JPH04306465A - Absorption freezer - Google Patents

Absorption freezer

Info

Publication number
JPH04306465A
JPH04306465A JP7010591A JP7010591A JPH04306465A JP H04306465 A JPH04306465 A JP H04306465A JP 7010591 A JP7010591 A JP 7010591A JP 7010591 A JP7010591 A JP 7010591A JP H04306465 A JPH04306465 A JP H04306465A
Authority
JP
Japan
Prior art keywords
temperature
solution
refrigerant
cold water
regenerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7010591A
Other languages
Japanese (ja)
Other versions
JP2581617B2 (en
Inventor
Yoshitaka Matsushima
松島 吉孝
Kenji Onishi
健二 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP3070105A priority Critical patent/JP2581617B2/en
Publication of JPH04306465A publication Critical patent/JPH04306465A/en
Application granted granted Critical
Publication of JP2581617B2 publication Critical patent/JP2581617B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To prevent the damage of a device even when the interior of a room is in a no-load state by a method wherein during the stop of cooling operation, operation of a solution circulating pump, a cooling fan, and a refrigerating circulating pump is turned OFF at a cold water freezing temperature and turned ON at a freezing temperature or higher and the above is repeated until the temperature of a reproducer is reduced to a value lower than a given value. CONSTITUTION:When, after the stop of cooling operation, a cold water temperature is reduced to 1 deg.C, operation of a solution circulating pump 10, a cooling fan 11, and a refrigerant circulating pump 13 is switched from ON to OFF. Even when a load is not applied, a cold water temperature is increases by the generation of heat of a cold hot water pump 12. When the cold water temperature attains to 4 deg.C, operation of the solution circulating pump 10, the cooling fan 11, and the refrigerant circulating pump 13 is brought into an ON-state again. During ON-operation, the temperature of a high temperature reproducer 1 is reduced and until it attains to 105 deg.C, the ON and OFF cycle of the solution circulating pump 10, the cooling fan 11, and the refrigerant circulating pump 13 is repeated. Thus, a cold water temperature is held at 1-4 deg.C and no freezing occurs until completion of dilution. This constitution prevents breakage of a device owing to freezing of cold water.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、吸収液の稀釈運転に係
り、特に冷房運転停止時に冷水の凍結を防止するのに好
適な制御装置を備えた吸収冷凍機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption liquid dilution operation, and more particularly to an absorption refrigerator equipped with a control device suitable for preventing chilled water from freezing when cooling operation is stopped.

