負荷がかからなくなり電圧降下を防止することが
できる。したがってピンホールに起因する白ヌケあるい
は黒スジといった画像欠陥を防止することができる。
In contrast, by creating a charging member in which a conductive elastic layer and a resistance layer are provided on a conductive base,
Since the contact portion with the photoreceptor is a resistive layer, charges are dispersed and dielectric breakdown at defective portions can be prevented. Also,
Even if conduction occurs at the pinhole portion of the photoreceptor, the presence of the resistive layer maintains resistance to the applied voltage, so no load is applied to the external power supply section, and voltage drop can be prevented. Therefore, image defects such as white spots or black lines caused by pinholes can be prevented.

【0034】電子写真感光体は、導電性支持体上に感光
層を設けた構成を基本としている。導電性支持体として
は、支持体自体が導電性をもつもの、たとえばアルミニ
ウム、アルミニウム合金、ステンレス、クロム、チタン
などを用いることができ、そのほかにアルミニウム、ア
ルミニウム合金、酸化インジウム−酸化錫合金などを真
空蒸着によって被膜形成された層を有する前記導電性支
持体やプラスチック、導電性粒子(たとえばカーボンブ
ラック、酸化錫粒子など)を適当なバインダーとともに
プラスチックや紙に含浸した支持体、導電性バインダー
を有するプラスチックなどを用いることができる。
The electrophotographic photoreceptor basically has a structure in which a photosensitive layer is provided on a conductive support. As the conductive support, materials whose support itself is conductive can be used, such as aluminum, aluminum alloy, stainless steel, chromium, titanium, etc. In addition, aluminum, aluminum alloy, indium oxide-tin oxide alloy, etc. can be used. The conductive support or plastic has a layer formed by vacuum deposition, a support in which plastic or paper is impregnated with conductive particles (e.g. carbon black, tin oxide particles, etc.) together with a suitable binder, or a conductive binder. Plastic or the like can be used.

【0035】導電性支持体と感光層の中間に、バリヤー
機能と接着機能をもつ下引層を設けることもできる。下
引層はカゼイン、ポリビニルアルコール、ニトロセルロ
ース、エチレン−アクリル酸コポリマー、ポリアミド、
ポリウレタン、ゼラチン、酸化アルミニウムなどによっ
て形成できる。下引層の膜厚は5μm以下、好ましくは
0.5〜3μmが適当である。下引層はその機能を発揮
するためには、107Ω・cm以上であることが好まし
い。
[0035] A subbing layer having barrier and adhesive functions can also be provided between the conductive support and the photosensitive layer. The subbing layer is casein, polyvinyl alcohol, nitrocellulose, ethylene-acrylic acid copolymer, polyamide,
It can be formed from polyurethane, gelatin, aluminum oxide, etc. The thickness of the undercoat layer is suitably 5 μm or less, preferably 0.5 to 3 μm. In order for the undercoat layer to exhibit its function, it is preferable that the undercoat layer has a resistance of 10 7 Ω·cm or more.

【0036】感光層はたとえば、有機光導電体、アモル
ファスシリコン、セレンなどの光導電体を必要に応じて
結着剤と共に塗料化して塗布形成または真空蒸着によっ
てされる。また、有機光導電体を用いる場合、露光によ
り電荷担体を発生する電荷発生層と発生した電荷担体を
輸送する能力を持つ電荷輸送層との組み合わせからなる
感光層も有効に用いることができる。
The photosensitive layer is formed, for example, by coating a photoconductor such as an organic photoconductor, amorphous silicon, selenium, etc. together with a binder if necessary, or by vacuum deposition. Furthermore, when using an organic photoconductor, a photosensitive layer consisting of a combination of a charge generation layer that generates charge carriers upon exposure to light and a charge transport layer that has the ability to transport the generated charge carriers can also be effectively used.

【0037】電荷発生層は、アゾ顔料、キノン顔料、キ
ノンアニン顔料、ペリレン顔料、インジゴ顔料、ビスベ
ンゾイミダゾール顔料、フタロシアニン顔料、キナクド
リン顔料などの電荷発生材料の1種類あるいは2種類以
上を蒸着するか、または適当なバインダーと共に(バイ
ンダーが無くても可)分散し塗工によって形成できる。
The charge generating layer may be formed by depositing one or more charge generating materials such as azo pigments, quinone pigments, quinone anine pigments, perylene pigments, indigo pigments, bisbenzimidazole pigments, phthalocyanine pigments, and quinacridine pigments, or Alternatively, it can be formed by dispersing and coating with a suitable binder (or without a binder).

【0038】バインダーは広範囲な絶縁性樹脂または有
機光導電性ポリマーから選択できる。たとえば絶縁性樹
脂としてはポリビニルブチラール、ポリアリレート(ビ
スファノールAとフタル酸の縮重合体等)、ポリカーボ
ネート、ポリエステル、フェノキシ樹脂、アクリル樹脂
、ポリアクリルアミド樹脂、ポリアミド、セルロース系
樹脂、ウレタン樹脂、エポキシ樹脂、カゼイン、ポリビ
ニルアルコールなどをあげることができる。また、有機
光導電性ポリマーとしては、カルバゾール、ポリビニル
アントラセン、ポリビニルピレンなどが挙げられる。
The binder can be selected from a wide variety of insulating resins or organic photoconductive polymers. For example, insulating resins include polyvinyl butyral, polyarylate (condensation polymer of bisphanol A and phthalic acid, etc.), polycarbonate, polyester, phenoxy resin, acrylic resin, polyacrylamide resin, polyamide, cellulose resin, urethane resin, epoxy resin, Examples include casein and polyvinyl alcohol. Further, examples of the organic photoconductive polymer include carbazole, polyvinylanthracene, polyvinylpyrene, and the like.

【0039】電荷発生層の膜厚は0.01〜15μm、
好ましくは0.05〜5μmであり、電荷発生層と結着
剤との重量比は10:1〜1:20である。
The thickness of the charge generation layer is 0.01 to 15 μm,
The thickness is preferably 0.05 to 5 μm, and the weight ratio of the charge generation layer to the binder is 10:1 to 1:20.

【0040】電荷発生層用塗料に用いる溶剤は、使用す
る樹脂や電荷輸送材料の溶解性や分散安定性から選択さ
れるが、有機溶剤としてはアルコール類、スルホキシド
類、エーテル類、エステル類、脂肪族ハロゲン化炭化水
素類あるいは芳香族化合物などを用いることができる。
The solvent used in the paint for the charge generation layer is selected based on the solubility and dispersion stability of the resin and charge transport material used. Examples of organic solvents include alcohols, sulfoxides, ethers, esters, and fats. Group halogenated hydrocarbons or aromatic compounds can be used.

【0041】塗工は、浸漬コーティング法、スプレーコ
ーティング法、マイヤーバーコーフィング法、ブレード
コーティング法などのコーティング法を用いて行なうこ
とができる。
Coating can be carried out using a coating method such as a dip coating method, a spray coating method, a Mayer-Barkofing method, or a blade coating method.

【0042】電荷輸送層は、電荷輸送材料を成膜性のあ
る樹脂に溶解させて形成される。本発明に用いられる有
機の電荷輸送材料の例としては、ヒドラゾン系化合物、
スチルベン系化合物、ピラゾリン系化合物、オキサゾー
ル系化合物、チアゾール系化合物、トリアリールメタン
系化合物などが挙げられる。これらの電荷輸送物質は1
種または2種以上組み合わせて用いることができる。
The charge transport layer is formed by dissolving a charge transport material in a film-forming resin. Examples of organic charge transport materials used in the present invention include hydrazone compounds,
Examples include stilbene compounds, pyrazoline compounds, oxazole compounds, thiazole compounds, and triarylmethane compounds. These charge transport materials are 1
It can be used in one species or in combination of two or more.

【0043】電荷輸送層に用いる結着剤の例としては、
フェノキシ樹脂、ポリアクリルアミド、ポリビニルブチ
ラール、ポリアリレート、ポリスルホン、ポリアミド、
アクリル樹脂、アクリロニトル樹脂、メタクリル樹脂、
塩化ビニル樹脂、酢酸ビニル樹脂、フェノール樹脂、エ
ポキシ樹脂、ポリエステル、アルキド樹脂、ポリカーボ
ネット、ポリウレタンあるいはこれらの樹脂の繰返し単
位のうち2つ以上を含む共重合体、たとえばスチレン−
ブタジエンコポリマー、スチレン−アクリロニトルコポ
リマー、スチレン−マレイン酸コポリマーなどを挙げる
ことができる。また、ポリ−N−ビニルカルバゾール、
ポリビニルアントラセン、ポリビニルピレンなどの有機
光導電性ポリマーからも選択できる。
Examples of binders used in the charge transport layer include:
Phenoxy resin, polyacrylamide, polyvinyl butyral, polyarylate, polysulfone, polyamide,
Acrylic resin, acrylonitrile resin, methacrylic resin,
Vinyl chloride resin, vinyl acetate resin, phenolic resin, epoxy resin, polyester, alkyd resin, polycarbonate, polyurethane, or a copolymer containing two or more repeating units of these resins, such as styrene-
Examples include butadiene copolymer, styrene-acrylonite copolymer, styrene-maleic acid copolymer, and the like. Also, poly-N-vinylcarbazole,
Organic photoconductive polymers such as polyvinylanthracene and polyvinylpyrene can also be selected.

【0044】電荷輸送層の膜厚は5〜50μm、好まし
くは8〜20μmであり、電荷輸送物質と結着剤との重
量比は5:1〜1:5、好ましくは3:1〜1:3程度
である。塗工は前述のようなコーティング法を行なうこ
とができる。
The thickness of the charge transport layer is 5 to 50 μm, preferably 8 to 20 μm, and the weight ratio of the charge transport material to the binder is 5:1 to 1:5, preferably 3:1 to 1: It is about 3. The coating method described above can be used for coating.

【0045】さらに、色素、顔料、有機電荷輸送物質な
どは、一般に紫外線、オゾン、オイルなどによる汚れ、
金属などに弱いため必要に応じて保護層を設けてもよい
。この保護層上に静電潜像を形成するためには表面抵抗
率が1011Ω以上であることが望ましい。
Furthermore, dyes, pigments, organic charge transport substances, etc. are generally susceptible to stains caused by ultraviolet rays, ozone, oil, etc.
Since it is sensitive to metals, a protective layer may be provided as necessary. In order to form an electrostatic latent image on this protective layer, it is desirable that the surface resistivity is 10 11 Ω or more.

【0046】感光体の保護層はポリビニルブチラール、
ポリエステル、ポリカーボネート、アクリル樹脂、メタ
クリル樹脂、ナイロン、ポリイミド、ポリアリレート、
ポリウレタン、スチレン−ブタジエンコポリマー、スチ
レン−アクリル酸コポリマー、スチレン−アクリロニト
リルコポリマーなどの樹脂を適当な有機溶剤によって溶
解した駅を感光層の上に塗布、乾燥して形成できる。こ
の際、保護層の膜厚は、一般に0.05〜20μmの範
囲である。この保護層中に紫外線吸収剤などを含ませて
もよい。
The protective layer of the photoreceptor is made of polyvinyl butyral,
Polyester, polycarbonate, acrylic resin, methacrylic resin, nylon, polyimide, polyarylate,
The photosensitive layer can be formed by applying a solution of a resin such as polyurethane, styrene-butadiene copolymer, styrene-acrylic acid copolymer, styrene-acrylonitrile copolymer, etc. in a suitable organic solvent onto the photosensitive layer and drying it. At this time, the thickness of the protective layer is generally in the range of 0.05 to 20 μm. This protective layer may contain an ultraviolet absorber or the like.

【0047】本発明の帯電用部材は、たとえば図6に示
すような電子写真装置に適用することができる。この装
置は、ドラム状の電子写真感光体12の周面上に一次帯
電用部材6、像露光手段7、現像手段8、転写帯電手段
9、クリーニング手段10、および前露光手段11が配
置されている。
The charging member of the present invention can be applied to, for example, an electrophotographic apparatus as shown in FIG. In this apparatus, a primary charging member 6, an image exposure means 7, a developing means 8, a transfer charging means 9, a cleaning means 10, and a pre-exposure means 11 are arranged on the circumferential surface of a drum-shaped electrophotographic photoreceptor 12. There is.

【0048】電子写真感光体12上に接触配置されてい
る一次帯電用部材6に、外部より電圧(たとえば200
V以上2000V以下の直流電圧とピーク間電圧400
0V以下の交流電圧を重畳した脈流電圧)を印加し、電
子写真感光体12表面を帯電させ、像露光手段7によっ
て原稿上の画像を感光体に像露光して静電潜像を形成す
る。次に現像手段8中の現像剤を感光体に付着させるこ
とにより、感光体上の静電潜像を現像(可視像化)し、
さらに感光体上の現像剤を転写帯電手段9によって紙な
どの被転写部材13に転写し、クリーニング手段10に
よって転写時に紙に転写されずに感光体上に残った現像
剤を回収する。
A voltage (for example, 200
DC voltage between V and 2000V and peak-to-peak voltage 400V
A pulsating current voltage superimposed with an AC voltage of 0 V or less is applied to charge the surface of the electrophotographic photoreceptor 12, and the image on the document is exposed to the photoreceptor by the image exposure means 7 to form an electrostatic latent image. . Next, by attaching the developer in the developing means 8 to the photoreceptor, the electrostatic latent image on the photoreceptor is developed (visualized),
Further, the developer on the photoreceptor is transferred to a transfer member 13 such as paper by a transfer charging means 9, and the developer remaining on the photoreceptor without being transferred to the paper during transfer is collected by a cleaning means 10.

【0049】このような電子写真プロセスによって画像
を形成することができるが、感光体に残留電荷が残るよ
うな場合には、一次帯電を行なう前に前露光手段11に
よって感光体に光を当て残留電荷を除電したほうがよい
Although an image can be formed by such an electrophotographic process, if residual charges remain on the photoreceptor, the photoreceptor is exposed to light by the pre-exposure means 11 before primary charging to eliminate the residual charges. It is better to eliminate the charge.

【0050】本発明の帯電用部材を転写帯電に用いる場
合、たとえば、図7に示すような電子写真装置に適用す
ることができる。この装置では、電子写真感光体12の
周面上に一次帯電用コロナ帯電器14、像露光手段7、
現像手段8、転写帯電用帯電部材15、クリーニング手
段10、前露光手段11が配置されている。
When the charging member of the present invention is used for transfer charging, it can be applied to, for example, an electrophotographic apparatus as shown in FIG. In this apparatus, a corona charger 14 for primary charging, an image exposure means 7,
A developing means 8, a charging member 15 for transfer charging, a cleaning means 10, and a pre-exposure means 11 are arranged.

【0051】電子写真感光体12上に接触配置されてい
る転写帯電用帯電部材15に電圧(たとえば直流電圧4
00〜1000V)を印加し電子写真感光体上の現像剤
を紙などの被転写部材に転写することができる。
A voltage (for example, a DC voltage of 4
00 to 1000 V) can be applied to transfer the developer on the electrophotographic photoreceptor to a transfer member such as paper.

【0052】本発明の帯電用部材を除電帯電に用いる場
合、たとえば、図8に示すような電子写真装置に適用す
ることができる。この装置では、電子写真感光体12の
周面上に一次帯電用コロナ帯電器14、像露光手段7、
現像手段8、転写帯電用コロナ帯電器9、クリーニング
手段10が配置されている。
When the charging member of the present invention is used for static elimination charging, it can be applied to, for example, an electrophotographic apparatus as shown in FIG. In this apparatus, a corona charger 14 for primary charging, an image exposure means 7,
A developing means 8, a corona charger 9 for transfer charging, and a cleaning means 10 are arranged.

【0053】電子写真感光体12上に接触配置されてい
る除電帯電用帯電部材16に電圧(たとえば交流ピーク
間電圧500〜2000V)を印加し電子写真感光体上
の電荷を除電することができる。
Electric charges on the electrophotographic photoreceptor 12 can be removed by applying a voltage (for example, AC peak-to-peak voltage of 500 to 2000 V) to the charging member 16 for charge removal that is placed in contact with the electrophotographic photoreceptor 12 .

【0054】本発明の帯電用部材は、機械的強度、化学
的安定性の点で劣化しやすい、有機光導電体を含有する
感光層を有する電子写真感光体に適用することにより、
その特性を顕著に発揮することができる。
The charging member of the present invention can be applied to an electrophotographic photoreceptor having a photosensitive layer containing an organic photoconductor, which easily deteriorates in terms of mechanical strength and chemical stability.
Its characteristics can be clearly demonstrated.

【0055】本発明における感光体に接触させる帯電用
部材の設置については特定の方法に限らず、帯電用部材
は固定方式、感光体と同方向または逆方向で回転等の移
動方式いずれの方式を用いることもできる。さらに帯電
用部材に感光体上の現像剤クリーニング装置として機能
させることも可能である。
[0055] The method of installing the charging member in contact with the photoreceptor in the present invention is not limited to a specific method; the charging member may be fixed or moved by rotating in the same direction or opposite direction to the photoreceptor. It can also be used. Furthermore, it is also possible to cause the charging member to function as a developer cleaning device on the photoreceptor.

【0056】本発明の直接帯電における帯電用部材への
印加電圧、印加方法に関しては、各々の電子写真装置の
仕様にもよるが瞬時に所望する電圧を印加する方式の他
にも感光体の保護の目的で段階的に印加電圧を上げてい
く方式、直流に交流を重畳させた形で印加の場合ならば
直流→交流または交流→直流の順序で電圧を印加する方
式をとることができる。
Regarding the voltage applied to the charging member and the application method in the direct charging of the present invention, it depends on the specifications of each electrophotographic device, but in addition to the method of instantly applying the desired voltage, there is also a method for protecting the photoreceptor. For this purpose, the applied voltage can be increased step by step, or if DC and AC are superimposed on each other, the voltage can be applied in the order of DC → AC or AC → DC.

【0057】本発明の帯電用部材を電子写真装置の一次
帯電に用いる場合、画像出力領域の電子写真感光体に対
して直流電圧と交流電圧を重畳することが必要である。
When the charging member of the present invention is used for primary charging of an electrophotographic apparatus, it is necessary to superimpose a DC voltage and an AC voltage on the electrophotographic photoreceptor in the image output area.

【0058】一次帯電を直流電圧のみで印加した場合、
均一に帯電することができない。
[0058] When primary charging is applied only with DC voltage,
Unable to charge uniformly.

【0059】転写帯電に用いる場合、直流電圧のみでも
直流電圧と交流電圧を重畳しても良い。
When used for transfer charging, a DC voltage alone or a DC voltage and an AC voltage may be superimposed.

【0060】除電帯電に用いる場合、交流電圧のみを印
加することが必要である。
[0060] When used for static electricity removal charging, it is necessary to apply only an alternating current voltage.

【0061】また、本発明においては、画像露光、現像
およびクリーニング等のプロセスは静電写真の分野に公
知の任意の方法を採用することができ、現像剤の種類な
ど特定のものに限定されるものではない。本発明の帯電
用部材は複写器だけでなく、レザープリンターやCRT
プリンター、電子写真式製版システムなどの電子写真応
用分野にも用いることができる。
Furthermore, in the present invention, processes such as image exposure, development, and cleaning can be performed using any method known in the field of electrostatic photography, and are limited to specific methods such as the type of developer. It's not a thing. The charging member of the present invention is applicable not only to copiers but also to laser printers and CRTs.
It can also be used in electrophotographic applications such as printers and electrophotographic plate making systems.

【0062】図9にドラム型感光体を用いた一般的な転
写式電子写真装置の概略構成を示した。図において、1
01は像担持体としてのドラム型感光体であり軸101
aを中心に矢印方向に所定の周速度で回転駆動される。 該感光体101はその回転過程で本発明の帯電手段10
2によりその周面に正または負の所定電位の均一帯電を
受け、次いで露光部103にて不図示の像露光手段によ
り光像露光L(スリット露光、レーザービーム走査露光
など)を受ける。これにより感光体周面に露光像に対応
した静電潜像が順次形成されていく。
FIG. 9 shows a schematic configuration of a general transfer type electrophotographic apparatus using a drum type photoreceptor. In the figure, 1
01 is a drum-type photoreceptor as an image carrier, and a shaft 101
It is rotated at a predetermined circumferential speed in the direction of the arrow around point a. The photoreceptor 101 is charged by the charging means 10 of the present invention during its rotation process.
2, its peripheral surface is uniformly charged to a predetermined positive or negative potential, and then subjected to optical image exposure L (slit exposure, laser beam scanning exposure, etc.) by an image exposure means (not shown) in the exposure section 103. As a result, electrostatic latent images corresponding to the exposed images are sequentially formed on the circumferential surface of the photoreceptor.

【0063】その静電潜像はついで現像手段104でト
ナー現像されたそのトナー現像が転写手段105により
不図示の給紙部から感光体101と転写手段105との
間に感光体101の回転と同期取りされて給送された転
写材Pの面に順次転写されていく。
The electrostatic latent image is then developed with toner by the developing means 104, and the toner image is transferred between the photoreceptor 101 and the transfer means 105 from a paper feed section (not shown) by the transfer means 105 due to the rotation of the photoreceptor 101. The images are sequentially transferred onto the surface of the transfer material P that is fed in synchronization.

【0064】像転写を受けた転写材Pは感光体面から分
離されて像定着手段8へ導入されて像定着を受けて複写
物(コピー)として機外へプリントアウトされる。
The transfer material P that has undergone the image transfer is separated from the photoreceptor surface and introduced into the image fixing means 8, where the image is fixed and printed out as a copy to the outside of the machine.

【0065】像転写後の感光体101の表面はクリーニ
ング手段106にて転写残りトナーの除去を受けて清浄
面化されて繰り返して像形成に使用される。
After the image has been transferred, the surface of the photoreceptor 101 is cleaned by a cleaning means 106 to remove residual toner and is used repeatedly for image formation.

【0066】感光体101の均一帯電手段102として
は本発明の帯電部材が使用されている。また転写装置1
05もコロナ転写手段が一般に広く使用されている。電
子写真装置として、上述の感光体や現像手段、クリーニ
ング手段などの構成要素のうち、複数のものを装置ユニ
ットとして一体に結合して構成し、このユニットを装置
本体に対して着脱自在に構成しても良い。たとえば、感
光体101とクリーニング手段106とを一体化してひ
とつの装置ユニットとし、装置本体のレールなどの案内
手段を用いて着脱自在の構成にしても良い。このとき、
上記の装置ユニットのほうに帯電手段および/または現
像手段を伴って構成しても良い。
As the uniform charging means 102 for the photoreceptor 101, the charging member of the present invention is used. Also, the transfer device 1
Corona transfer means for 05 is also generally widely used. An electrophotographic apparatus is constructed by combining a plurality of components such as the above-mentioned photoreceptor, developing means, and cleaning means into an apparatus unit, and this unit is configured to be detachable from the apparatus main body. It's okay. For example, the photoreceptor 101 and the cleaning means 106 may be integrated into one device unit, and configured to be detachable using a guide means such as a rail on the main body of the device. At this time,
The above device unit may be configured with a charging means and/or a developing means.

【0067】また、光像露光Lは、電子写真装置を複写
機やプリンターとして使用する場合には、原稿からの反
射光や透過光、あるいは、原稿を読取り信号化し、この
信号によりレーザビームの走査、発光ダイオードアレイ
の駆動、または液晶シャッターアレイの駆動などにより
行なわれる。
When the electrophotographic apparatus is used as a copying machine or a printer, the light image exposure L is performed using reflected light or transmitted light from a document, or by converting the document into a signal and scanning the laser beam using this signal. , driving a light emitting diode array, or driving a liquid crystal shutter array.

【0068】また、ファクシミリのプリンターとして使
用する場合には、光像露光Lは受信データをプリントす
るための露光になる。図10はこの場合の1例をブロッ
ク図で示したものである。
Furthermore, when used as a facsimile printer, the optical image exposure L is exposure for printing received data. FIG. 10 is a block diagram showing an example of this case.

【0069】コントローラ111は画像読取部110と
プリンター119を制御する。コントローラ111の全
体はCPU117により制御されている。画像読取部か
らの読取データは、送信回路113を通して相手局に送
信される。相手局から受けたデータは受信回路112を
通してプリンター119に送られる。画像メモリには所
定の画像データが記憶される。プリンタコントローラ1
18はプリンター119を制御している。114は電話
である。
The controller 111 controls the image reading section 110 and the printer 119. The entire controller 111 is controlled by a CPU 117. The read data from the image reading section is transmitted to the partner station through the transmitting circuit 113. Data received from the partner station is sent to the printer 119 through the receiving circuit 112. Predetermined image data is stored in the image memory. Printer controller 1
18 controls a printer 119. 114 is a telephone.

【0070】回線115から受信された画像(回線を介
して接続されたリモート端末からの画像情報)は、受信
回路112で復調された後、CPU117は画像情報の
復号処理を行ない順次画像メモリ116に格納される。 そして、少なくとも1ページの画像がメモリ116に格
納されると、そのページの画像記録を行なう。CPU1
17は、メモリ116より1ページの画像情報を読み出
しプリンタコントローラ118に復号化された1ページ
の画像情報を送出する。プリンタコントローラ118は
、CPU117からの1ページの画像情報を受け取ると
そのページの画像情報記録を行なうべく、プリンタ11
9を制御する。
The image received from the line 115 (image information from a remote terminal connected via the line) is demodulated by the receiving circuit 112, and then the CPU 117 decodes the image information and sequentially stores it in the image memory 116. Stored. When the image of at least one page is stored in the memory 116, the image of that page is recorded. CPU1
17 reads one page of image information from the memory 116 and sends the decoded one page of image information to the printer controller 118. Upon receiving one page of image information from the CPU 117, the printer controller 118 controls the printer 11 to record the image information of that page.
Control 9.

【0071】尚、CPU117は、プリンタ119によ
る記録中に、次のページの受信を行なっている。
Note that the CPU 117 is receiving the next page while the printer 119 is recording.

【0072】以上の様に、画像の受信と記録が行なわれ
る。
[0072] As described above, images are received and recorded.

【0073】以下に本発明の実施例を示す。Examples of the present invention are shown below.

【0074】[0074]

【実施例】実施例1 導電性支持体として、肉厚0.5mmで60φ×260
mmのアルミニウムシリンダーを用意した。
[Example] Example 1 As a conductive support, 60φ×260 with a wall thickness of 0.5 mm
A mm aluminum cylinder was prepared.

【0075】共重合ナイロン(商品名:CM8000、
東レ(株)製)4部およびタイプ8ナイロン(商品名:
ラッカマイド5003、大日本インキ(株)製)4部を
メタノール50部、n−ブタノール50部に溶解し、上
記支持体上に浸漬塗布して0.6μm厚の下引層を形成
した。
[0075] Copolymerized nylon (product name: CM8000,
Toray Industries, Inc.) Part 4 and Type 8 Nylon (Product name:
4 parts of Laccamide 5003 (manufactured by Dainippon Ink Co., Ltd.) was dissolved in 50 parts of methanol and 50 parts of n-butanol, and the solution was dip coated onto the above support to form a 0.6 μm thick subbing layer.

【0076】下記構造式のジスアゾ顔料を10部、10 parts of a disazo pigment having the following structural formula,

【0
077】
0
077]

【化1】 およびポリビニルブチラール樹脂(商品名:エスレック
BM2積水化学(株)製)10部を、シクロヘキサノン
120部と共にサンドミル装置で10時間分散した。分
散液にメチルエチルケトン30部を加えて上記下引層上
に塗布し、0.15μ厚の電荷発生層を形成した。
embedded image and 10 parts of polyvinyl butyral resin (trade name: S-LEC BM2 manufactured by Sekisui Chemical Co., Ltd.) were dispersed together with 120 parts of cyclohexanone in a sand mill for 10 hours. 30 parts of methyl ethyl ketone was added to the dispersion and coated on the undercoat layer to form a charge generation layer with a thickness of 0.15 μm.

【0078】重量平均分子量12万のポリカーボネート
Z樹脂(三菱瓦斯化学(株)製)10部を用意し、下記
構造式のヒドラゾン化合物
10 parts of polycarbonate Z resin (manufactured by Mitsubishi Gas Chemical Co., Ltd.) having a weight average molecular weight of 120,000 was prepared, and a hydrazone compound having the following structural formula was prepared.

【0079】[0079]

【化2】 10部と共にモノクロルベンゼン80部に溶解した。こ
れを上記電荷発生層上に塗布して、16μm厚の電荷輸
送層を形成し、電子写真感光体No.1を製造した。
embedded image 10 parts and 80 parts of monochlorobenzene were dissolved. This was applied onto the charge generation layer to form a charge transport layer with a thickness of 16 μm. 1 was manufactured.

【0080】次にクロロプレンゴム100重量部にテト
ラポット状ZnOウィスカー(長さ10μm)10重量
部を熔融混練し、中心にφ8×260mmのステンレス
軸を通してφ20×240mmになるように成型し、ロ
ーラー形状帯電用部材の導電性弾性層を設けた。
Next, 10 parts by weight of tetrapod-shaped ZnO whiskers (length 10 μm) were melt-kneaded with 100 parts by weight of chloroprene rubber, and a stainless steel shaft of φ8×260 mm was passed through the center and formed into a shape of φ20×240 mm. A conductive elastic layer of a charging member was provided.

【0081】この帯電用部材の導電性弾性層の体積抵抗
を、温度22℃、湿度60%の環境で測ると3×108
Ωcmである。
The volume resistivity of the conductive elastic layer of this charging member is 3×10 8 when measured in an environment with a temperature of 22° C. and a humidity of 60%.
It is Ωcm.

【0082】この帯電用部材を図6のように正現像方式
複写機PC−20(キヤノン製)一次コロナ帯電器の代
わりに取り付け、電子写真感光体と従動回転させ、一次
帯電電圧は直流電圧−750Vと交流ピーク間電圧15
00Vの重畳を行ない、電子写真感光体の暗電位と明電
位の電位測定、画像およびノイズを検討した。結果を表
1に示した。
As shown in FIG. 6, this charging member was attached in place of the primary corona charger of a normal development type copying machine PC-20 (manufactured by Canon), and rotated in accordance with the electrophotographic photoreceptor, so that the primary charging voltage was set to a DC voltage of - 750V and AC peak-to-peak voltage 15
00V was superimposed, and the dark potential and bright potential of the electrophotographic photoreceptor were measured, and the image and noise were examined. The results are shown in Table 1.

【0083】実施例2 実施例1で使用したZnOウィスカーの代わりにテトラ
ポット状ZnOウィスカー(長さ30μm)を8重量部
使用した以外は実施例1と同様に帯電用部材を成型した
。この帯電用部材の導電性部材の体積抵抗を温度22℃
、湿度60%の環境で測ると6×108Ω・cmである
。実施例1と同様に電位測定、画像およびノイズを検討
した。
Example 2 A charging member was molded in the same manner as in Example 1, except that 8 parts by weight of tetrapod-shaped ZnO whiskers (length 30 μm) were used instead of the ZnO whiskers used in Example 1. The volume resistance of the conductive member of this charging member is determined at a temperature of 22°C.
, when measured in an environment with 60% humidity, it is 6 x 10 8 Ω·cm. Potential measurement, images, and noise were examined in the same manner as in Example 1.

【0084】実施例3 実施例1で使用したテトラポット状ZnOウィスカー(
長さ10μm)を15重量部使用した以外は実施例1と
同様にローラー形状帯電用部材の導電性弾性層を設けた
。この帯電用部材の導電性弾性層の体積抵抗を温度22
℃、湿度60%の環境で測ると6×106Ω・cmであ
る。
Example 3 The tetrapod-shaped ZnO whiskers used in Example 1 (
A conductive elastic layer of a roller-shaped charging member was provided in the same manner as in Example 1, except that 15 parts by weight of a material having a length of 10 μm was used. The volume resistance of the conductive elastic layer of this charging member is determined at a temperature of 22
When measured in an environment of ℃ and 60% humidity, it is 6 x 106 Ωcm.

【0085】次にN−メトキシメチル化ナイロン−6(
メトキシメチル化率30%)10重量部をメタノール9
0重量部に溶解し、上記導電性弾性層の上に浸漬塗工し
、乾燥後、膜厚を200μmとし、表面抵抗層を設けた
。アルミシート上に同様に表面抵抗層を設け、体積抵抗
を測定した。表面抵抗層の体積抵抗を温度22℃、湿度
60%の環境で測ると5×109Ω・cmである。この
帯電用部材は導電性支持体上に導電性弾性層と表面抵抗
層を設けた。実施例1と同様に電位測定、画像およびノ
イズを検討した。
Next, N-methoxymethylated nylon-6 (
10 parts by weight of methoxymethylation rate 30%) and 9 parts by weight of methanol
It was dissolved in 0 parts by weight and applied by dip coating on the conductive elastic layer, and after drying, the film thickness was set to 200 μm, and a surface resistance layer was provided. A surface resistance layer was similarly provided on the aluminum sheet, and the volume resistance was measured. The volume resistivity of the surface resistance layer is 5×10 9 Ω·cm when measured in an environment with a temperature of 22° C. and a humidity of 60%. This charging member had a conductive elastic layer and a surface resistance layer provided on a conductive support. Potential measurement, images, and noise were examined in the same manner as in Example 1.

【0086】実施例4 実施例1で使用したテトラポット状ZnOウィスカー(
長さ10μm)を15重量部使用した以外は実施例1と
同様にローラー形状帯電用部材の導電性弾性層を設けた
。この帯電用部材の導電性弾性層の体積抵抗を温度22
℃、湿度60%の環境で測ると6×106Ω・cmであ
る。
Example 4 The tetrapod-shaped ZnO whiskers used in Example 1 (
A conductive elastic layer of a roller-shaped charging member was provided in the same manner as in Example 1, except that 15 parts by weight of a material having a length of 10 μm was used. The volume resistance of the conductive elastic layer of this charging member is determined at a temperature of 22
When measured in an environment of ℃ and 60% humidity, it is 6 x 106 Ωcm.

【0087】次に酸化インジウム粉体(同和ケミカル製
)1重量部、ニトロセルロース19重量部をメタノール
70重量部に混合し、ボールミル分散し、上記導電性弾
性層の上に浸漬塗工し、乾燥後、膜厚を200μmとし
、表面抵抗層を設けた。アルミシート上に同様に表面抵
抗層を設け、体積抵抗を測定した。表面抵抗層の体積抵
抗を温度22℃、湿度60%の環境で測ると5×108
Ω・cmである。この帯電用部材は導電性支持体上に導
電性弾性層と表面抵抗層を設けた。実施例1と同様に電
位測定、画像およびノイズを検討した。
Next, 1 part by weight of indium oxide powder (manufactured by Dowa Chemical Co., Ltd.) and 19 parts by weight of nitrocellulose were mixed with 70 parts by weight of methanol, dispersed in a ball mill, applied by dip coating onto the conductive elastic layer, and dried. After that, a surface resistance layer was provided with a film thickness of 200 μm. A surface resistance layer was similarly provided on the aluminum sheet, and the volume resistance was measured. The volume resistance of the surface resistance layer is 5 x 108 when measured at a temperature of 22°C and a humidity of 60%.
It is Ωcm. This charging member had a conductive elastic layer and a surface resistance layer provided on a conductive support. Potential measurement, images, and noise were examined in the same manner as in Example 1.

【0088】比較例1 実施例1で使用したZnOウィスカーの代わりに導電性
カーボン(コンダクテックスC−900、コロンビアカ
ーボン製)を10重量部使用した以外は実施例1と同様
に帯電用部材を成型した。この帯電用部材の導電性弾性
層の体積抵抗を温度22℃、湿度60%の環境で測ると
6×1010Ω・cmである。実施例1と同様に電位測
定、画像およびノイズを検討した。
Comparative Example 1 A charging member was molded in the same manner as in Example 1, except that 10 parts by weight of conductive carbon (Conductex C-900, manufactured by Columbia Carbon) was used instead of the ZnO whiskers used in Example 1. did. The volume resistivity of the conductive elastic layer of this charging member is 6×10 10 Ω·cm when measured in an environment of a temperature of 22° C. and a humidity of 60%. Potential measurement, images, and noise were examined in the same manner as in Example 1.

【0089】比較例2 実施例1で使用したZnOウィスカーの代わりに導電性
カーボン(コンダクテックスC−900、コロンビアン
カーボン製)を20重量部使用した以外は実施例1と同
様に帯電用部材を成型した。この帯電用部材の導電性弾
性層の体積抵抗を温度22℃、湿度60%の環境で測る
と3×106Ω・cmである。実施例1と同様に電位測
定、画像およびノイズを検討した。
Comparative Example 2 A charging member was used in the same manner as in Example 1, except that 20 parts by weight of conductive carbon (Conductex C-900, manufactured by Columbia Carbon) was used instead of the ZnO whiskers used in Example 1. Molded. The volume resistivity of the conductive elastic layer of this charging member is 3×10 6 Ω·cm when measured in an environment of a temperature of 22° C. and a humidity of 60%. Potential measurement, images, and noise were examined in the same manner as in Example 1.

【0090】比較例3 比較例2と同様に帯電用部材の導電性弾性層を成型した
。次にN−メトキシメチル化ナイロン−6(メトキシメ
チル化率30%)10重量部をメタノール90重量部に
溶解し、上記導電性弾性層の上に浸漬塗工し、乾燥後、
膜厚を200μmとし、表面抵抗層を設けた。アルミシ
ート上に同様に表面抵抗層を設け、体積抵抗を測定した
。表面抵抗層の体積抵抗を温度22℃、湿度60%の環
境で測ると5×109Ω・cmである。この帯電用部材
は導電性支持体上に導電性弾性層と表面抵抗層を設けた
。実施例1と同様に電位測定、画像およびノイズを検討
した。
Comparative Example 3 A conductive elastic layer of a charging member was molded in the same manner as in Comparative Example 2. Next, 10 parts by weight of N-methoxymethylated nylon-6 (methoxymethylation rate 30%) was dissolved in 90 parts by weight of methanol, and the solution was dip coated onto the conductive elastic layer, and after drying,
A surface resistance layer was provided with a film thickness of 200 μm. A surface resistance layer was similarly provided on the aluminum sheet, and the volume resistance was measured. The volume resistivity of the surface resistance layer is 5×10 9 Ω·cm when measured in an environment with a temperature of 22° C. and a humidity of 60%. This charging member had a conductive elastic layer and a surface resistance layer provided on a conductive support. Potential measurement, images, and noise were examined in the same manner as in Example 1.

【0091】比較例4 比較例2と同様に帯電用部材の導電性弾性層を成型した
。次に酸化インジウム粉体(同和ケミカル製)1重量部
、ニトロセルロース19重量部をメタノール70重量部
に混合し、ボールミル分散し、上記導電性弾性層の上に
浸漬塗工し、乾燥後、膜厚を200μmとし、表面抵抗
層を設けた。アルミシート上に同様に表面抵抗層を設け
、体積抵抗を測定した。表面抵抗層の体積抵抗を温度2
2℃、湿度60%の環境で測ると6×108Ω・cmで
ある。この帯電用部材は導電性支持体上に導電性弾性層
と表面抵抗層を設けた。実施例1と同様に電位測定、画
像およびノイズを検討した。
Comparative Example 4 A conductive elastic layer of a charging member was molded in the same manner as in Comparative Example 2. Next, 1 part by weight of indium oxide powder (manufactured by Dowa Chemical Co., Ltd.) and 19 parts by weight of nitrocellulose were mixed with 70 parts by weight of methanol, dispersed in a ball mill, and dip coated onto the conductive elastic layer. After drying, the film was coated. The thickness was 200 μm, and a surface resistance layer was provided. A surface resistance layer was similarly provided on the aluminum sheet, and the volume resistance was measured. The volume resistance of the surface resistance layer is determined by temperature 2.
When measured in an environment of 2°C and 60% humidity, it is 6 x 108 Ωcm. This charging member had a conductive elastic layer and a surface resistance layer provided on a conductive support. Potential measurement, images, and noise were examined in the same manner as in Example 1.

【0092】実施例1,2,3,4と比較例1,2,3
,4を比較してわかるように本発明では帯電部材の振動
ノイズを防止し、画像欠陥の発生を防止できる。さらに
帯電部材による感光体の帯電特性を向上させる。
Examples 1, 2, 3, 4 and comparative examples 1, 2, 3
, 4, the present invention can prevent the vibration noise of the charging member and prevent the occurrence of image defects. Furthermore, the charging characteristics of the photoreceptor by the charging member are improved.

【0093】また、単層としても帯電部材の従来の問題
点を解決している。つぎに転写帯電器としての特性を調
べた。
[0093] Furthermore, even as a single layer, the problems of conventional charging members are solved. Next, we investigated its characteristics as a transfer charger.

【0094】実施例5 実施例1と同様にして感光体を作製した。スチレン−ブ
タジエンサーモプラスチックエラストマー(ソルプレン
T、日本エラストマー製)100重量部、テトラポット
状ZnOウィスカー(長さ10μm)10重量部を熔融
混練し、中心にφ8×260mmのステンレス軸を通し
てφ30×240mmになるように成型し、ローラー形
状転写帯電用部材の導電性弾性層を設けた。この転写帯
電用部材の導電性弾性層の体積抵抗を温度22℃、湿度
60%の環境で測ると6×106Ω・cmである。
Example 5 A photoreceptor was produced in the same manner as in Example 1. 100 parts by weight of styrene-butadiene thermoplastic elastomer (Solprene T, manufactured by Nippon Elastomers) and 10 parts by weight of tetrapod-shaped ZnO whiskers (length 10 μm) are melted and kneaded, and passed through a stainless steel shaft of φ8 x 260 mm into the center to form a diameter of φ30 x 240 mm. A conductive elastic layer of a roller shape transfer charging member was provided. The volume resistivity of the conductive elastic layer of this transfer charging member is 6×10 6 Ω·cm when measured in an environment of a temperature of 22° C. and a humidity of 60%.

【0095】この転写帯電部材を図7のように正現像方
式複写機PC−20(キヤノン製)の転写コロナ帯電器
の代わりに取り付け、転写帯電は直流500Vを印加し
、画像およびノイズを検討した。結果を表2に示す。
This transfer charging member was installed in place of the transfer corona charger of a normal development type copying machine PC-20 (manufactured by Canon) as shown in FIG. 7, and 500 V DC was applied for transfer charging, and images and noise were examined. . The results are shown in Table 2.

【0096】実施例6 実施例5で使用したZnOウィスカーの代わりにテトラ
ポットZnOウィスカー(長さ30μm)を8重量部使
用した以外は実施例5と同様に帯電用部材を成型した。 この転写帯電用部材の導電性部材の体積抵抗を温度22
℃、湿度60%の環境で測ると9×108Ω・cmであ
る。実施例5と同様に画像およびノイズを検討した。
Example 6 A charging member was molded in the same manner as in Example 5, except that 8 parts by weight of tetrapod ZnO whiskers (length 30 μm) were used instead of the ZnO whiskers used in Example 5. The volume resistance of the conductive member of this transfer charging member is set at a temperature of 22
When measured in an environment of ℃ and 60% humidity, it is 9×10 8 Ω·cm. Images and noise were examined in the same manner as in Example 5.

【0097】実施例7 実施例5で使用したテトラポット状ZnOウィスカー(
長さ10μm)を15重量部使用した以外は実施例5と
同様にローラー形状転写帯電用部材の導電性弾性層を設
けた。この転写帯電用部材の導電性弾性層の体積抵抗を
温度22℃、湿度60%の環境で測ると7×106Ω・
cmである。
Example 7 The tetrapod-shaped ZnO whiskers used in Example 5 (
A conductive elastic layer of a roller shape transfer charging member was provided in the same manner as in Example 5, except that 15 parts by weight of the material (length: 10 μm) was used. The volume resistivity of the conductive elastic layer of this transfer charging member was measured at 22°C and 60% humidity, and was 7 x 106Ω.
cm.

【0098】次にN−メトキシメチル化ナイロン−6(
メトキシメチル化率30%)10重量部をメタノール9
0重量部に溶解し、上記導電性弾性層の上に浸漬塗工し
、乾燥後、膜厚を200μmとし、表面抵抗層を設けた
。アルミシート上に同様に表面抵抗層を設け、体積抵抗
を測定した。表面抵抗層の体積抵抗を温度22℃、湿度
60%の環境で測ると5×109Ω・cmである。この
転写帯電用部材は導電性支持体上に導電性弾性層と表面
抵抗層を設けた。実施例5と同様に画像およびノイズを
検討した。
Next, N-methoxymethylated nylon-6 (
10 parts by weight of methoxymethylation rate 30%) and 9 parts by weight of methanol
It was dissolved in 0 parts by weight and applied by dip coating on the conductive elastic layer, and after drying, the film thickness was set to 200 μm, and a surface resistance layer was provided. A surface resistance layer was similarly provided on the aluminum sheet, and the volume resistance was measured. The volume resistivity of the surface resistance layer is 5×10 9 Ω·cm when measured in an environment with a temperature of 22° C. and a humidity of 60%. This transfer charging member had a conductive elastic layer and a surface resistance layer provided on a conductive support. Images and noise were examined in the same manner as in Example 5.

【0099】実施例8 実施例5で使用したテトラポット状ZnOウィスカー(
長さ10μm)を15重量部使用した以外は実施例5と
同様にローラー形状転写帯電用部材の導電性弾性層を設
けた。この転写帯電用部材の導電性弾性層の体積抵抗を
温度22℃、湿度60%の環境で測ると7×106Ω・
cmである。
Example 8 Tetrapot-shaped ZnO whiskers used in Example 5 (
A conductive elastic layer of a roller shape transfer charging member was provided in the same manner as in Example 5, except that 15 parts by weight of the material (length: 10 μm) was used. The volume resistivity of the conductive elastic layer of this transfer charging member was measured at 22°C and 60% humidity, and was 7 x 106Ω.
cm.

【0100】次に酸化インジウム粉体(同和ケミカル製
)1重量部、ニトロセルロース19重量部をメタノール
70重量部に混合し、ボールミル分散し、上記導電性弾
性層の上に浸漬塗工し、乾燥後、膜厚を200μmとし
、表面抵抗層を設けた。アルミシート上に同様に表面抵
抗層を設け、体積抵抗を測定した。表面抵抗層の体積抵
抗を温度22℃、湿度60%の環境で測ると6×108
Ω・cmである。この転写帯電用部材は導電性支持体上
に導電性弾性層と表面抵抗層を設けた。実施例5と同様
に画像およびノイズを検討した。
Next, 1 part by weight of indium oxide powder (manufactured by Dowa Chemical Co., Ltd.) and 19 parts by weight of nitrocellulose were mixed with 70 parts by weight of methanol, dispersed in a ball mill, applied by dip coating onto the conductive elastic layer, and dried. After that, a surface resistance layer was provided with a film thickness of 200 μm. A surface resistance layer was similarly provided on the aluminum sheet, and the volume resistance was measured. The volume resistance of the surface resistance layer is 6 x 108 when measured at a temperature of 22°C and a humidity of 60%.
It is Ωcm. This transfer charging member had a conductive elastic layer and a surface resistance layer provided on a conductive support. Images and noise were examined in the same manner as in Example 5.

【0101】比較例5 実施例5で使用したZnOウィスカーの代わりに導電性
カーボン(コンダクテックスC−900、コロンビアン
カーボン製)を10重量部使用した以外は実施例5と同
様に転写帯電用部材を成型した。この転写帯電用部材の
導電性弾性層の体積抵抗を温度22℃、湿度60%の環
境で測ると8×1010Ω・cmである。実施例5と同
様に画像およびノイズを検討した。
Comparative Example 5 A transfer charging member was prepared in the same manner as in Example 5, except that 10 parts by weight of conductive carbon (Conductex C-900, manufactured by Columbia Carbon) was used instead of the ZnO whiskers used in Example 5. was molded. The volume resistivity of the conductive elastic layer of this transfer charging member is 8×10 10 Ω·cm when measured in an environment of a temperature of 22° C. and a humidity of 60%. Images and noise were examined in the same manner as in Example 5.

【0102】比較例6 実施例5で使用したZnOウィスカーの代わりに導電性
カーボン(コンダクテックスC−900、コロンビアン
カーボン製)を20重量部使用した以外は実施例5と同
様に転写帯電用部材を成型した。この転写帯電用部材の
導電性弾性層の体積抵抗を温度22℃、湿度60%の環
境で測ると5×106Ω・cmである。実施例5と同様
に画像およびノイズを検討した。
Comparative Example 6 A transfer charging member was prepared in the same manner as in Example 5, except that 20 parts by weight of conductive carbon (Conductex C-900, manufactured by Columbia Carbon) was used instead of the ZnO whiskers used in Example 5. was molded. The volume resistivity of the conductive elastic layer of this transfer charging member is 5×10 6 Ω·cm when measured in an environment of a temperature of 22° C. and a humidity of 60%. Images and noise were examined in the same manner as in Example 5.

【0103】比較例7 比較例2と同様に転写帯電用部材の導電性弾性層を成型
した。次にN−メトキシメチル化ナイロン−6(メトキ
シメチル化率30%)10重量部をメタノール90重量
部に溶解し、上記導電性弾性層の上に浸漬塗工し、乾燥
後、膜厚を200μmとし、表面抵抗層を設けた。アル
ミシート上に同様に表面抵抗層を設け、体積抵抗を測定
した。表面抵抗層の体積抵抗を温度22℃、湿度60%
の環境で測ると5×109Ω・cmである。この転写帯
電用部材は導電性支持体上に導電性弾性層と表面抵抗層
を設けた。実施例5と同様に画像およびノイズを検討し
た。
Comparative Example 7 A conductive elastic layer of a transfer charging member was molded in the same manner as in Comparative Example 2. Next, 10 parts by weight of N-methoxymethylated nylon-6 (methoxymethylation rate: 30%) was dissolved in 90 parts by weight of methanol, and the solution was dip-coated onto the conductive elastic layer, and after drying, the film thickness was reduced to 200 μm. A surface resistance layer was provided. A surface resistance layer was similarly provided on the aluminum sheet, and the volume resistance was measured. The volume resistance of the surface resistance layer is measured at a temperature of 22°C and a humidity of 60%.
When measured in this environment, it is 5×109Ω・cm. This transfer charging member had a conductive elastic layer and a surface resistance layer provided on a conductive support. Images and noise were examined in the same manner as in Example 5.

【0104】比較例8 比較例2と同様に転写帯電用部材の導電性弾性層を成型
した。次に酸化インジウム粉体(同和ケミカル製)1重
量部、ニトロセルロース19重量部をメタノール70重
量部に混合し、ボールミル分散し、上記導電性弾性層の
上に浸漬塗工し、乾燥後、膜厚を200μmとし、表面
抵抗層を設けた。アルミシート上に同様に表面抵抗層を
設け、体積抵抗を測定した。表面抵抗層の体積抵抗を温
度22℃、湿度60%の環境で測ると6×108Ω・c
mである。この転写帯電用部材は導電性支持体上に導電
性弾性層と表面抵抗層を設けた。実施例5と同様に画像
およびノイズを検討した。
Comparative Example 8 A conductive elastic layer of a transfer charging member was molded in the same manner as in Comparative Example 2. Next, 1 part by weight of indium oxide powder (manufactured by Dowa Chemical Co., Ltd.) and 19 parts by weight of nitrocellulose were mixed with 70 parts by weight of methanol, dispersed in a ball mill, and dip coated onto the conductive elastic layer. After drying, the film was coated. The thickness was 200 μm, and a surface resistance layer was provided. A surface resistance layer was similarly provided on the aluminum sheet, and the volume resistance was measured. When the volume resistance of the surface resistance layer is measured at a temperature of 22℃ and a humidity of 60%, it is 6 x 108Ω・c.
It is m. This transfer charging member had a conductive elastic layer and a surface resistance layer provided on a conductive support. Images and noise were examined in the same manner as in Example 5.

【0105】実施例5,6,7,8と比較例5,6,7
,8を比較してわかるように本発明では帯電部材の振動
ノイズを防止し、画像欠陥の発生を防止できる。さらに
転写帯電部材による転写特性を向上させる。
[0105] Examples 5, 6, 7, 8 and comparative examples 5, 6, 7
, 8, the present invention can prevent the vibration noise of the charging member and prevent the occurrence of image defects. Furthermore, the transfer characteristics by the transfer charging member are improved.

【0106】また、単層としても転写帯電部材の従来の
問題点を解決している。つぎに除電帯電器としての特性
を調べた。
[0106] Furthermore, even as a single layer, the problems of conventional transfer charging members are solved. Next, we investigated its characteristics as a static eliminator.

【0107】実施例9 実施例1と同様にして感光体を作製した。クロロプレン
ゴム100重量部、テトラポット状ZnOウィスカー(
長さ10μm)を10重量部熔融混練し、2mm×26
0mmのステンレス板の上に自由長10mm×240m
mになるように成型し、ブレード形状除電帯電用部材の
導電性弾性層を設けた。
Example 9 A photoreceptor was produced in the same manner as in Example 1. 100 parts by weight of chloroprene rubber, tetrapod-shaped ZnO whiskers (
(length 10 μm) was melted and kneaded to form a 2 mm x 26
Free length 10mm x 240m on a 0mm stainless steel plate
m, and a conductive elastic layer of a blade-shaped static elimination/charging member was provided.

【0108】この除電帯電用部材のの導電性弾性層の体
積抵抗を温度22℃、湿度60%の環境で測ると4×1
08Ω・cmである。
[0108] When the volume resistivity of the conductive elastic layer of this charge eliminating static charge member is measured in an environment with a temperature of 22°C and a humidity of 60%, it is 4 × 1.
08Ω·cm.

【0109】この除電帯電用部材を図8のように正現像
方式複写機PC−20(キヤノン製)の前露光除電器の
代わりに取り付け、除電帯電は交流ピーク間電圧100
0Vを印加し、残留電位測定、画像およびノイズを検討
した。結果を表3に示す。
[0109] As shown in Fig. 8, this charge-eliminating member was installed in place of the pre-exposure charge eliminator of the normal development type copying machine PC-20 (manufactured by Canon), and the charge-eliminating charge was applied at an AC peak-to-peak voltage of 100
0V was applied and residual potential measurements, images and noise were examined. The results are shown in Table 3.

【0110】実施例10 実施例9で使用したZnOウィスカーの代わりにテトラ
ポット状ZnOウィスカー(長さ30μm)を8重量部
使用した以外は実施例9と同様に除電帯電用部材を成型
した。この除電帯電用部材の導電性弾性層の体積抵抗を
温度22℃、湿度60%の環境で測ると7×108Ω・
cmである。実施例9と同様に残留電位測定、画像およ
びノイズを検討した。
Example 10 An antistatic charging member was molded in the same manner as in Example 9, except that 8 parts by weight of tetrapod-shaped ZnO whiskers (length 30 μm) were used instead of the ZnO whiskers used in Example 9. The volume resistivity of the conductive elastic layer of this static electricity removal charging member was measured at 22°C and 60% humidity, and was 7 x 108Ω.
cm. Residual potential measurement, images, and noise were examined in the same manner as in Example 9.

【0111】実施例11 実施例9で使用したテトラポット状ZnOウィスカー(
長さ10μm)を15重量部使用した以外は実施例9と
同様にブレード形状除電帯電用部材の導電性弾性層を設
けた。この除電帯電用部材の導電性弾性層の体積抵抗を
温度22℃、湿度60%の環境で測ると7×106Ω・
cmである。
Example 11 Tetrapod-shaped ZnO whiskers used in Example 9 (
The conductive elastic layer of the blade-shaped static elimination/charging member was provided in the same manner as in Example 9, except that 15 parts by weight of the material (length: 10 μm) was used. The volume resistivity of the conductive elastic layer of this static electricity removal charging member was measured at 22°C and 60% humidity and was 7 x 106Ω.
cm.

【0112】次にN−メトキシメチル化ナイロン−6(
メトキシメチル化率30%)10重量部をメタノール9
0重量部に溶解し、上記導電性弾性層の上に浸漬塗工し
、乾燥後、膜厚を200μmとし、表面抵抗層を設けた
。アルミシート上に同様に表面抵抗層を設け、体積抵抗
を測定した。表面抵抗層の体積抵抗を温度22℃、湿度
60%の環境で測ると5×109Ω・cmである。この
除電帯電用部材は導電性支持体上に導電性弾性層と表面
抵抗層を設けた。実施例9と同様に残留電位測定、画像
およびノイズを検討した。
Next, N-methoxymethylated nylon-6 (
10 parts by weight of methoxymethylation rate 30%) and 9 parts by weight of methanol
It was dissolved in 0 parts by weight and applied by dip coating on the conductive elastic layer, and after drying, the film thickness was set to 200 μm, and a surface resistance layer was provided. A surface resistance layer was similarly provided on the aluminum sheet, and the volume resistance was measured. The volume resistivity of the surface resistance layer is 5×10 9 Ω·cm when measured in an environment with a temperature of 22° C. and a humidity of 60%. This neutralizing and charging member had a conductive elastic layer and a surface resistance layer provided on a conductive support. Residual potential measurement, images, and noise were examined in the same manner as in Example 9.

【0113】実施例12 実施例9で使用したテトラポット状ZnOウィスカー(
長さ10μm)を15重量部使用した以外は実施例9と
同様にブレード形状除電帯電用部材の導電性弾性層を設
けた。この除電帯電用部材の導電性弾性層の体積抵抗を
温度22℃、湿度60%の環境で測ると7×106Ω・
cmである。
Example 12 Tetrapod-shaped ZnO whiskers used in Example 9 (
The conductive elastic layer of the blade-shaped static elimination/charging member was provided in the same manner as in Example 9, except that 15 parts by weight of the material (length: 10 μm) was used. The volume resistivity of the conductive elastic layer of this static electricity removal charging member was measured at 22°C and 60% humidity and was 7 x 106Ω.
cm.

【0114】次に酸化インジウム粉体(同和ケミカル製
)1重量部、ニトロセルロース19重量部をメタノール
70重量部に混合し、ボールミル分散し、上記導電性弾
性層の上に浸漬塗工し、乾燥後、膜厚を200μmとし
、表面抵抗層を設けた。アルミシート上に同様に表面抵
抗層を設け、体積抵抗を測定した。表面抵抗層の体積抵
抗を温度22℃、湿度60%の環境で測ると6×108
Ω・cmである。この除電帯電用部材は導電性支持体上
に導電性弾性層と表面抵抗層を設けた。実施例9と同様
に残留電位測定、画像およびノイズを検討した。
Next, 1 part by weight of indium oxide powder (manufactured by Dowa Chemical Co., Ltd.) and 19 parts by weight of nitrocellulose were mixed with 70 parts by weight of methanol, dispersed in a ball mill, applied by dip coating onto the conductive elastic layer, and dried. After that, a surface resistance layer was provided with a film thickness of 200 μm. A surface resistance layer was similarly provided on the aluminum sheet, and the volume resistance was measured. The volume resistance of the surface resistance layer is 6 x 108 when measured at a temperature of 22°C and a humidity of 60%.
It is Ωcm. This neutralizing and charging member had a conductive elastic layer and a surface resistance layer provided on a conductive support. Residual potential measurement, images, and noise were examined in the same manner as in Example 9.

【0115】比較例9 実施例9で使用したZnOウィスカーの代わりに導電性
カーボン(コンダクテックスC−900、コロンビアカ
ーボン製)を10重量部使用した以外は実施例9と同様
に除電帯電用部材を成型した。この除電帯電用部材の導
電性弾性層の体積抵抗を温度22℃、湿度60%の環境
で測ると7×1010Ω・cmである。実施例9と同様
に残留電位測定、画像およびノイズを検討した。
Comparative Example 9 A static eliminating charging member was used in the same manner as in Example 9, except that 10 parts by weight of conductive carbon (Conductex C-900, manufactured by Columbia Carbon) was used instead of the ZnO whiskers used in Example 9. Molded. The volume resistivity of the electrically conductive elastic layer of this charge-eliminating member is 7×10 10 Ω·cm when measured in an environment of a temperature of 22° C. and a humidity of 60%. Residual potential measurement, images, and noise were examined in the same manner as in Example 9.

【0116】比較例10 実施例9で使用したZnOウィスカーの代わりに導電性
カーボン(コンダクテックスC−900、コロンビアン
カーボン製)を20重量部使用した以外は実施例9と同
様に除電帯電用部材を成型した。この除電帯電用部材の
導電性弾性層の体積抵抗を温度22℃、湿度60%の環
境で測ると5×106Ω・cmである。実施例9と同様
に残留電位測定、画像およびノイズを検討した。
Comparative Example 10 A static eliminating charging member was prepared in the same manner as in Example 9, except that 20 parts by weight of conductive carbon (Conductex C-900, manufactured by Columbia Carbon) was used instead of the ZnO whiskers used in Example 9. was molded. The volume resistivity of the electrically conductive elastic layer of this neutralizing and charging member is 5×10 6 Ω·cm when measured in an environment with a temperature of 22° C. and a humidity of 60%. Residual potential measurement, images, and noise were examined in the same manner as in Example 9.

【0117】比較例11 比較例10と同様に除電帯電用部材の導電性弾性層を成
型した。次にN−メトキシメチル化ナイロン−6(メト
キシメチル化率30%)10重量部をメタノール90重
量部に溶解し、上記導電性弾性層の上に浸漬塗工し、乾
燥後、膜厚を200μmとし、表面抵抗層を設けた。ア
ルミシート上に同様に表面抵抗層を設け、体積抵抗を測
定した。表面抵抗層の体積抵抗を温度22℃、湿度60
%の環境で測ると5×109Ω・cmである。この除電
帯電用部材は導電性支持体上に導電性弾性層と表面抵抗
層を設けた。実施例9と同様に残留電位測定、画像およ
びノイズを検討した。
Comparative Example 11 In the same manner as in Comparative Example 10, a conductive elastic layer of a static elimination/charging member was molded. Next, 10 parts by weight of N-methoxymethylated nylon-6 (methoxymethylation rate: 30%) was dissolved in 90 parts by weight of methanol, and the solution was dip-coated onto the conductive elastic layer, and after drying, the film thickness was reduced to 200 μm. A surface resistance layer was provided. A surface resistance layer was similarly provided on the aluminum sheet, and the volume resistance was measured. The volume resistance of the surface resistance layer was measured at a temperature of 22°C and a humidity of 60°C.
% environment, it is 5×109Ω・cm. This neutralizing and charging member had a conductive elastic layer and a surface resistance layer provided on a conductive support. Residual potential measurement, images, and noise were examined in the same manner as in Example 9.

【0118】比較例12 比較例10と同様に除電帯電用部材の導電性弾性層を成
型した。次に酸化インジウム粉体(同和ケミカル製)1
重量部、ニトロセルロース19重量部をメタノール70
重量部に混合し、ボールミル分散し、上記導電性弾性層
の上に浸漬塗工し、乾燥後、膜厚を200μmとし、表
面抵抗層を設けた。アルミシート上に同様に表面抵抗層
を設け、体積抵抗を測定した。表面抵抗層の体積抵抗を
温度22℃、湿度60%の環境で測ると6×108Ω・
cmである。この除電帯電用部材は導電性支持体上に導
電性弾性層と表面抵抗層を設けた。実施例9と同様に残
留電位測定、画像およびノイズを検討した。
Comparative Example 12 In the same manner as in Comparative Example 10, a conductive elastic layer of a static elimination/charging member was molded. Next, indium oxide powder (manufactured by Dowa Chemical) 1
parts by weight, 19 parts by weight of nitrocellulose and 70 parts by weight of methanol.
The mixture was mixed in parts by weight, dispersed in a ball mill, and dip coated on the conductive elastic layer. After drying, the film thickness was set to 200 μm, and a surface resistance layer was provided. A surface resistance layer was similarly provided on the aluminum sheet, and the volume resistance was measured. When the volume resistance of the surface resistance layer is measured at a temperature of 22°C and a humidity of 60%, it is 6 x 108Ω.
cm. This neutralizing and charging member had a conductive elastic layer and a surface resistance layer provided on a conductive support. Residual potential measurement, images, and noise were examined in the same manner as in Example 9.

【0119】実施例9,10,11,12と比較例9,
10,11,12を比較してわかるように本発明では除
電帯電部材の振動ノイズを防止し、画像欠陥の発生を防
止できる。さらに除電帯電部材による除電電位特性を向
上させる。また、単層としても除電帯電部材の従来の問
題点を解決している。
[0119] Examples 9, 10, 11, 12 and comparative example 9,
As can be seen from the comparison of Nos. 10, 11, and 12, the present invention can prevent vibration noise of the static eliminating/charging member and prevent image defects from occurring. Furthermore, the static elimination potential characteristics of the static elimination charging member are improved. In addition, even as a single layer, the problems of conventional static eliminating charging members are solved.

【0120】[0120]

【表1】[Table 1]

【0121】[0121]

【表2】[Table 2]

【0122】[0122]

【表3】 抵抗測定方法。[Table 3] How to measure resistance.

【0123】導電性弾性層の抵抗は図9に示す方法で測
定した:すなわち帯電部材を導電性の枠型にはさみ、芯
金と枠型に直流電圧1kVを印加して抵抗を測定し、堆
積抵抗値を求める。
The resistance of the conductive elastic layer was measured by the method shown in FIG. 9: the charging member was sandwiched between conductive frames, the resistance was measured by applying a DC voltage of 1 kV to the core metal and the frame, and Find the resistance value.

【0124】図9中で、201は帯電部材の芯金、20
2は帯電部材の導電性弾性層、203は枠型、204は
導線、205は抵抗計である。
In FIG. 9, 201 is a core metal of a charging member;
2 is a conductive elastic layer of the charging member, 203 is a frame, 204 is a conductive wire, and 205 is a resistance meter.

【0125】樹脂層の体積抵抗は、アルミニウムシート
上に樹脂層材料を設け、ヒューレット・パッカード社製
抵抗計(16008A)にて、直流電圧1kVを印加し
て、体積抵抗値を求める。
The volume resistance of the resin layer is determined by providing the resin layer material on an aluminum sheet and applying a DC voltage of 1 kV using a resistance meter (16008A) manufactured by Hewlett-Packard.

【0126】[0126]

【発明の効果】以上説明したように、本発明の帯電用部
材は導電性弾性層中にZnOウィスカーを含有すること
により、良好な柔軟性を示し、電子写真装置あるいは複
写機に適用した場合、ノイズが少なく、高画質の画像を
与える。
As explained above, the charging member of the present invention exhibits good flexibility by containing ZnO whiskers in the conductive elastic layer, and when applied to an electrophotographic device or a copying machine, Gives high quality images with less noise.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明によるローラー形状の帯電用部材を示す
縦断面図。
FIG. 1 is a longitudinal sectional view showing a roller-shaped charging member according to the present invention.

【図2】本発明による他のローラー形状の帯電用部材を
示す縦断面図。
FIG. 2 is a longitudinal sectional view showing another roller-shaped charging member according to the present invention.

【図3】本発明によるブレード形状の帯電用部材を示す
縦断面図。
FIG. 3 is a longitudinal sectional view showing a blade-shaped charging member according to the present invention.

【図4】本発明による他のブレード形状の帯電用部材を
示す縦断面図。
FIG. 4 is a longitudinal sectional view showing another blade-shaped charging member according to the present invention.

【図5】本発明によるベルト形状の帯電用部材を示す縦
断面図。
FIG. 5 is a longitudinal sectional view showing a belt-shaped charging member according to the present invention.

【図6】図1〜図4に示した本発明の帯電用部材を設け
た電子写真装置の概略的縦断面図。
6 is a schematic vertical sectional view of an electrophotographic apparatus provided with the charging member of the present invention shown in FIGS. 1 to 4. FIG.

【図7】図1〜図4に示した本発明の帯電用部材を転写
帯電用として設けた電子写真装置の概略的縦断面図。
FIG. 7 is a schematic vertical sectional view of an electrophotographic apparatus provided with the charging member of the present invention shown in FIGS. 1 to 4 for transfer charging.

【図8】図5の帯電用部材を設けた正現像方式複写機の
概略的縦断面図。
8 is a schematic longitudinal sectional view of a normal development type copying machine provided with the charging member of FIG. 5. FIG.

【図9】ドラム型感光体を用いた一般的な転写式電子写
真装置の概略的縦断面図。
FIG. 9 is a schematic vertical cross-sectional view of a general transfer type electrophotographic apparatus using a drum-type photoreceptor.

【図10】図9の装置の構成を示すブロック図。FIG. 10 is a block diagram showing the configuration of the device in FIG. 9.

【図11】導電性弾性層の体積抵抗を求める方法を示す
説明図。
FIG. 11 is an explanatory diagram showing a method for determining the volume resistance of a conductive elastic layer.

【符号の説明】[Explanation of symbols]

1    導電性支持体 2    導電性弾性層 3    樹脂層 4    保護層 6    1次帯電用部材 7    像露光手段 8    現像手段 9    転写帯電手段 10    クリーニング手段 11    前露光手段 12    感光体 13    被転写部材 14    1次帯電用コロナ帯電器 15    帯電部材 16    帯電部材 1 Conductive support 2 Conductive elastic layer 3 Resin layer 4 Protective layer 6 Primary charging member 7 Image exposure means 8 Developing means 9 Transfer charging means 10 Cleaning means 11 Pre-exposure means 12 Photoreceptor 13 Transferred member 14 Corona charger for primary charging 15 Charging member 16 Charging member

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  導電性支持体およびその上に設けられ
た導電性弾性体からなる直接帯電用部材において、導電
性弾性体の中に、ZnOウィスカーを含有することを特
徴とする帯電用部材。
1. A direct charging member comprising a conductive support and a conductive elastic body provided thereon, characterized in that the conductive elastic body contains ZnO whiskers.
【請求項2】  前記導電性弾性体の上に抵抗層を最外
層に有している請求項1記載の帯電用部材。
2. The charging member according to claim 1, further comprising a resistance layer as an outermost layer on the conductive elastic body.
【請求項3】  前記導電性弾性体が100〜1011
Ω・cmの範囲の体積抵抗率を有している請求項1また
は2に記載の帯電用部材。
3. The conductive elastic body is 100 to 1011
The charging member according to claim 1 or 2, having a volume resistivity in the range of Ω·cm.
【請求項4】  前記導電性弾性体のゴム硬度が30度
以下である特許請求の範囲第1項の帯電用部材。
4. The charging member according to claim 1, wherein the conductive elastic body has a rubber hardness of 30 degrees or less.
JP9604891A 1991-04-03 1991-04-03 Charging member Expired - Fee Related JP2921716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9604891A JP2921716B2 (en) 1991-04-03 1991-04-03 Charging member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9604891A JP2921716B2 (en) 1991-04-03 1991-04-03 Charging member

Publications (2)

Publication Number Publication Date
JPH04306676A true JPH04306676A (en) 1992-10-29
JP2921716B2 JP2921716B2 (en) 1999-07-19

Family

ID=14154587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9604891A Expired - Fee Related JP2921716B2 (en) 1991-04-03 1991-04-03 Charging member

Country Status (1)

Country Link
JP (1) JP2921716B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07281507A (en) * 1994-04-11 1995-10-27 Canon Inc Electrostatic charging member, electrostatic charger, image forming device and process cartridge
JP2007057820A (en) * 2005-08-24 2007-03-08 Fuji Xerox Co Ltd Image forming apparatus
JP2013029815A (en) * 2011-06-21 2013-02-07 Canon Inc Charging member, manufacturing method therefor, process cartridge, and electrophotographic apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07281507A (en) * 1994-04-11 1995-10-27 Canon Inc Electrostatic charging member, electrostatic charger, image forming device and process cartridge
JP2007057820A (en) * 2005-08-24 2007-03-08 Fuji Xerox Co Ltd Image forming apparatus
JP2013029815A (en) * 2011-06-21 2013-02-07 Canon Inc Charging member, manufacturing method therefor, process cartridge, and electrophotographic apparatus

Also Published As

Publication number Publication date
JP2921716B2 (en) 1999-07-19

Similar Documents

Publication Publication Date Title
JP2584873B2 (en) Electrophotographic equipment
JPH01211779A (en) Electrostatic charging member
JP3323581B2 (en) Electrophotographic photoreceptor and electrophotographic apparatus using the same
JP2921716B2 (en) Charging member
JP3056273B2 (en) Charging member
JP2929558B2 (en) Charging member
JP2003316113A (en) Electrophotographic device and process cartridge
JP2823942B2 (en) Charging member
JP3444995B2 (en) Electrophotographic photoreceptor and electrophotographic apparatus
JP2966910B2 (en) Charging member
JP2005300604A (en) Image forming apparatus
JP3337747B2 (en) Electrophotographic photoreceptor and electrophotographic apparatus having the same
JP2921715B2 (en) Charging member
JP2003091135A (en) Image forming apparatus
JP2894510B2 (en) Charging member
JP3740354B2 (en) Process cartridge and electrophotographic apparatus
JP2859708B2 (en) Charging member
JP2700011B2 (en) Charging member
JP3302106B2 (en) Electrophotographic process and electrophotographic photoreceptor used therefor
JPH0477762A (en) Electrifying member
JPH06348112A (en) Electrophotographic process
JP2002049167A (en) Electrophotographic device and process cartridge
JP3320406B2 (en) Equipment unit
JPH04333853A (en) Member for electrification
JP2004163744A (en) Electrophotographic device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees