JPH04306597A - Plasma generating device and method for controlling it - Google Patents

Plasma generating device and method for controlling it

Info

Publication number
JPH04306597A
JPH04306597A JP3070863A JP7086391A JPH04306597A JP H04306597 A JPH04306597 A JP H04306597A JP 3070863 A JP3070863 A JP 3070863A JP 7086391 A JP7086391 A JP 7086391A JP H04306597 A JPH04306597 A JP H04306597A
Authority
JP
Japan
Prior art keywords
electrode
high frequency
self
substrate holder
bias
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3070863A
Other languages
Japanese (ja)
Inventor
Yoshiaki Mori
森義明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP3070863A priority Critical patent/JPH04306597A/en
Publication of JPH04306597A publication Critical patent/JPH04306597A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)

Abstract

PURPOSE:To control the self-bias generated at a high frequency electrode into a constant value with the zenor voltage of a zenor diode irrespective of the supplied power by connecting zenor diode between the high frequency electrode and earth electrode, and thereby forming a DC constant voltage circuit. CONSTITUTION:A vacuum trough 1 is fitted with a high frequency electrode 4 through a gas lead-in hole 3 and electric insulation, and the electrode 4 holds a material to be processed 5. A high frequency power supply 7 is connected with a high frequency matching circuit 8 through a coaxial cable 11, and the circuit 8 is connected to the electrode 4 through a Cu plate 14, and the peripheral line of the cable 11 is connected with the vacuum trough 1 as earth electrode. Then the high frequency electrode 4 is grounded via a LPF 9 and a zenor diode 10. Thereby the self-bias can be controlled constant only by supplying a certain value or more of high frequency power, and the value of self-bias be set with the zenor voltage of this diode 10.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はプラズマを利用して薄膜
の成膜、エッチング、処理を行う装置及びその制御方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for forming, etching, and processing thin films using plasma, and a method for controlling the same.

【0002】0002

【従来の技術】スパッタ、エッチング、及びプラズマ処
理の各プラズマ発生装置において、高周波を印加する高
周波電極には負の自己バイアスが発生する。この自己バ
イアスの値は、電極の構造、電極とア−スとの面積比、
ガス種、圧力、高周波電力等で変化する。またこれらの
プロセス条件を一定に保っても、装置の履歴により不規
則に変動する。
2. Description of the Related Art In each plasma generation apparatus for sputtering, etching, and plasma processing, a negative self-bias is generated in a high-frequency electrode that applies high-frequency waves. The value of this self-bias is determined by the structure of the electrode, the area ratio between the electrode and the ground,
Varies depending on gas type, pressure, high frequency power, etc. Furthermore, even if these process conditions are kept constant, they will vary irregularly depending on the history of the equipment.

【0003】この自己バイアスを一定に保つことはプロ
セスの安定化という意味で重要であり、そのため前記自
己バイアスをモニタし、測定した値が常に一定になるよ
うに高周波電力を変化させる方法がよく知られている。
[0003] Keeping this self-bias constant is important in terms of stabilizing the process, and therefore there is a well-known method of monitoring the self-bias and changing the high-frequency power so that the measured value is always constant. It is being

【0004】一方、高周波または直流の電力を印加する
電極と、被処理材を保持する基板ホルダとが別々に設け
られている場合は、被処理材を含む基板ホルダ表面に発
生する自己バイアス(浮遊電位)は無視されがちであり
、積極的に外部からバイアスを印加する時のみ、その電
位は意識されていた。
On the other hand, when the electrode for applying high frequency or DC power and the substrate holder for holding the material to be processed are provided separately, self-bias (floating) generated on the surface of the substrate holder containing the material to be processed (potential) tends to be ignored, and the potential is only consciously recognized when a bias is actively applied from the outside.

【0005】[0005]

【発明が解決しようとする課題】しかし前述の従来技術
である、高周波電極に発生する自己バイアスを一定に保
つために高周波電力を変化させる方法は、それ自体がプ
ラズマの発生源であることから、印加電力の大小がプラ
ズマ密度を決定付ける最大要因となり、その結果薄膜の
特性、レイト等が不安定であるという問題を有し、従っ
て本来の目的であるプロセスの安定化という点では満足
のいくものとは言えなかった。
[Problems to be Solved by the Invention] However, the above-mentioned prior art method of varying the high frequency power in order to keep the self-bias generated in the high frequency electrode constant, is a plasma generation source itself. The magnitude of the applied power is the biggest factor that determines the plasma density, and as a result, there is a problem that the characteristics of the thin film, rate, etc. are unstable, and therefore the original purpose of stabilizing the process is not satisfactory. I couldn't say that.

【0006】一方、高周波または直流の電力を印加する
電極と、被処理材を保持する基板ホルダとを別々に設け
、かつ被処理材を含む基板ホルダに外部からバイアスを
印加しない場合にも、被処理材がプラズマに晒されるこ
とからその表面には自己バイアス(浮遊電位)が発生し
、その値は薄膜の特性を左右する。しかるにこの値は無
視されがちであり、仮に意義を認めてもそのコントロ−
ルは前述したプラズマの発生源である高周波または直流
の印加電力を変化させる方法がとられており、前記同様
に薄膜の特性、レイト等が不安定であるという問題を有
していた。
On the other hand, even when an electrode for applying high frequency or direct current power and a substrate holder for holding the material to be processed are provided separately, and no bias is applied from the outside to the substrate holder containing the material to be processed, When the treated material is exposed to plasma, a self-bias (floating potential) is generated on its surface, and its value influences the properties of the thin film. However, this value is often ignored, and even if its significance is acknowledged, its control
This method uses a method of varying the applied power of high frequency or direct current, which is the source of the plasma mentioned above, and has the same problem that the characteristics, rate, etc. of the thin film are unstable.

【0007】そこで本発明はこのような問題点を解決す
るもので、その目的とするところは印加する直流あるい
は高周波電力の大小に関わりなく、被処理材表面に発生
する自己バイアス、または高周波電極表面に発生する自
己バイアスを任意の値に一定に保つ装置および制御方法
を提供するところにある。
The present invention is intended to solve these problems, and its purpose is to eliminate the self-bias generated on the surface of the material to be treated or the surface of the high-frequency electrode, regardless of the magnitude of applied DC or high-frequency power. An object of the present invention is to provide a device and a control method for keeping the self-bias generated in a constant value at an arbitrary value.

【0008】[0008]

【課題を解決するための手段】本発明のプラズマ発生装
置は以下のことを特徴とする。
[Means for Solving the Problems] The plasma generating device of the present invention is characterized by the following features.

【0009】高周波電極を設けた真空槽にガスを流して
、ア−ス電極である前記真空槽と該高周波電極との間に
高周波を印加してプラズマを発生させる装置において、
前記高周波電極とア−ス電極との間にツェナ−ダイオ−
ドを接続したこと。
[0009] In an apparatus for generating plasma by flowing gas through a vacuum chamber provided with a high frequency electrode and applying a high frequency between the vacuum chamber, which is a ground electrode, and the high frequency electrode,
A Zener diode is connected between the high frequency electrode and the ground electrode.
connected.

【0010】また、高周波電極と、それとは別に被処理
材を保持する基板ホルダとを設けた真空槽にガスを流し
て、ア−ス電極である前記真空槽と該高周波電極との間
に高周波を印加してプラズマを発生させる装置において
、前記基板ホルダとア−ス電極との間にツェナ−ダイオ
−ドを接続したこと。
[0010] Furthermore, gas is caused to flow through a vacuum chamber provided with a high-frequency electrode and a substrate holder that holds the material to be processed separately, and a high-frequency wave is generated between the vacuum chamber, which is a ground electrode, and the high-frequency electrode. In the apparatus which generates plasma by applying a voltage, a Zener diode is connected between the substrate holder and the earth electrode.

【0011】さらに、直流電極と、それとは別に被処理
材を保持する基板ホルダとを設けた真空槽にガスを流し
て、ア−ス電極である前記真空槽と該直流電極との間に
直流電圧を印加してプラズマを発生させる装置において
、前記基板ホルダとア−ス電極との間にツェナ−ダイオ
−ドを接続したこと。
Furthermore, gas is caused to flow through a vacuum chamber provided with a DC electrode and a substrate holder that holds the material to be processed separately, so that a DC current is generated between the vacuum chamber, which is a ground electrode, and the DC electrode. In an apparatus for generating plasma by applying a voltage, a Zener diode is connected between the substrate holder and a ground electrode.

【0012】一方、本発明のプラズマ発生装置の制御方
法は以下のことを特徴とする。
On the other hand, the method for controlling a plasma generator according to the present invention is characterized by the following features.

【0013】高周波電極を設けた真空槽にガスを流して
、ア−ス電極である前記真空槽と該高周波電極との間に
高周波を印加してプラズマを発生させる装置の制御方法
において、前記高周波電極とア−ス電極との間にツェナ
−ダイオ−ドを接続して直流定電圧回路を形成し、該高
周波電極に印加する高周波電力の大小に関係なく、該高
周波電極に発生する自己バイアスが一定となるように制
御すること。
[0013] In the control method of an apparatus for generating plasma by flowing gas into a vacuum chamber provided with a high-frequency electrode and applying a high-frequency wave between the vacuum chamber, which is a ground electrode, and the high-frequency electrode, the high-frequency A Zener diode is connected between the electrode and the ground electrode to form a DC constant voltage circuit, and the self-bias generated in the high-frequency electrode is controlled regardless of the magnitude of the high-frequency power applied to the high-frequency electrode. Control so that it remains constant.

【0014】また、高周波電極と、それとは別に被処理
材を保持する基板ホルダとを設けた真空槽にガスを流し
て、ア−ス電極である前記真空槽と該高周波電極との間
に高周波を印加してプラズマを発生させる装置の制御方
法において、前記基板ホルダとア−ス電極との間にツェ
ナ−ダイオ−ドを接続して直流定電圧回路を形成し、該
高周波電極に印加する高周波電力の大小に関係なく、前
記基板ホルダに発生する自己バイアスが一定となるよう
に制御すること。
[0014] Furthermore, gas is caused to flow through a vacuum chamber provided with a high-frequency electrode and a substrate holder that holds the material to be processed separately, and a high-frequency wave is generated between the vacuum chamber, which is a ground electrode, and the high-frequency electrode. In a method of controlling an apparatus that generates plasma by applying a voltage, a Zener diode is connected between the substrate holder and a ground electrode to form a DC constant voltage circuit, and a high frequency voltage is applied to the high frequency electrode. To control the self-bias generated in the substrate holder to be constant regardless of the magnitude of electric power.

【0015】さらに、直流電極と、それとは別に被処理
材を保持する基板ホルダとを設けた真空槽にガスを流し
て、ア−ス電極である前記真空槽と該直流電極との間に
直流電圧を印加してプラズマを発生させる装置の制御方
法において、前記基板ホルダとア−ス電極との間にツェ
ナ−ダイオ−ドを接続して直流定電圧回路を形成し、該
直流電極に印加する直流電力及び直流電圧の大小に関係
なく、前記基板ホルダに発生する自己バイアスが一定と
なるように制御すること。
Furthermore, gas is caused to flow through a vacuum chamber provided with a DC electrode and a substrate holder that holds the material to be processed separately, so that a DC current is generated between the vacuum chamber, which is a ground electrode, and the DC electrode. In a method for controlling an apparatus that generates plasma by applying a voltage, a Zener diode is connected between the substrate holder and a ground electrode to form a DC constant voltage circuit, and a DC voltage is applied to the electrode. The self-bias generated in the substrate holder is controlled to be constant regardless of the magnitude of DC power and DC voltage.

【0016】[0016]

【作用】本発明の上記の構成によれば、高周波電極とア
−ス電極との間にツェナ−ダイオ−ドを接続して直流定
電圧回路を形成することにより、高周波電極に発生する
自己バイアスを、高周波電極に印加する電力の大小と関
わりなく前記ツェナ−ダイオ−ドのツェナ−電圧で一定
に制御することができる。
[Operation] According to the above structure of the present invention, by connecting a Zener diode between the high frequency electrode and the earth electrode to form a DC constant voltage circuit, the self-bias generated in the high frequency electrode can be eliminated. can be controlled to be constant by the Zener voltage of the Zener diode, regardless of the magnitude of the power applied to the high frequency electrode.

【0017】また、高周波または直流の電力を印加する
電極と、被処理材を保持する基板ホルダとを別々に設け
ている場合に、被処理材を保持する基板ホルダとア−ス
電極との間にツェナ−ダイオ−ドを接続して直流定電圧
回路を形成することにより、被処理材を含む基板ホルダ
表面に発生する自己バイアス(浮遊電位)を、前記電極
に印加する高周波または直流の電力の大小と関わりなく
前記ツェナ−ダイオ−ドのツェナ−電圧で一定に制御す
ることができる。
[0017] Furthermore, when the electrode for applying high frequency or DC power and the substrate holder for holding the material to be processed are provided separately, the gap between the substrate holder for holding the material to be processed and the ground electrode By connecting a Zener diode to the electrode to form a DC constant voltage circuit, the self-bias (floating potential) generated on the surface of the substrate holder containing the material to be processed can be controlled by the high frequency or DC power applied to the electrode. Regardless of the magnitude, the Zener voltage of the Zener diode can be controlled to be constant.

【0018】[0018]

【実施例】以下、本発明について図面に基づいて詳細に
説明する。図1はリアクティブイオンエッチングに用い
た本発明の実施例を示す模式図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained in detail below with reference to the drawings. FIG. 1 is a schematic diagram showing an embodiment of the present invention used in reactive ion etching.

【0019】真空層1にガス導入口3と真空排気口2と
絶縁物6を介して高周波電極4とを設ける。リアクティ
ブイオンエッチングでは前記高周波電極4は基板ホルダ
も兼ね、従って被処理材5(基板)を保持する。高周波
電源7から同軸ケ−ブル11で高周波マッチング回路8
に、該高周波マッチング回路8から銅板14で前記高周
波電極4にそれぞれ接続する。前記同軸ケ−ブル11の
外周ラインはア−ス電極である真空層1に接続する。こ
こまでは図7に示す一般的なリアクティブイオンエッチ
ング装置であり従来と同様である。本発明では、前記高
周波電極4からロ−パスフィルタ9を通して、さらにツ
ェナ−ダイオ−ド10を介してア−スへ接地する。ここ
が大きな特徴である。
A high frequency electrode 4 is provided in the vacuum layer 1 with a gas inlet 3, a vacuum exhaust port 2, and an insulator 6 interposed therebetween. In reactive ion etching, the high frequency electrode 4 also serves as a substrate holder, and thus holds the material to be processed 5 (substrate). High frequency matching circuit 8 from high frequency power supply 7 to coaxial cable 11
Then, the high frequency matching circuit 8 is connected to the high frequency electrode 4 through a copper plate 14, respectively. The outer peripheral line of the coaxial cable 11 is connected to the vacuum layer 1 which is a ground electrode. Up to this point, the general reactive ion etching apparatus shown in FIG. 7 is the same as the conventional one. In the present invention, the high frequency electrode 4 is connected to earth through a low pass filter 9 and further through a Zener diode 10. This is a major feature.

【0020】このような構成で、真空層を真空排気後、
まず前記ガス導入口3よりフレオンと酸素の混合ガスを
流す。圧力は前記ガスの流量と真空排気口2の有効排気
速度との関係式 圧力=ガス流量/有効排気速度 から一定に保たれる。
With such a configuration, after the vacuum layer is evacuated,
First, a mixed gas of freon and oxygen is flowed through the gas inlet 3. The pressure is kept constant based on the relationship between the gas flow rate and the effective pumping speed of the vacuum exhaust port 2: pressure=gas flow rate/effective pumping speed.

【0021】高周波電力は該高周波マッチング回路8を
介して前記高周波電極4に印加される。該高周波マッチ
ング回路8は、高周波電源7から高周波電極4に供給さ
れる高周波電力の損失を防ぐためのものであり、コイル
と2個のコンデンサでインピ−ダンスマッチングを行う
ものが一般的である。
High frequency power is applied to the high frequency electrode 4 via the high frequency matching circuit 8. The high frequency matching circuit 8 is for preventing loss of high frequency power supplied from the high frequency power supply 7 to the high frequency electrode 4, and generally performs impedance matching using a coil and two capacitors.

【0022】放電開始後、高周波電極4には自己バイア
スが発生する。これは電子とイオンの移動度の差に起因
するものであり、結果として前記高周波電極4表面の電
位は高周波電圧と自己バイアスである負の直流電圧とが
重畳されたものとなる。この高周波電圧成分を除去する
ためにロ−パスフィルタ9を取り付けている。自己バイ
アスがデバイスに与える影響としては、基板表面のチャ
−ジアップによる電気的なダメ−ジ、あるいは基板に入
射するイオンを加速するために生じる物理的なダメ−ジ
が考えられている。従って自己バイアスの電位は小さい
ことが望まれるが、あまり小さいと前記基板に入射する
イオンの方向を揃えることが困難になり、リアクティブ
イオンエッチングの本来の目的である異方性のエッチン
グが難しくなる。そこで、ある程度の電位でしかも一定
にコントロ−ルすることが理想となる。
After the discharge starts, a self-bias is generated in the high-frequency electrode 4. This is due to the difference in mobility between electrons and ions, and as a result, the potential on the surface of the high-frequency electrode 4 becomes a superposition of the high-frequency voltage and the negative DC voltage that is a self-bias. A low-pass filter 9 is attached to remove this high frequency voltage component. The effects of self-bias on devices are thought to include electrical damage caused by charge-up on the substrate surface, or physical damage caused by accelerating ions incident on the substrate. Therefore, it is desirable that the self-bias potential is small, but if it is too small, it will be difficult to align the direction of the ions incident on the substrate, making it difficult to perform anisotropic etching, which is the original purpose of reactive ion etching. . Therefore, it would be ideal to control the potential at a certain level and at a constant level.

【0023】一定としたい自己バイアスの値と同電圧の
ツェナ−電圧を持つツェナ−ダイオ−ド10を、前記高
周波電極4とア−ス電極との間に接続した本実施例は、
それを実現できる。
In this embodiment, a Zener diode 10 having a Zener voltage equal to the self-bias value that is desired to be constant is connected between the high frequency electrode 4 and the earth electrode.
We can make it happen.

【0024】第6図に示すように高周波電極4に印加す
る高周波電力を増していくに従い、まず20Wで放電を
開始し、わずかな自己バイアスが発生する。30W位で
自己バイアスの値はツェナ−電圧と等しくなる。さらに
高周波電力を増やして行くと自己バイアスはツェナ−電
圧より大きくなる。しかし、ツェナ−電圧を超えると自
己バイアスを形成する電子はア−スへ流れるため自己バ
イアスの値はツェナ−電圧と等しくなる。従って高周波
電力には無関係に自己バイアスを一定にコントロ−ルす
ることが可能になる。図7に示す従来装置では、高周波
電力の増加に伴い図8に示す様に自己バイアスは単調増
加していた。高周波電力を変化させることで自己バイア
スをコントロ−ルすることはできるが、低い値で一定に
制御させるためには高周波電力も小さくしなければなら
ずエッチングレイトの低下、及び高周波電力を変化させ
ることによる、エッチングレイトの変動を招いていた。
As shown in FIG. 6, as the high frequency power applied to the high frequency electrode 4 is increased, discharge starts at 20 W and a slight self-bias occurs. At about 30W, the self-bias value becomes equal to the Zener voltage. As the high-frequency power is further increased, the self-bias becomes larger than the Zener voltage. However, when the Zener voltage is exceeded, the electrons forming the self-bias flow to the ground, so the value of the self-bias becomes equal to the Zener voltage. Therefore, it becomes possible to control the self-bias to a constant level regardless of the high frequency power. In the conventional device shown in FIG. 7, the self-bias monotonically increases as the high frequency power increases, as shown in FIG. It is possible to control the self-bias by changing the high frequency power, but in order to control it at a constant low value, the high frequency power must also be reduced, which reduces the etching rate and changes the high frequency power. This caused fluctuations in the etching rate.

【0025】本実施例では、高周波電力をある値以上印
加すればそれだけで自己バイアスを一定に制御すること
が可能であり、その自己バイアスの値は使用するツェナ
−ダイオ−ド10のツェナ−電圧で設定することができ
る。そのため、高周波電力は充分に印加可能でありエッ
チングレイトの低下、変動はない。
In this embodiment, it is possible to control the self-bias to a constant level simply by applying high-frequency power above a certain value, and the value of the self-bias is determined by the Zener voltage of the Zener diode 10 used. It can be set with . Therefore, high frequency power can be sufficiently applied, and the etching rate does not decrease or fluctuate.

【0026】本発明の別の実施例を図2に示す。Another embodiment of the invention is shown in FIG.

【0027】真空層1にガス導入口3と真空排気口2と
絶縁物6を介して高周波電極4とを設ける。被処理材5
(基板)を保持する基板ホルダ12は該高周波電極4と
は別に、また絶縁物13を介して真空層1の一部に取り
付ける。高周波電源7から同軸ケ−ブル11で高周波マ
ッチング回路8に、該高周波マッチング回路8から銅板
14で前記高周波電極4にそれぞれ接続する。前記同軸
ケ−ブル11の外周ラインはア−ス電極である真空層1
に接続する。ここまでは一般的なプラズマイオンエッチ
ング装置、スパッタ装置、プラズマ処理装置であり従来
と同様である。この様な構成で放電を行うと、被処理材
5を含む基板ホルダ12表面に浮遊電位と呼ばれる自己
バイアスが発生する。この自己バイアスも前述同様デバ
イスに電気的、物理的ダメ−ジを与える。しかし自己バ
イアスを零にする、すなわち基板ホルダ12をア−スに
接地すると、被処理材5あるいは基板ホルダ12表面で
異常放電が発生する場合、あるいは望む特性が得られな
い場合等があり、従って前述同様ある程度の電位でしか
も一定にコントロ−ルする必要がある。
A high frequency electrode 4 is provided in the vacuum layer 1 with a gas inlet 3, a vacuum exhaust port 2, and an insulator 6 interposed therebetween. Material to be treated 5
A substrate holder 12 for holding a substrate is attached to a part of the vacuum layer 1 separately from the high-frequency electrode 4 and via an insulator 13. The high frequency power supply 7 is connected to the high frequency matching circuit 8 by a coaxial cable 11, and the high frequency matching circuit 8 is connected to the high frequency electrode 4 by a copper plate 14, respectively. The outer peripheral line of the coaxial cable 11 is a vacuum layer 1 which is a ground electrode.
Connect to. Up to this point, the apparatus is a general plasma ion etching apparatus, sputtering apparatus, and plasma processing apparatus, and is the same as the conventional one. When discharge is performed with such a configuration, a self-bias called a floating potential is generated on the surface of the substrate holder 12 including the material to be processed 5. This self-bias also causes electrical and physical damage to the device as described above. However, if the self-bias is reduced to zero, that is, if the substrate holder 12 is grounded, abnormal discharge may occur on the surface of the processed material 5 or the substrate holder 12, or desired characteristics may not be obtained. As mentioned above, it is necessary to control the potential to a certain degree and to keep it constant.

【0028】本発明は、前記基板ホルダからロ−パスフ
ィルタ9を通して、さらにツェナ−ダイオ−ド10を介
してア−スへ接地することでこれを解決する。ここが大
きな特徴である。
The present invention solves this problem by connecting the substrate holder to earth through a low-pass filter 9 and further through a Zener diode 10. This is a major feature.

【0029】高周波電極4に印加する高周波電力を増し
ていくに従い、被処理材5を含む基板ホルダ12表面の
自己バイアスは増加する。前述同様ツェナ−電圧を超え
ると自己バイアスを形成する電子はア−スへ流れるため
自己バイアスの値はツェナ−電圧と等しくなる。従って
高周波電力には無関係に自己バイアスを一定にコントロ
−ルすることが可能になる。よってプロセス条件として
は自己バイアスを単独に設定することができ、かつレイ
ト変動等の弊害を招くこともない。被処理材5を含む基
板ホルダ12表面に発生する自己バイアスは、装置構造
、ガス種、ガス圧などによりプラスの極性を示すときが
ある。プラスの極性のまま一定に保つ場合は使用するツ
ェナ−ダイオ−ド10を逆に接続すればよい。
As the high frequency power applied to the high frequency electrode 4 increases, the self-bias on the surface of the substrate holder 12 containing the material to be processed 5 increases. As described above, when the Zener voltage is exceeded, the electrons forming the self-bias flow to the ground, so the value of the self-bias becomes equal to the Zener voltage. Therefore, it becomes possible to control the self-bias to a constant level regardless of the high frequency power. Therefore, the self-bias can be set independently as a process condition, and no adverse effects such as rate fluctuations will occur. The self-bias generated on the surface of the substrate holder 12 containing the material to be processed 5 may exhibit a positive polarity depending on the device structure, gas type, gas pressure, etc. If the positive polarity is to be kept constant, the Zener diode 10 used may be connected in reverse.

【0030】さらに別の実施例を図3に示す。Yet another embodiment is shown in FIG.

【0031】真空層1にガス導入口3と真空排気口2と
絶縁物6を介して直流電極17とを設ける。被処理材5
(基板)を保持する基板ホルダ12は該直流電極17と
は別に、また絶縁物13を介して真空層1の一部に取り
付ける。直流電源15から高耐圧ケ−ブル16で前記直
流電極17に接続する。ここまでは一般的なスパッタ装
置であり従来と同様である。
A gas inlet 3, a vacuum exhaust port 2, and a DC electrode 17 are provided in the vacuum layer 1 via an insulator 6. Material to be treated 5
A substrate holder 12 for holding a substrate is attached to a part of the vacuum layer 1 separately from the DC electrode 17 and via an insulator 13. A DC power supply 15 is connected to the DC electrode 17 with a high voltage cable 16. Up to this point, it is a general sputtering apparatus and is the same as the conventional one.

【0032】この様な構成での直流放電でも、前記同様
に被処理材5を含む基板ホルダ12表面に自己バイアス
が発生し、それをコントロ−ルすることによるプロセス
の安定化が望まれる。
Even in the case of direct current discharge with such a configuration, self-bias is generated on the surface of the substrate holder 12 containing the material to be processed 5, as described above, and it is desired to stabilize the process by controlling this bias.

【0033】そこで本発明は、同様に被処理材5を含む
基板ホルダ12とア−スの間にツェナ−ダイオ−ド10
を接続しこれを解決する。
Therefore, the present invention similarly provides a Zener diode 10 between the substrate holder 12 containing the material to be processed 5 and the ground.
Connect to solve this problem.

【0034】直流電極17に印加する直流電力を増して
いくに従い、被処理材5を含む基板ホルダ12表面の自
己バイアスはマイナス側へ増加する。前述同様ツェナ−
電圧を超えると自己バイアスを形成する電子はア−スへ
流れるため自己バイアスの値はツェナ−電圧と等しくな
る。従って印加する直流電力には無関係に自己バイアス
を一定にコントロ−ルすることが可能になる。よってプ
ロセス条件としては自己バイアスを単独に設定すること
ができ、かつレイト変動等の弊害を招くこともない。以
上述べてきた実施例は被処理材を保持する基板ホルダ、
基板ホルダを兼ねる高周波電極表面、すなわち被処理材
表面の自己バイアスを制御するものである。図4に示す
実施例は基板を保持しない高周波電極(基板ホルダを兼
ねない高周波電極)の自己バイアスを制御するものであ
る。
As the DC power applied to the DC electrode 17 increases, the self-bias on the surface of the substrate holder 12 containing the material to be processed 5 increases toward the negative side. Same as above Zener
When the voltage is exceeded, the electrons forming the self-bias flow to ground, so the value of the self-bias becomes equal to the Zener voltage. Therefore, it is possible to control the self-bias to a constant level regardless of the applied DC power. Therefore, the self-bias can be set independently as a process condition, and no adverse effects such as rate fluctuations will occur. The embodiments described above include a substrate holder that holds a material to be processed;
This is to control the self-bias of the surface of the high-frequency electrode that also serves as a substrate holder, that is, the surface of the material to be processed. The embodiment shown in FIG. 4 controls the self-bias of a high-frequency electrode that does not hold a substrate (a high-frequency electrode that also serves as a substrate holder).

【0035】真空層1にガス導入口3と真空排気口2と
絶縁物6を介して高周波電極4とを設ける。被処理材5
(基板)を保持する基板ホルダ12は該高周波電極4と
は別に、また絶縁物13を介して真空層の一部に取り付
ける。高周波電源7から同軸ケ−ブル11で高周波マッ
チング回路8に、該高周波マッチング回路8から銅板1
4で前記高周波電極4にそれぞれ接続する。前記同軸ケ
−ブル11の外周ラインはア−ス電極である真空層1に
接続する。前記高周波電極4からロ−パスフィルタ9を
通して、さらにツェナ−ダイオ−ド10を介してア−ス
へ接地する。
A high frequency electrode 4 is provided in the vacuum layer 1 with a gas inlet 3, a vacuum exhaust port 2, and an insulator 6 interposed therebetween. Material to be treated 5
A substrate holder 12 for holding a substrate is attached to a part of the vacuum layer separately from the high frequency electrode 4 and via an insulator 13. A coaxial cable 11 connects a high frequency power source 7 to a high frequency matching circuit 8, and from the high frequency matching circuit 8 to a copper plate 1.
4 are respectively connected to the high frequency electrode 4. The outer peripheral line of the coaxial cable 11 is connected to the vacuum layer 1 which is a ground electrode. The high frequency electrode 4 is connected to the ground through a low pass filter 9 and a Zener diode 10.

【0036】この様な構成で、前記高周波電極4表面に
発生する自己バイアスを印加する高周波電力とは関係な
く独立して制御する。理論的なものは前述同様である。
With this configuration, the self-bias generated on the surface of the high-frequency electrode 4 is controlled independently of the high-frequency power applied. The theory is the same as above.

【0037】本実施例の装置、制御方法を表面処理に用
いれば、高周波電極4でのスパッタをおこすことなくす
なわち自己バイアスを小さくして、プラズマ密度を上げ
るすなわち印加する高周波電力を増加させることが可能
となる。
If the apparatus and control method of this embodiment are used for surface treatment, it is possible to increase the plasma density, that is, increase the applied high frequency power, without causing sputtering at the high frequency electrode 4, that is, to reduce the self-bias. It becomes possible.

【0038】またスパッタ装置に用いればタ−ゲット表
面の自己バイアスの安定化、また被処理材表面に発生す
る自己バイアスの間接的な制御に有用である。
Further, when used in a sputtering apparatus, it is useful for stabilizing the self-bias on the target surface and indirectly controlling the self-bias generated on the surface of the material to be processed.

【0039】本発明の応用例として図5に示す構成も考
えられる。高周波電極4にはさきほどと同じく高周波電
源7、ツェナ−ダイオ−ド10を接続する。そして前記
高周波電極4表面に発生する自己バイアスを印加する高
周波電力とは無関係に制御する。被処理材5を保持した
基板ホルダ12にも、高周波電源21を同軸ケ−ブル2
5、高周波マッチング回路22を介して接続する。また
前記基板ホルダ12はロ−パスフィルタ23、ツェナ−
ダイオ−ド24を介してア−スへ接地される。そして、
被処理材5を含む基板ホルダ12表面に発生する自己バ
イアスを印加する高周波電力とは無関係に制御する。こ
の様にそれぞれのプロセス条件を独立して制御すること
により、より安定なプロセスが創造可能となる。
The configuration shown in FIG. 5 can also be considered as an application example of the present invention. A high frequency power source 7 and a Zener diode 10 are connected to the high frequency electrode 4 as before. The self-bias generated on the surface of the high-frequency electrode 4 is controlled independently of the high-frequency power applied. A high frequency power source 21 is also connected to the substrate holder 12 holding the material 5 to be processed through the coaxial cable 2.
5. Connect via the high frequency matching circuit 22. Further, the substrate holder 12 includes a low-pass filter 23 and a Zener filter.
It is grounded to earth via a diode 24. and,
The self-bias generated on the surface of the substrate holder 12 containing the material to be processed 5 is controlled independently of the high-frequency power applied. By independently controlling each process condition in this way, a more stable process can be created.

【0040】[0040]

【発明の効果】以上述べたように本発明によれば  本
発明の上記の構成によれば、高周波電極とア−ス電極と
の間にツェナ−ダイオ−ドを接続して直流定電圧回路を
形成することにより、高周波電極に発生する自己バイア
スを、高周波電極に印加する電力の大小と関わりなく前
記ツェナ−ダイオ−ドのツェナ−電圧で一定に制御する
ことができる。
As described above, according to the present invention, according to the above structure of the present invention, a DC constant voltage circuit is constructed by connecting a Zener diode between a high frequency electrode and a ground electrode. By forming this, the self-bias generated in the high-frequency electrode can be controlled to be constant by the Zener voltage of the Zener diode, regardless of the magnitude of the power applied to the high-frequency electrode.

【0041】また、高周波または直流の電力を印加する
電極と、被処理材を保持する基板ホルダとを別々に設け
ている場合に、被処理材を保持する基板ホルダとア−ス
電極との間にツェナ−ダイオ−ドを接続して直流定電圧
回路を形成することにより、被処理材を含む基板ホルダ
表面に発生する自己バイアス(浮遊電位)を、前記電極
に印加する高周波または直流の電力の大小と関わりなく
前記ツェナ−ダイオ−ドのツェナ−電圧で一定に制御す
ることができる。
[0041] Furthermore, when the electrode for applying high frequency or DC power and the substrate holder for holding the material to be processed are provided separately, the gap between the substrate holder for holding the material to be processed and the ground electrode. By connecting a Zener diode to the electrode to form a DC constant voltage circuit, the self-bias (floating potential) generated on the surface of the substrate holder containing the material to be processed can be controlled by the high frequency or DC power applied to the electrode. Regardless of the magnitude, the Zener voltage of the Zener diode can be controlled to be constant.

【0042】この様に独立して自己バイアスを制御する
ことにより、プロセスをより安定に保ついう効果、新た
なプロセス、デバイスの創造を促すという効果を有する
By independently controlling the self-bias in this way, it has the effect of keeping the process more stable and the effect of encouraging the creation of new processes and devices.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例を示す模式図1。FIG. 1 is a schematic diagram 1 showing one embodiment of the present invention.

【図2】本発明の一実施例を示す模式図2。FIG. 2 is a schematic diagram 2 showing one embodiment of the present invention.

【図3】本発明の一実施例を示す模式図3。FIG. 3 is a schematic diagram 3 showing one embodiment of the present invention.

【図4】本発明の一実施例を示す模式図4。FIG. 4 is a schematic diagram 4 showing one embodiment of the present invention.

【図5】本発明の一実施例を示す模式図5。FIG. 5 is a schematic diagram 5 showing one embodiment of the present invention.

【図6】本発明による高周波電力と自己バイアスの関係
図。
FIG. 6 is a diagram showing the relationship between high frequency power and self-bias according to the present invention.

【図7】従来例を示す模式図。FIG. 7 is a schematic diagram showing a conventional example.

【図8】従来の高周波電力と自己バイアスの関係図。FIG. 8 is a conventional relationship diagram between high frequency power and self-bias.

【符号の説明】[Explanation of symbols]

1:真空層 2:真空排気口 3:ガス導入口 4:高周波電極 5:被処理材 6、13:絶縁物 7、21:高周波電源 8、22:高周波マッチング回路 9、23:ロ−パスフィルタ 10、24:ツェナ−ダイオ−ド 11、25:同軸ケ−ブル 12:基板ホルダ 14:銅板 15:直流電源 16:高耐圧ケ−ブル 17:直流電極 1: Vacuum layer 2: Vacuum exhaust port 3: Gas inlet 4: High frequency electrode 5: Material to be treated 6, 13: Insulator 7, 21: High frequency power supply 8, 22: High frequency matching circuit 9, 23: Low-pass filter 10, 24: Zener diode 11, 25: Coaxial cable 12: Board holder 14: Copper plate 15: DC power supply 16: High voltage cable 17: DC electrode

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】  高周波電極を設けた真空槽にガスを流
して、ア−ス電極である前記真空槽と該高周波電極との
間に高周波を印加してプラズマを発生させる装置におい
て、前記高周波電極とア−ス電極との間にツェナ−ダイ
オ−ドを接続したことを特徴とするプラズマ発生装置。
1. In an apparatus for generating plasma by flowing gas through a vacuum chamber provided with a high-frequency electrode and applying a high frequency between the vacuum chamber, which is a ground electrode, and the high-frequency electrode, the high-frequency electrode 1. A plasma generating device characterized in that a Zener diode is connected between the electrode and the ground electrode.
【請求項2】  高周波電極を設けた真空槽にガスを流
して、ア−ス電極である前記真空槽と該高周波電極との
間に高周波を印加してプラズマを発生させる装置の制御
方法において、前記高周波電極とア−ス電極との間にツ
ェナ−ダイオ−ドを接続して直流定電圧回路を形成し、
該高周波電極に印加する高周波電力の大小に関係なく、
該高周波電極に発生する自己バイアスが一定となるよう
に制御することを特徴とするプラズマ発生装置の制御方
法。
2. A method for controlling an apparatus that generates plasma by flowing gas through a vacuum chamber provided with a high-frequency electrode and applying a high frequency between the vacuum chamber, which is a ground electrode, and the high-frequency electrode, comprising: A Zener diode is connected between the high frequency electrode and the earth electrode to form a DC constant voltage circuit,
Regardless of the magnitude of the high frequency power applied to the high frequency electrode,
A method for controlling a plasma generator, comprising controlling the self-bias generated in the high-frequency electrode to be constant.
【請求項3】  高周波電極と、それとは別に被処理材
を保持する基板ホルダとを設けた真空槽にガスを流して
、ア−ス電極である前記真空槽と該高周波電極との間に
高周波を印加してプラズマを発生させる装置において、
前記基板ホルダとア−ス電極との間にツェナ−ダイオ−
ドを接続したことを特徴とするプラズマ発生装置。
3. Gas is caused to flow through a vacuum chamber provided with a high-frequency electrode and a substrate holder that holds a material to be processed separately, and a high-frequency wave is generated between the vacuum chamber, which is a ground electrode, and the high-frequency electrode. In a device that generates plasma by applying
A Zener diode is connected between the substrate holder and the ground electrode.
A plasma generator characterized in that a cord is connected to the plasma generator.
【請求項4】  高周波電極と、それとは別に被処理材
を保持する基板ホルダとを設けた真空槽にガスを流して
、ア−ス電極である前記真空槽と該高周波電極との間に
高周波を印加してプラズマを発生させる装置の制御方法
において、前記基板ホルダとア−ス電極との間にツェナ
−ダイオ−ドを接続して直流定電圧回路を形成し、該高
周波電極に印加する高周波電力の大小に関係なく、前記
基板ホルダに発生する自己バイアスが一定となるように
制御することを特徴とするプラズマ発生装置の制御方法
4. Gas is caused to flow through a vacuum chamber provided with a high-frequency electrode and a substrate holder that holds a material to be processed separately, and a high-frequency wave is generated between the vacuum chamber, which is a ground electrode, and the high-frequency electrode. In a method of controlling an apparatus that generates plasma by applying a voltage, a Zener diode is connected between the substrate holder and a ground electrode to form a DC constant voltage circuit, and a high frequency voltage is applied to the high frequency electrode. A method for controlling a plasma generator, characterized in that the self-bias generated in the substrate holder is controlled to be constant regardless of the magnitude of electric power.
【請求項5】  直流電極と、それとは別に被処理材を
保持する基板ホルダとを設けた真空槽にガスを流して、
ア−ス電極である前記真空槽と該直流電極との間に直流
電圧を印加してプラズマを発生させる装置において、前
記基板ホルダとア−ス電極との間にツェナ−ダイオ−ド
を接続したことを特徴とするプラズマ発生装置。
[Claim 5] A gas is caused to flow through a vacuum chamber provided with a DC electrode and a substrate holder that holds the material to be processed separately.
In the apparatus for generating plasma by applying a DC voltage between the vacuum chamber, which is a ground electrode, and the DC electrode, a Zener diode is connected between the substrate holder and the ground electrode. A plasma generating device characterized by the following.
【請求項6】  直流電極と、それとは別に被処理材を
保持する基板ホルダとを設けた真空槽にガスを流して、
ア−ス電極である前記真空槽と該直流電極との間に直流
電圧を印加してプラズマを発生させる装置の制御方法に
おいて、前記基板ホルダとア−ス電極との間にツェナ−
ダイオ−ドを接続して直流定電圧回路を形成し、該直流
電極に印加する直流電力及び直流電圧の大小に関係なく
、前記基板ホルダに発生する自己バイアスが一定となる
ように制御することを特徴とするプラズマ発生装置の制
御方法。
[Claim 6] A gas is caused to flow through a vacuum chamber provided with a DC electrode and a substrate holder that holds the material to be processed separately.
In the method for controlling an apparatus that generates plasma by applying a DC voltage between the vacuum chamber, which is a ground electrode, and the DC electrode, a zener is connected between the substrate holder and the ground electrode.
A DC constant voltage circuit is formed by connecting diodes, and the self-bias generated in the substrate holder is controlled to be constant regardless of the magnitude of DC power and DC voltage applied to the DC electrode. Characteristic control method for plasma generator.
JP3070863A 1991-04-03 1991-04-03 Plasma generating device and method for controlling it Pending JPH04306597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3070863A JPH04306597A (en) 1991-04-03 1991-04-03 Plasma generating device and method for controlling it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3070863A JPH04306597A (en) 1991-04-03 1991-04-03 Plasma generating device and method for controlling it

Publications (1)

Publication Number Publication Date
JPH04306597A true JPH04306597A (en) 1992-10-29

Family

ID=13443826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3070863A Pending JPH04306597A (en) 1991-04-03 1991-04-03 Plasma generating device and method for controlling it

Country Status (1)

Country Link
JP (1) JPH04306597A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120038453A (en) * 2009-07-20 2012-04-23 램 리써치 코포레이션 System and method for plasma arc detection, isolation and prevention

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120038453A (en) * 2009-07-20 2012-04-23 램 리써치 코포레이션 System and method for plasma arc detection, isolation and prevention
JP2012533908A (en) * 2009-07-20 2012-12-27 ラム リサーチ コーポレーション System and method for detection, insulation and prevention of plasma discharges

Similar Documents

Publication Publication Date Title
US5246532A (en) Plasma processing apparatus
KR930001501B1 (en) Sputtering method for fabricating thin film
US5213658A (en) Plasma processing method
EP1656694B1 (en) High aspect ratio etch using modulation of rf powers of various frequencies
TWI505354B (en) Dry etching apparatus and dry etching method
US6949165B2 (en) Plasma processing apparatus
US20110263130A1 (en) Methods for rf pulsing of a narrow gap capacitively coupled reactor
JP2008147659A (en) Method and system for controlling uniformity in ballistic electron beam accelerating plasma processing system
JP2002043286A (en) Plasma processing device
JPH1041281A (en) Plasma treating apparatus
KR20010079658A (en) Method and apparatus for minimizing semiconductor wafer arcing during semiconductor wafer processing
JP3411814B2 (en) Plasma processing equipment
JP4646053B2 (en) Branch switch and etching apparatus for high frequency power
JPH0116312B2 (en)
JPH04306597A (en) Plasma generating device and method for controlling it
JPH06122983A (en) Plasma treatment and plasma device
JPS5825742B2 (en) Plasma etching processing method and processing equipment
JP3535276B2 (en) Etching method
US5110410A (en) Zinc sulfide planarization
JPH049465A (en) Method and device for controlling dc potential in thin film forming device
JPH08316214A (en) Plasma treating device
JP2001244098A (en) Method and device for processing plasma
JP2670140B2 (en) Plasma processing method and apparatus
JP2985230B2 (en) Plasma equipment
JPH0613352A (en) Plasma etching apparatus