【0002】0002

【従来の技術】図4に従来の吸収冷凍機、ここでは空冷
二重効用吸収冷温水機を示して説明する。稀溶液を加熱
する高温再生器1と、高温再生器1から発生した冷媒蒸
気と中間濃溶液とを分離する分離器2と、中間濃溶液と
冷媒蒸気とを熱交換し濃溶液とする低温再生器3と、冷
媒蒸気を冷媒液に凝縮する凝縮器4と、冷媒液を伝熱管
6Aに散布し冷媒液の気化熱で伝熱管6A内の冷水を冷
却する蒸発器6と、蒸発器6で蒸発した冷媒蒸気を濃溶
液に吸収させ稀溶液に稀釈する吸収器7と、中間濃溶液
と稀溶液とを熱交換させる高温熱交換器8及び稀溶液と
濃溶液とを熱交換させる低温熱交換器9を経由し稀溶液
を高温再生器1に圧送する溶液循環ポンプ10と、吸収
器7及び凝縮器4を冷却するための冷却ファン11、冷
水を循環させる冷温水ポンプ12及び蒸発器6に冷媒液
を循環させる冷媒循環ポンプ13とよりなる構成である
。そして冷房運転停止時は、吸収液(濃溶液)を晶析さ
せないように稀釈運転を行っているが、室内が無負荷の
場合、稀釈運転中の残存能力により冷水が凍結する恐れ
がある。すなわち図5に示すように、溶液循環ポンプ、
冷却ファン及び冷媒循環ポンプのそれぞれを、高温再生
器の温度が約105℃に低下するまで運転すると、冷水
の温度は負荷がある場合は凍結温度に至らないが、無負
荷の場合は凍結温度となり凍結する。特に機器の小型化
、空冷化に伴い吸収液は必然的に高濃度で運転されてお
り、冷房運転停止時にこの濃度では吸収液が晶析に至る
ため、稀釈運転を行い濃度を低くする必要がある。 残存能力による凍結防止は、一般には冷温水ポンプを運
転し負荷を付けるなどの対策がなされているが、負荷が
ない場合は凍結を完全に防止するまでの効果が得られず
、凍結に至っていた。
2. Description of the Related Art FIG. 4 shows a conventional absorption refrigerating machine, in this case an air-cooled dual-effect absorption chiller/heater. A high-temperature regenerator 1 that heats a dilute solution, a separator 2 that separates refrigerant vapor generated from the high-temperature regenerator 1 and an intermediate concentrated solution, and a low-temperature regenerator that exchanges heat between the intermediate concentrated solution and refrigerant vapor to form a concentrated solution. 3, a condenser 4 that condenses refrigerant vapor into a refrigerant liquid, an evaporator 6 that sprays the refrigerant liquid onto the heat transfer tube 6A and cools the cold water in the heat transfer tube 6A with the heat of vaporization of the refrigerant liquid, and the evaporator 6. an absorber 7 that absorbs evaporated refrigerant vapor into a concentrated solution and dilutes it into a dilute solution; a high-temperature heat exchanger 8 that exchanges heat between the intermediate concentrated solution and the dilute solution; and a low-temperature heat exchanger that exchanges heat between the dilute solution and the concentrated solution. A solution circulation pump 10 that pumps the dilute solution to the high temperature regenerator 1 via the vessel 9, a cooling fan 11 that cools the absorber 7 and the condenser 4, a cold/hot water pump 12 that circulates cold water, and the evaporator 6. This configuration includes a refrigerant circulation pump 13 that circulates refrigerant liquid. When the cooling operation is stopped, a dilution operation is performed to prevent the absorption liquid (concentrated solution) from crystallizing, but if there is no load indoors, there is a risk that the cold water will freeze due to the remaining capacity during the dilution operation. That is, as shown in FIG. 5, a solution circulation pump,
If the cooling fan and refrigerant circulation pump are operated until the temperature of the high-temperature regenerator drops to approximately 105°C, the temperature of the chilled water will not reach the freezing temperature when there is a load, but it will reach the freezing temperature when there is no load. to freeze. In particular, with the downsizing of equipment and air cooling, the absorption liquid is inevitably operated at a high concentration, and when the cooling operation is stopped, the absorption liquid will crystallize at this concentration, so it is necessary to perform dilution operation to lower the concentration. be. To prevent freezing by using residual capacity, measures are generally taken such as operating the cold/hot water pump and applying a load, but if there is no load, the effect of completely preventing freezing cannot be obtained, leading to freezing. .

【0003】0003

【発明が解決しようとする課題】従来の吸収冷凍機にあ
っては、冷房運転停止時に室内が無負荷の場合、稀釈運
転を行っても残存能力により冷水が凍結し、機器が破損
する問題点があった。
[Problems to be Solved by the Invention] Conventional absorption chillers have the problem that if there is no load in the room when cooling operation is stopped, the remaining capacity will cause the chilled water to freeze even if dilution operation is performed, causing damage to the equipment. was there.

【0004】本発明の目的は、冷房運転停止時に室内が
無負荷の場合でも、冷水の凍結による機器の破損を防止
できる制御装置を備えた吸収冷凍機を提供することにあ
る。
An object of the present invention is to provide an absorption refrigerator equipped with a control device that can prevent damage to equipment due to freezing of cold water even when there is no load in the room when cooling operation is stopped.

【0005】[0005]

【課題を解決するための手段】前記の目的を達成するた
め、本発明に係る吸収冷凍機は稀溶液を加熱する再生器
と、再生器から発生した冷媒蒸気と濃溶液とを分離する
分離器と、冷媒蒸気を冷媒液に凝縮する凝縮器と、冷媒
液を伝熱管に散布し冷媒液の気化熱で伝熱管内の冷水を
冷却する蒸発器と、蒸発器で蒸発した冷媒蒸気を濃溶液
に吸収させ稀溶液に稀釈する吸収器と、稀溶液と濃溶液
とを熱交換させる熱交換器を経由し稀溶液を再生器に圧
送する溶液循環ポンプと、吸収器及び凝縮器を冷却する
冷却ファン、冷水を循環させる冷温水ポンプ及び蒸発器
に冷媒液を循環させる冷媒循環ポンプとよりなる吸収冷
凍機において、冷房運転停止時に、溶液循環ポンプ、冷
却ファン及び冷媒循環ポンプの運転を冷水の凍結温度で
オフするとともに凍結温度以上でオンし、このオン・オ
フを再生器が所定温度に低下するまで繰り返し濃溶液を
稀釈させる制御装置を設けた構成とする。
[Means for Solving the Problems] In order to achieve the above object, an absorption refrigerator according to the present invention includes a regenerator for heating a dilute solution, and a separator for separating refrigerant vapor generated from the regenerator from a concentrated solution. , a condenser that condenses refrigerant vapor into refrigerant liquid, an evaporator that spreads refrigerant liquid onto heat transfer tubes and uses the heat of vaporization of the refrigerant liquid to cool the cold water in the heat transfer tubes, and converts the refrigerant vapor evaporated in the evaporator into a concentrated solution. An absorber that absorbs water and dilutes it into a dilute solution, a solution circulation pump that pumps the dilute solution to the regenerator via a heat exchanger that exchanges heat between the dilute solution and the concentrated solution, and a cooling system that cools the absorber and condenser. In an absorption chiller consisting of a fan, a hot/cold water pump that circulates chilled water, and a refrigerant circulation pump that circulates refrigerant liquid to the evaporator, when the cooling operation is stopped, the operation of the solution circulation pump, cooling fan, and refrigerant circulation pump is stopped to freeze the chilled water. The regenerator is configured to include a control device that turns off at temperature and turns on at temperatures above freezing temperature, and repeatedly turns on and off to dilute the concentrated solution until the temperature of the regenerator drops to a predetermined temperature.

【0006】そして稀溶液を加熱する再生器と、再生器
から発生した冷媒蒸気と濃溶液とを分離する分離器と、
冷媒蒸気を冷媒液に凝縮する凝縮器と、冷媒液を伝熱管
に散布し冷媒液の気化熱で伝熱管内の冷水を冷却する蒸
発器と、蒸発器で蒸発した冷媒蒸気を濃溶液に吸収させ
稀溶液に稀釈する吸収器と、稀溶液と濃溶液とを熱交換
させる熱交換器を経由し稀溶液を再生器に圧送する溶液
循環ポンプと、吸収器及び凝縮器を冷却する冷却ファン
、冷水を循環させる冷温水ポンプ及び蒸発器に冷媒液を
循環させる冷媒循環ポンプとよりなる吸収冷凍機におい
て、冷房運転停止時に、溶液循環ポンプ及び冷媒循環ポ
ンプを再生器が所定温度に低下するまで連続運転し、冷
水ポンプの運転を冷水の凍結温度でオフするとともに凍
結温度以上でオンし、このオン・オフを繰り返し濃溶液
を稀釈させる制御装置を設けた構成でもよい。
[0006] A regenerator that heats the dilute solution; a separator that separates the refrigerant vapor generated from the regenerator and the concentrated solution;
A condenser that condenses refrigerant vapor into refrigerant liquid, an evaporator that spreads refrigerant liquid onto heat transfer tubes and uses the heat of vaporization of the refrigerant liquid to cool the cold water in the heat transfer tubes, and absorbs the refrigerant vapor evaporated in the evaporator into a concentrated solution. an absorber for diluting the solution into a dilute solution; a solution circulation pump for pumping the dilute solution to a regenerator via a heat exchanger for exchanging heat between the dilute solution and the concentrated solution; a cooling fan for cooling the absorber and the condenser; In an absorption refrigerator consisting of a cold/hot water pump that circulates cold water and a refrigerant circulation pump that circulates refrigerant liquid to the evaporator, when cooling operation is stopped, the solution circulation pump and refrigerant circulation pump are continuously operated until the regenerator cools to a predetermined temperature. A configuration may also be adopted in which a control device is provided that turns off the operation of the cold water pump when the cold water reaches the freezing temperature and turns it on when the cold water reaches the freezing temperature and repeatedly turns on and off to dilute the concentrated solution.

【0007】[0007]

【作用】本発明の吸収冷凍機によれば、冷房運転の停止
後、制御装置は、冷水の出口温度信号と再生器の温度信
号と冷房運転の停止信号とを入力し、冷水の温度が凍結
温度になると溶液循環ポンプ、冷却ファン及び冷媒循環
ポンプの運転をオンからオフに切り替える。負荷がない
場合でも冷温水ポンプの発熱などにより冷水の温度が上
昇する。冷水温度が凍結温度以上になると再び溶液循環
ポンプ、冷却ファン及び冷媒循環ポンプの運転をオンに
する。この間に再生器の温度が次第に低下し、所定温度
に低下するまで溶液循環ポンプ、冷却ファン及び冷媒循
環ポンプのポンプの運転のオン・オフを繰り返す。従っ
て冷水温度は凍結温度より高温度に保持される。
[Operation] According to the absorption refrigerator of the present invention, after the cooling operation is stopped, the control device inputs the chilled water outlet temperature signal, the regenerator temperature signal, and the cooling operation stop signal, and the temperature of the chilled water is frozen. When the temperature reaches the temperature, the operation of the solution circulation pump, cooling fan, and refrigerant circulation pump is switched from on to off. Even when there is no load, the temperature of chilled water rises due to heat generated by the chilled/hot water pump. When the chilled water temperature reaches the freezing temperature or higher, the solution circulation pump, cooling fan, and refrigerant circulation pump are turned on again. During this time, the temperature of the regenerator gradually decreases, and the solution circulation pump, cooling fan, and refrigerant circulation pump are repeatedly turned on and off until the temperature drops to a predetermined temperature. Therefore, the cold water temperature is maintained above the freezing temperature.

【0008】[0008]

【実施例】本発明の一実施例を図1を参照しながら説明
する。
[Embodiment] An embodiment of the present invention will be described with reference to FIG.

【0009】図1に示すように、高温再生器(再生器)
1は内部に燃焼室が収められ、冷媒を吸収し濃度が薄く
なった稀溶液を加熱し、稀溶液から冷媒蒸気を発生する
。分離器2は冷媒蒸気を蒸発して濃度が濃くなった中間
濃溶液と冷媒蒸気とを分離する。低温再生器(再生器)
3は高温熱交換器(熱交換器)8により温度が低下した
中間濃溶液と分離器2からくる冷媒蒸気とを再加熱し、
中間濃溶液の中から更に冷媒蒸気を発生させ濃溶液とす
るとともに、分離器2からきた冷媒蒸気を凝縮して冷媒
液にする。凝縮器4は低温再生器3で発生した冷媒蒸気
を冷却配管5を流れる冷却水で冷却液化して冷媒液にす
る。蒸発器6は内部に冷却すべき冷水がながれる伝熱管
6Aが配設され、伝熱管6Aに凝縮器4からくる冷媒液
を散布し、冷媒液が冷媒蒸気となるときの気化熱を利用
して冷水を冷却する。吸収器7は低温再生器3からくる
濃溶液が散布され、この濃溶液が蒸発器6内で気化した
冷媒蒸気を吸収する。吸収器7の吸収作用によって蒸発
器6内は高真空が確保されており、蒸発器6内の伝熱管
6A上に散布された冷媒液は直ちに蒸発できるようにな
っている。高温熱交換器8は高温の中間濃溶液と低温の
稀溶液とで熱交換し、また低温熱交換器9は高温の濃溶
液と低温の稀溶液とで熱交換を行い、高温側と低温側と
に2段に設けて熱交換効率の向上を図っている。溶液循
環ポンプ10は冷媒蒸気を吸収した稀溶液を循環させる
ために設けられており、また吸収器7及び凝縮器4を冷
却するための冷却ファン11、冷水を循環させる冷温水
ポンプ12及び蒸発器6に冷媒液を循環させる冷媒循環
ポンプ13とが設けられている。そして冷水の出口温度
と高温再生器1の温度とを検出する温度計15,16を
設け、それぞれの温度信号と冷房運転の停止信号とを入
力し、冷水の出口温度が例えば1℃の凍結温度になると
溶液循環ポンプ10、冷却ファン11及び冷媒循環ポン
プ13の運転をオフし、例えば4℃の凍結温度以上にな
ると溶液循環ポンプ10、冷却ファン11及び冷媒循環
ポンプ13の運転をオンし、このオン・オフ動作を、高
温再生器1の温度が例えば105℃の所定温度に低下す
るまで繰り返させる制御装置20を備えている構成であ
る。
As shown in FIG. 1, a high temperature regenerator (regenerator)
1 has a combustion chamber inside, absorbs refrigerant, heats a diluted solution, and generates refrigerant vapor from the diluted solution. The separator 2 evaporates the refrigerant vapor and separates the refrigerant vapor from the intermediate concentrated solution. Low temperature regenerator (regenerator)
3 reheats the intermediate concentrated solution whose temperature has been lowered by the high temperature heat exchanger (heat exchanger) 8 and the refrigerant vapor coming from the separator 2;
Refrigerant vapor is further generated from the intermediate concentrated solution to form a concentrated solution, and the refrigerant vapor coming from the separator 2 is condensed to form a refrigerant liquid. The condenser 4 cools and liquefies the refrigerant vapor generated in the low-temperature regenerator 3 with the cooling water flowing through the cooling pipe 5 to form a refrigerant liquid. The evaporator 6 is provided with a heat transfer tube 6A through which cold water to be cooled flows, and the refrigerant liquid coming from the condenser 4 is sprayed onto the heat transfer tube 6A, and the heat of vaporization when the refrigerant liquid turns into refrigerant vapor is utilized. Cooling cold water. The absorber 7 is sprayed with a concentrated solution coming from the low temperature regenerator 3, and this concentrated solution absorbs the refrigerant vapor vaporized in the evaporator 6. A high vacuum is ensured in the evaporator 6 by the absorption action of the absorber 7, so that the refrigerant liquid spread on the heat transfer tubes 6A in the evaporator 6 can be immediately evaporated. The high-temperature heat exchanger 8 exchanges heat between a high-temperature intermediate concentrated solution and a low-temperature dilute solution, and the low-temperature heat exchanger 9 exchanges heat between a high-temperature concentrated solution and a low-temperature dilute solution. In order to improve heat exchange efficiency, the heat exchanger is installed in two stages. The solution circulation pump 10 is provided to circulate a dilute solution that has absorbed refrigerant vapor, and also includes a cooling fan 11 for cooling the absorber 7 and the condenser 4, a cold/hot water pump 12 for circulating cold water, and an evaporator. 6 is provided with a refrigerant circulation pump 13 that circulates refrigerant liquid. Then, thermometers 15 and 16 are provided to detect the outlet temperature of the chilled water and the temperature of the high-temperature regenerator 1, and the respective temperature signals and a cooling operation stop signal are inputted, and the outlet temperature of the chilled water is set to a freezing temperature of, for example, 1°C. When this happens, the operation of the solution circulation pump 10, cooling fan 11, and refrigerant circulation pump 13 is turned off, and when the temperature exceeds the freezing temperature of, for example, 4°C, the operation of the solution circulation pump 10, cooling fan 11, and refrigerant circulation pump 13 is turned on. The configuration includes a control device 20 that repeats on/off operations until the temperature of the high temperature regenerator 1 drops to a predetermined temperature of 105° C., for example.

【0010】また制御装置20は、溶液循環ポンプ10
及び冷媒循環ポンプ13を高温再生器1の温度が例えば
105℃に低下するまで連続運転し、冷却ファン11の
みの運転を冷水の出口温度が例えば1℃の凍結温度にな
るとオフし、例えば4℃の凍結温度以上になるとオンし
、このオン・オフ動作を、高温再生器1の温度が例えば
105℃に低下するまで繰り返させる構成でもよい。
The control device 20 also includes a solution circulation pump 10.
The refrigerant circulation pump 13 is continuously operated until the temperature of the high-temperature regenerator 1 drops to, for example, 105°C, and the operation of only the cooling fan 11 is turned off when the outlet temperature of the cold water reaches a freezing temperature of, for example, 1°C. It may be configured to turn on when the temperature exceeds the freezing temperature of , and repeat this on/off operation until the temperature of the high temperature regenerator 1 drops to, for example, 105°C.

【0011】つぎに本実施例の動作を図2を参照しなが
ら説明する。冷房運転の停止後、冷水の温度が1℃にな
ると溶液循環ポンプ、冷却ファン及び冷媒循環ポンプの
運転がONからOFFに切り替えられる。負荷が無い場
合でも冷温水ポンプの発熱等により、冷水の温度が図示
されるように上昇する。冷水温度が4℃になると再び溶
液循環ポンプ、冷却ファン及び冷媒循環ポンプの運転が
ONとなる。この間に高温再生器の温度が次第に低下し
、105℃になるまで溶液循環ポンプ、冷却ファン及び
冷媒循環ポンプのON・OFFサイクルが繰り返される
。従って冷水温度は1〜4℃の間の保持され稀釈終了ま
で凍結することがない。また図3に示すように、溶液循
環ポンプ及び冷媒循環ポンプを高温再生器の温度が10
5℃に低下するまで連続運転し、冷却ファンのみの運転
を冷水温度が1℃の凍結温度になるとOFFし、4℃の
凍結温度以上になるとONし、このON・OFF動作を
、高温再生器の温度が105℃に低下するまで繰り返さ
せても前記と同一の効果を得ることができる。稀釈終了
後の吸収液の濃度は溶液循環ポンプ及び冷媒循環ポンプ
が連続運転されているため、更に稀釈され稀釈効果が大
きい。
Next, the operation of this embodiment will be explained with reference to FIG. After the cooling operation is stopped, when the temperature of the cold water reaches 1° C., the operation of the solution circulation pump, cooling fan, and refrigerant circulation pump is switched from ON to OFF. Even when there is no load, the temperature of the cold water rises as shown in the figure due to heat generation from the cold/hot water pump. When the chilled water temperature reaches 4° C., the solution circulation pump, cooling fan, and refrigerant circulation pump are turned on again. During this time, the temperature of the high temperature regenerator gradually decreases, and ON/OFF cycles of the solution circulation pump, cooling fan, and refrigerant circulation pump are repeated until the temperature reaches 105°C. Therefore, the temperature of the cold water is maintained between 1 and 4° C. and does not freeze until the dilution is completed. In addition, as shown in Figure 3, the solution circulation pump and refrigerant circulation pump are operated at a temperature of 10
The cooling fan is operated continuously until the temperature drops to 5℃, and the cooling fan is turned off when the chilled water temperature reaches the freezing temperature of 1℃, and turned on when the chilled water temperature reaches the freezing temperature of 4℃.This ON/OFF operation is controlled by the high temperature regenerator. The same effect as described above can be obtained even if the temperature is repeated until the temperature drops to 105°C. Since the solution circulation pump and the refrigerant circulation pump are continuously operated, the concentration of the absorption liquid after dilution is further diluted, resulting in a large dilution effect.

【0012】なお冷水及び再生器の制御温度は、代表値
を示すものであり前記の温度に限定されない。また実施
例を空冷式吸収冷凍機について説明したが空冷式吸収冷
凍機に限定されず、水冷式吸収冷凍機においても冷却フ
ァンを冷却水ポンプとすることにより、冷水凍結に至る
ことなく溶液の稀釈を行うことができる。
[0012] The control temperatures of the chilled water and the regenerator are representative values and are not limited to the above-mentioned temperatures. In addition, although the embodiment has been described with respect to an air-cooled absorption refrigerator, it is not limited to air-cooled absorption refrigerators; by using a cooling fan as a cooling water pump in a water-cooled absorption refrigerator, the solution can be diluted without freezing the cold water. It can be performed.

【0013】[0013]

【発明の効果】本発明の吸収冷凍機によれば、冷房運転
停止時に室内無負荷の場合でも、濃溶液の稀釈運転後の
残存能力による冷水凍結が防止され、冷水凍結による機
器の破壊を防ぐことができる。
[Effects of the Invention] According to the absorption refrigerator of the present invention, even if there is no load indoors when cooling operation is stopped, cold water is prevented from freezing due to the remaining capacity after dilution operation of a concentrated solution, and equipment damage due to freezing of cold water is prevented. be able to.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例を示す構成図である。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】本実施例の動作を説明する図である。FIG. 2 is a diagram illustrating the operation of this embodiment.

【図3】他の実施例の動作を説明する図である。FIG. 3 is a diagram illustrating the operation of another embodiment.

【図4】従来の技術を示す図である。FIG. 4 is a diagram showing a conventional technique.

【図5】従来の技術の動作を説明する図である。FIG. 5 is a diagram illustrating the operation of the conventional technology.

【符号の説明】[Explanation of symbols]

1  高温再生器 2  分離器 3  低温再生器 4  凝縮器 6  蒸発器 8  高温熱交換器(熱交換器) 9  低温熱交換器(熱交換器) 10  溶液循環ポンプ 11  冷却ファン 12  冷温水ポンプ 13  冷媒循環ポンプ 20  制御装置 1 High temperature regenerator 2 Separator 3 Low temperature regenerator 4 Condenser 6 Evaporator 8 High temperature heat exchanger (heat exchanger) 9 Low temperature heat exchanger (heat exchanger) 10 Solution circulation pump 11 Cooling fan 12 Cold and hot water pump 13 Refrigerant circulation pump 20 Control device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  稀溶液を加熱する再生器と、該再生器
から発生した冷媒蒸気と濃溶液とを分離する分離器と、
該冷媒蒸気を冷媒液に凝縮する凝縮器と、前記冷媒液を
伝熱管に散布し該冷媒液の気化熱で前記伝熱管内の冷水
を冷却する蒸発器と、該蒸発器で蒸発した冷媒蒸気を前
記濃溶液に吸収させ前記稀溶液に稀釈する吸収器と、該
稀溶液と前記濃溶液とを熱交換させる熱交換器を経由し
前記稀溶液を前記再生器に圧送する溶液循環ポンプと、
前記吸収器及び前記凝縮器を冷却する冷却ファン、前記
冷水を循環させる冷温水ポンプ及び前記蒸発器に冷媒液
を循環させる冷媒循環ポンプとよりなる吸収冷凍機にお
いて、冷房運転停止時に、前記溶液循環ポンプ、前記冷
却ファン及び前記冷媒循環ポンプの運転を前記冷水の凍
結温度でオフするとともに該凍結温度以上でオンし、こ
のオン・オフを前記再生器が所定温度に低下するまで繰
り返し前記濃溶液を稀釈させる制御装置を設けたことを
特徴とする吸収冷凍機。
Claim 1: A regenerator for heating a dilute solution; a separator for separating refrigerant vapor generated from the regenerator and a concentrated solution;
a condenser that condenses the refrigerant vapor into a refrigerant liquid; an evaporator that sprays the refrigerant liquid onto the heat transfer tube and cools the cold water in the heat transfer tube with the heat of vaporization of the refrigerant liquid; and the refrigerant vapor evaporated in the evaporator. an absorber that absorbs the solution into the concentrated solution and dilutes it into the dilute solution; a solution circulation pump that pumps the dilute solution to the regenerator via a heat exchanger that exchanges heat between the dilute solution and the concentrated solution;
In an absorption refrigerator comprising a cooling fan that cools the absorber and the condenser, a cold/hot water pump that circulates the cold water, and a refrigerant circulation pump that circulates refrigerant liquid to the evaporator, when the cooling operation is stopped, the solution circulation The operations of the pump, the cooling fan, and the refrigerant circulation pump are turned off at the freezing temperature of the cold water and turned on at or above the freezing temperature, and this on and off is repeated until the temperature of the regenerator drops to a predetermined temperature. An absorption refrigerator characterized by being equipped with a control device for dilution.
【請求項2】  稀溶液を加熱する再生器と、該再生器
から発生した冷媒蒸気と濃溶液とを分離する分離器と、
該冷媒蒸気を冷媒液に凝縮する凝縮器と、前記冷媒液を
伝熱管に散布し該冷媒液の気化熱で前記伝熱管内の冷水
を冷却する蒸発器と、該蒸発器で蒸発した冷媒蒸気を前
記濃溶液に吸収させ前記稀溶液に稀釈する吸収器と、該
稀溶液と前記濃溶液とを熱交換させる熱交換器を経由し
前記稀溶液を前記再生器に圧送する溶液循環ポンプと、
前記吸収器及び前記凝縮器を冷却する冷却ファン、前記
冷水を循環させる冷温水ポンプ及び前記蒸発器に冷媒液
を循環させる冷媒循環ポンプとよりなる吸収冷凍機にお
いて、冷房運転停止時に、前記溶液循環ポンプ及び前記
冷媒循環ポンプを前記再生器が所定温度に低下するまで
連続運転し、前記冷却ファンのみの運転を前記冷水の凍
結温度でオフするとともに該凍結温度以上でオンし、こ
のオン・オフを繰り返し前記濃溶液を稀釈させる制御装
置を設けたことを特徴とする吸収冷凍機。
2. A regenerator that heats the dilute solution; a separator that separates the refrigerant vapor generated from the regenerator and the concentrated solution;
a condenser that condenses the refrigerant vapor into a refrigerant liquid; an evaporator that sprays the refrigerant liquid onto the heat transfer tube and cools the cold water in the heat transfer tube with the heat of vaporization of the refrigerant liquid; and the refrigerant vapor evaporated in the evaporator. an absorber that absorbs the solution into the concentrated solution and dilutes it into the dilute solution; a solution circulation pump that pumps the dilute solution to the regenerator via a heat exchanger that exchanges heat between the dilute solution and the concentrated solution;
In an absorption refrigerator comprising a cooling fan that cools the absorber and the condenser, a cold/hot water pump that circulates the cold water, and a refrigerant circulation pump that circulates refrigerant liquid to the evaporator, when the cooling operation is stopped, the solution circulation The pump and the refrigerant circulation pump are continuously operated until the temperature of the regenerator drops to a predetermined temperature, and the operation of only the cooling fan is turned off at the freezing temperature of the cold water and turned on at or above the freezing temperature, and this on/off is performed. An absorption refrigerator comprising a control device that repeatedly dilutes the concentrated solution.
JP3070105A 1991-04-02 1991-04-02 Absorption refrigerator Expired - Fee Related JP2581617B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3070105A JP2581617B2 (en) 1991-04-02 1991-04-02 Absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3070105A JP2581617B2 (en) 1991-04-02 1991-04-02 Absorption refrigerator

Publications (2)

Publication Number Publication Date
JPH04306465A true JPH04306465A (en) 1992-10-29
JP2581617B2 JP2581617B2 (en) 1997-02-12

Family

ID=13421930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3070105A Expired - Fee Related JP2581617B2 (en) 1991-04-02 1991-04-02 Absorption refrigerator

Country Status (1)

Country Link
JP (1) JP2581617B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0719656A (en) * 1993-07-01 1995-01-20 Tokyo Gas Co Ltd Absorption type refrigerator
JP2000179976A (en) * 1998-12-14 2000-06-30 Sanyo Electric Co Ltd Control for absorption type refrigerating machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0719656A (en) * 1993-07-01 1995-01-20 Tokyo Gas Co Ltd Absorption type refrigerator
JP2000179976A (en) * 1998-12-14 2000-06-30 Sanyo Electric Co Ltd Control for absorption type refrigerating machine

Also Published As

Publication number Publication date
JP2581617B2 (en) 1997-02-12

Similar Documents

Publication Publication Date Title
CN116358141A (en) Air conditioner refrigeration control system and control method thereof
JP2581617B2 (en) Absorption refrigerator
JP6871015B2 (en) Absorption refrigeration system
JPH0250058A (en) Air cooled absorbing type cooling and heating device
JP3851764B2 (en) Absorption refrigerator
JP2003004330A (en) Exhaust heat recovery air conditioner
JP2000274860A (en) Heat pump cycle type absorption refrigerating and heating simultaneously taking-out machine and method
JPS62196567A (en) Solar-heat utilizing absorption chilling unit
JPH11304276A (en) Absorption refrigerating machine
JP2628023B2 (en) Absorption refrigerator
JPS5832301B2 (en) absorption refrigerator
JPH0829011A (en) Heat pump system
JPH0446342B2 (en)
KR100229414B1 (en) Absorption type cooler
JP2022044138A (en) Absorption type refrigeration system and absorption type refrigerator
JP2000319646A (en) Absorbing solution for absorption refrigerating machine and absorption refrigerating machine
KR0124786B1 (en) Diluting operation apparatus for air-cooling absorptive type refrigerator and heater
JPS6118368Y2 (en)
JP2020046128A (en) Absorption refrigerator
JPH06159849A (en) Absorption-type cold/hot water feeder and its controlling method
JP2654832B2 (en) Absorption refrigerator
KR0137580Y1 (en) Cooling apparatus of liquid refrigerator absorptive airconditioner
JPH03105169A (en) Absorption freezer
JPH11304275A (en) Absorption refrigerating machine
JPH05172441A (en) Cold water manufacturing device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071121

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees