JPH043057B2 - - Google Patents

Info

Publication number
JPH043057B2
JPH043057B2 JP55087097A JP8709780A JPH043057B2 JP H043057 B2 JPH043057 B2 JP H043057B2 JP 55087097 A JP55087097 A JP 55087097A JP 8709780 A JP8709780 A JP 8709780A JP H043057 B2 JPH043057 B2 JP H043057B2
Authority
JP
Japan
Prior art keywords
electrode
electron gun
deflection
voltage
fluorescent surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55087097A
Other languages
Japanese (ja)
Other versions
JPS5713653A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP8709780A priority Critical patent/JPS5713653A/en
Publication of JPS5713653A publication Critical patent/JPS5713653A/en
Publication of JPH043057B2 publication Critical patent/JPH043057B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/10Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes
    • H01J31/12Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes with luminescent screen
    • H01J31/123Flat display tubes
    • H01J31/124Flat display tubes using electron beam scanning

Landscapes

  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)

Description

【発明の詳細な説明】 本発明は扁平型陰極線管に係る。[Detailed description of the invention] The present invention relates to a flat cathode ray tube.

扁平型陰極線管は、例えば第1図及び第2図に
示すように、例えば板状の第1のガラス基板1a
と、周辺部に周壁部1b1とフランジ部1b2とを有
して皿状をなしフランジ部1b2が基板1aの周辺
部に接合封着される第2のガラス基板1bとより
なる扁平管体1を有し、この扁平管体1の面方向
に沿つてその外側に延長してネツク管1cが設け
られ、このネツク管1c内に電子銃2が配置され
てなる。
As shown in FIGS. 1 and 2, the flat cathode ray tube includes, for example, a plate-shaped first glass substrate 1a.
and a second glass substrate 1b having a peripheral wall portion 1b1 and a flange portion 1b2 in a dish-like shape and having the flange portion 1b2 bonded and sealed to the peripheral portion of the substrate 1a. A network tube 1c is provided extending outward along the surface direction of the flat tube body 1, and an electron gun 2 is disposed within the network tube 1c.

基板1aの内面には、光透過性のターゲツト電
極3が被着され、これの上に螢光面4が塗布され
ている。あるいは図示しないが基板1aに例えば
額縁状に導電膜が被着されこの額縁内にこの導電
膜上に跨つて螢光面4を被着しこの螢光面4上に
メタルバツク層を施してメタルバツク層及び額縁
状の導電層によつてターゲツト電極を構成する。
A light-transmissive target electrode 3 is adhered to the inner surface of the substrate 1a, and a fluorescent surface 4 is coated thereon. Alternatively, although not shown, a conductive film is applied to the substrate 1a in the form of a frame, for example, and a fluorescent surface 4 is applied within the frame over the conductive film, and a metal back layer is formed on the fluorescent surface 4. and a frame-shaped conductive layer constitute a target electrode.

他方の基板1b側には夫々ターゲツト電極3、
従つて螢光面4と対向して背面電極5が配置され
る。ネツク管1c及び電子銃2は、前述したよう
に扁平管体の面方向すなわち螢光面4の面方向に
沿つて延長するように配置される。図示の例では
電子銃2の軸心が螢光面4の中央の垂直走査方向
に沿うように且つ螢光面4、従つてターゲツト電
極3と背面電極5との間に形成される主偏向系の
空間の中央に対向するように配置した場合であ
る。6は電子銃2より発射され上述した主偏向系
に向う電子ビームをこの電子銃2の軸心方向とほ
ぼ直交し且つほぼ螢光面4の面方向に沿う方向に
偏向(以下水平偏向という)させる偏向手段で、
この手段6は、例えば磁気コア6aに電磁線輪6
bが配置された電磁偏向手段によつて構成され
る。また、7は同様に電子銃2より発射され主偏
向系に向う電子ビームを螢光面4と直交する方向
に偏向(以下垂直偏向という)させる偏向手段
で、例えば第3図に示すように対の静電偏向板7
a及び7bより構成される。
On the other substrate 1b side, target electrodes 3,
Therefore, the back electrode 5 is placed opposite the fluorescent surface 4. The network tube 1c and the electron gun 2 are arranged so as to extend along the surface direction of the flat tube, that is, the surface direction of the fluorescent surface 4, as described above. In the illustrated example, the main deflection system is formed such that the axis of the electron gun 2 is along the vertical scanning direction at the center of the fluorescent surface 4, and between the fluorescent surface 4, the target electrode 3, and the back electrode 5. This is the case when they are placed so as to face each other in the center of the space. Reference numeral 6 deflects the electron beam emitted from the electron gun 2 and directed toward the above-mentioned main deflection system in a direction substantially perpendicular to the axial direction of the electron gun 2 and substantially along the surface direction of the fluorescent surface 4 (hereinafter referred to as horizontal deflection). with a deflection means that causes
This means 6 includes, for example, an electromagnetic wire ring 6 attached to a magnetic core 6a.
b is constituted by electromagnetic deflection means arranged. Similarly, 7 is a deflection means for deflecting the electron beam emitted from the electron gun 2 and directed toward the main deflection system in a direction perpendicular to the fluorescent surface 4 (hereinafter referred to as vertical deflection). Electrostatic deflection plate 7
It is composed of a and 7b.

このような構成によつて電子銃2より発射され
た電子ビームを、水平偏向手段6によつて螢光面
4上に電子ビームが水平走査されると共に垂直偏
向手段7によつて主偏向系との共働によつて電子
ビームを螢光面4上に垂直方向に走査するように
なされる。ここに、主偏向系を形成するターゲツ
ト電極3には高電圧V0例えば5KVが印加され、
背面電極5にはこれに比し低い電圧を有するも同
様に高電圧V1例えば4KVが与えられる。
With such a configuration, the electron beam emitted from the electron gun 2 is horizontally scanned onto the fluorescent surface 4 by the horizontal deflection means 6, and is deflected by the main deflection system by the vertical deflection means 7. The electron beam is scanned vertically on the fluorescent surface 4 by the cooperation of the electron beams. Here, a high voltage V0 , for example 5KV, is applied to the target electrode 3 forming the main deflection system.
The back electrode 5 has a relatively lower voltage, but is likewise applied with a high voltage V1 , for example 4 KV.

そして通常、静電偏向手段による垂直偏向手段
7、すなわち電極板7a及び7bには電圧V0
与えられ且つ両電極板7a及び7b間に垂直偏向
信号が印加されるようになされる。このような構
成による電子ビームの、螢光面4に直交する方向
の断面における軌跡は、第3図に符号a1,a2,a3
で示すように垂直走査位置、すなわち螢光面4へ
のランデイング位置が電子銃2側に近い方ほど螢
光面4に対する電子ビームの入射方向と螢光面4
とのなす角(以下これを入射角という)ηが小さ
くなる。第4図に示すように、螢光面4に向う電
子ビームを符号bで示す円筒体とすると、その螢
光面4への入射角ηと、螢光面4におけるビーム
スポツト径との関係は、第4図を参照して明らか
なようにηが小となる程、螢光面4上におけるス
ポツトの垂直方向の長さは大となるので、この垂
直方向に関する螢光面4上におけるスポツト径と
電子ビームbの径との比率、すなわち倍率、M=
sin1/η と、入射角ηとの関係は第5図中曲線8 に示すようになる。したがつて螢光面4への電子
ビームの入射角度ηが螢光面4の垂直走査方向の
電子銃2に近い端部において例えば16°であれば、
これより一番遠い位置における入射角ηは22°程
度になるので、その倍率Mは入射側においては
3.5程度であるものが、入射側とは反対側におい
ては2.5程度となり著しく垂直方向に関する倍率
に差が生じこれが螢光面4におけるスポツトの歪
となる。
Normally, a voltage V 0 is applied to the vertical deflection means 7 using electrostatic deflection means, that is, the electrode plates 7a and 7b, and a vertical deflection signal is applied between the electrode plates 7a and 7b. The trajectories of the electron beam in the cross section in the direction perpendicular to the fluorescent surface 4 with such a configuration are indicated by symbols a 1 , a 2 , a 3 in FIG.
As shown in FIG.
The angle η (hereinafter referred to as the angle of incidence) formed with As shown in FIG. 4, if the electron beam directed toward the fluorescent surface 4 is a cylindrical body indicated by the symbol b, the relationship between the angle of incidence η on the fluorescent surface 4 and the beam spot diameter on the fluorescent surface 4 is , as is clear from FIG. 4, as η becomes smaller, the length of the spot on the fluorescent surface 4 in the vertical direction increases, so the diameter of the spot on the fluorescent surface 4 in this vertical direction and the diameter of the electron beam b, that is, the magnification, M=
The relationship between sin1/η and the incident angle η is as shown by curve 8 in FIG. Therefore, if the incident angle η of the electron beam on the fluorescent surface 4 is, for example, 16° at the end of the fluorescent surface 4 near the electron gun 2 in the vertical scanning direction, then
Since the incident angle η at the farthest position is about 22°, the magnification M is on the incident side.
Although it is about 3.5, it becomes about 2.5 on the side opposite to the incident side, resulting in a significant difference in magnification in the vertical direction, which causes spot distortion on the fluorescent surface 4.

本発明はこのような欠点を解消した扁平型陰極
線管を提供するものである。
The present invention provides a flat cathode ray tube that eliminates these drawbacks.

すなわち本発明においては、上述した扁平型陰
極線管において、特に電子銃より発射される主偏
向系に向うビームに対して例えばその垂直偏向系
の静電偏向を利用してこれに特定の電位関係を与
えるなどの方法によつて螢光面及び背面電極に直
交する方向に関してビームスポツトを縮少するい
わば非点収差を生じさせるレンズ系形成し、特に
螢光面に対し漸次電子銃に近い方にランデイング
する電子ビームに関してより強く縮小する、云い
換えれば、電子銃より遠い方にランデイングする
ビームに関して縮小の度合を弱めるような集束レ
ンズ系を形成するようにする。
That is, in the present invention, in the above-mentioned flat cathode ray tube, a specific potential relationship is applied to the beam emitted from the electron gun toward the main deflection system by using, for example, electrostatic deflection of the vertical deflection system. A lens system is formed that produces so-called astigmatism, which reduces the beam spot in the direction perpendicular to the phosphor surface and the back electrode, and the lens system gradually lands closer to the electron gun, especially with respect to the phosphor surface. In other words, a focusing lens system is formed that reduces the degree of reduction for beams that land farther from the electron gun.

第6図を参照して本発明による扁平型陰極線管
の各電極配置構成の一例を示す。図示の例では、
電子銃2が例えば直熱型のカソードKと、第1グ
リツド電極G1と、第2グリツド電極G2と、第3
グリツド電極G3と、第4グリツド電極G4とが順
次配列された構成を採る。電子銃2と、主偏向系
すなわちターゲツト電極4と背面電極5の対向部
との間には、前述したように静電偏向電極板7a
及び7bが対向してなる垂直偏向手段7が配置さ
れるも、特にこの手段7すなわち電極板7a及び
7bに、背面電極5に与えられる直流電圧V1
すなわち、ターゲツト電極4に与えられる最高の
陽極電圧V0に比しては低いが高圧の電圧V1を直
流電圧として与え、これに垂直偏向信号電圧+α
〜−αを重畳するも、この場合、特に背面電極5
に隣合う側の電極7aに対してこの信号電圧+α
〜−αを印加する。
An example of the arrangement of each electrode of the flat cathode ray tube according to the present invention is shown with reference to FIG. In the illustrated example,
The electron gun 2 includes, for example, a directly heated cathode K, a first grid electrode G1 , a second grid electrode G2 , and a third grid electrode.
A configuration is adopted in which a grid electrode G3 and a fourth grid electrode G4 are arranged in sequence. As described above, an electrostatic deflection electrode plate 7a is provided between the electron gun 2 and the main deflection system, that is, the opposing portion of the target electrode 4 and the back electrode 5.
and 7b are arranged, and in particular, the direct current voltage V 1 applied to the back electrode 5 is applied to this means 7, that is, the electrode plates 7a and 7b.
That is, a voltage V1, which is lower but higher than the highest anode voltage V0 applied to the target electrode 4, is applied as a DC voltage, and in addition to this, the vertical deflection signal voltage +α is applied .
Although ~-α is superimposed, in this case, especially the back electrode 5
This signal voltage +α for the electrode 7a adjacent to
~−α is applied.

そして、電子銃2の最終段の電極、この例では
第4グリツドG4の垂直偏向手段7に対向する側
の端部には端面板8が設けられ、そこに電子ビー
ム透過孔8aが設けられる。このビーム透過孔8
aの直径φは、垂直偏向手段7の対の静電偏向板
7a及び7bのビーム入射側における間隔dとほ
ぼ同程度に選定することが望ましく、更にまた端
面板8と手段7との間隔lも、両電極板7a及び
7bのビームの入射側における間隔dとほぼ等し
く選定されることが望ましい。そして電子銃2の
最終段の電極すなわち第4グリツドG4には、タ
ーゲツト電圧V0例えば5KVを印加する。因みに
第1グリツドG1には0〜−35V、第2グリツド
G2には250V、第3グリツドG3には550V程度が与
えられる。
An end plate 8 is provided at the end of the final stage electrode of the electron gun 2, in this example the end of the fourth grid G4 facing the vertical deflection means 7, in which an electron beam transmission hole 8a is provided. . This beam transmission hole 8
It is desirable to select the diameter φ of a to be approximately the same as the distance d between the pair of electrostatic deflection plates 7a and 7b of the vertical deflection means 7 on the beam incidence side, and also the distance l between the end plate 8 and the means 7. It is preferable that the distance d between the electrode plates 7a and 7b is approximately equal to the distance d between the electrode plates 7a and 7b on the beam incident side. A target voltage V0 , for example, 5KV is applied to the final stage electrode of the electron gun 2, that is, the fourth grid G4 . By the way, the first grid G1 has 0 to -35V, the second grid
250V is applied to G2 , and about 550V is applied to the third grid G3 .

このような構成によれば、電子銃2の最終段の
電極G4に高圧の5KVが与えられ、その後段の垂
直偏向手段7にこれより低い高圧の4KVが与え
られていることによつて、両者間に第7図及び第
8図にその等電位面を細線で示すように垂直方向
に関してのみ集束効果を有する2次元レンズ系、
従つて非点収差レンズ系が形成されるので、この
レンズ系を通過する電子ビームスポツトは垂直偏
向に関して集束、すなわち縮小される。そして電
極板7aに+αを重畳するとき、すなわち、電子
ビームを、いわば電極板7a側に偏向させてビー
ムを第3図の軌跡a1で示すように螢光面31上の
電子銃2側より遠い位置にランデイングさせると
きは、上述の2次元レンズ系を形成する電位差は
特に+αの与えられた電極板7a側において浅く
なり、そのレンズ効果が弱められ、これとは逆
に、電極板7aに−αを重畳するときは、すなわ
ち、第3図の軌跡a3で示すような垂直走査位置と
なすときは2次元レンズ効果が強められる。これ
によつて結局、第4図で説明したような入射角η
が大きい方に関しては縮小が弱められるが入射角
ηが小さい方の電子銃2側における垂直方向の倍
率が大なる方向に関しては、2次元レンズ系の垂
直走査方向に関する縮小率が大となるので入射側
における垂直方向に関するスポツト径の増大を阻
止し、各部においてほぼ円形の歪のないスポツト
を螢光面4上に得ることができる。
According to such a configuration, a high voltage of 5KV is applied to the final stage electrode G4 of the electron gun 2, and a lower high voltage of 4KV is applied to the vertical deflection means 7 at the subsequent stage, so that A two-dimensional lens system having a focusing effect only in the vertical direction, as shown in FIGS. 7 and 8 by thin lines showing the equipotential surfaces between the two;
An astigmatic lens system is thus formed, so that the electron beam spot passing through this lens system is focused, ie reduced, with respect to the vertical deflection. When +α is superimposed on the electrode plate 7a, in other words, the electron beam is deflected toward the electrode plate 7a, and the beam is directed from the electron gun 2 side on the fluorescent surface 31 as shown by locus a1 in FIG. When landing at a far position, the potential difference forming the above-mentioned two-dimensional lens system becomes shallow especially on the side of the electrode plate 7a given +α, and the lens effect is weakened. When -α is superimposed, that is, when the vertical scanning position is as shown by locus a 3 in FIG. 3 , the two-dimensional lens effect is strengthened. As a result, the incident angle η as explained in FIG.
The reduction is weakened in the direction where It is possible to prevent the spot diameter from increasing in the vertical direction on the sides, and to obtain substantially circular spots on the phosphor surface 4 at each portion without distortion.

上述したように上述の構成では、何ら特別なダ
イナミツク補正信号を与えることなく垂直偏向と
同時にスポツト歪に関するダイナミツク補正の効
果をも得ることができる。
As described above, with the above configuration, it is possible to obtain the effect of dynamic correction regarding vertical deflection and spot distortion at the same time without providing any special dynamic correction signal.

そして、また上述の構成によれば、垂直偏向手
段7に、陽極電圧(ターゲツト電圧)V0より低
い電圧のV1を与えるようにしたので、ここで、
電子ビームに対し減速電界が与えられることにな
り、この減速部分で電子ビームが垂直偏向を受け
るので、その偏向を受け易く、これに伴つて偏向
電圧を小さくすることができ、更にこの部分にお
いて水平偏向手段6による水平偏向をも行うよう
にするときは、水平・垂直両偏向の低電力化が可
能となる。
Also, according to the above-described configuration, since the voltage V1 lower than the anode voltage (target voltage) V0 is applied to the vertical deflection means 7, here,
A decelerating electric field is applied to the electron beam, and since the electron beam is vertically deflected in this decelerating part, it is easily susceptible to that deflection, and the deflection voltage can be reduced accordingly. When the deflection means 6 also performs horizontal deflection, it becomes possible to reduce the power consumption for both horizontal and vertical deflection.

また、本発明は上述した構成のものに限られる
ものではなく、種々の電極配置構成を採ることが
できるもので、第9図ないし第11図はその例を
示す。これら第9図ないし第11図は夫々電子銃
2が第5図で説明したと同様の構成を採り得るの
で、その第3グリツドG3より後段側のみを示し、
各電極の配置構成を略線的な断面として示してい
るが、各図において、第5図と対応する部分には
同一符号を付して重複説明を省略する。
Further, the present invention is not limited to the above-described configuration, but can adopt various electrode arrangement configurations, examples of which are shown in FIGS. 9 to 11. Since the electron gun 2 in each of FIGS. 9 to 11 can have the same configuration as that explained in FIG. 5, only the side subsequent to the third grid G3 is shown.
Although the arrangement of each electrode is shown as a schematic cross section, in each figure, the same reference numerals are given to the parts corresponding to those in FIG. 5, and redundant explanation will be omitted.

第9図に示すものは、背面電極5と並置してそ
の電子銃2側に中間電極9が配置された構成を採
る場合で、この場合においても、電子銃2の最終
段の電極、図示の例では第4グリツドG4に、最
高電位のターゲツト電圧V0が与えられ、垂直偏
向手段7の両静電偏向電極板7a及び7bに、電
圧V0より低い高圧の背面電極電圧V1が与えられ
ると共に、背面電極5側に配置される電極板7a
側に偏向信号電圧±αが与えられるようになす。
そして、中間電極9にはターゲツト電圧V0を与
える。このような構成とする場合、前述したと同
様に2次元レンズ系の非点収差レンズ系が構成さ
れ、前述したと同様の効果が得られるがこの場合
は、第4グリツドG4と、中間電極9及びターゲ
ツト電極4とに高圧のV0が与えられ、両者間の
手段7にはこれより低い電圧V1が与えられるこ
とによつてユニポテンシヤル型のレンズ系が構成
される。
What is shown in FIG. 9 is a configuration in which an intermediate electrode 9 is arranged on the electron gun 2 side in parallel with the back electrode 5. In this case as well, the final stage electrode of the electron gun 2 and the In the example, the highest potential target voltage V0 is applied to the fourth grid G4 , and a high back electrode voltage V1 lower than the voltage V0 is applied to both electrostatic deflection electrode plates 7a and 7b of the vertical deflection means 7 . and an electrode plate 7a arranged on the back electrode 5 side.
The deflection signal voltage ±α is applied to both sides.
Then, a target voltage V 0 is applied to the intermediate electrode 9. In such a configuration, a two-dimensional astigmatism lens system is constructed in the same way as described above, and the same effect as described above can be obtained, but in this case, the fourth grid G 4 and the intermediate electrode A high voltage V 0 is applied to the target electrode 9 and the target electrode 4, and a lower voltage V 1 is applied to the means 7 between the two, thereby forming a unipotential type lens system.

また、第10図に示す例においては、ターゲツ
ト電極4、したがつて螢光面が配置される側に、
中間電極9と対向して同様にターゲツト電圧V0
が与えられる第1の補助電極10が設けられると
共に、この電極10とターゲツト電極4との間
に、更に第2の補助電極11が設けられ、これに
背面電極電位V1を与えた構成とした場合で、こ
の場合においても第9図に示した例と同様にユニ
ポテンシヤル型のレンズ系が構成されるが、この
場合、更に、電極10及び11間にバイポテンシ
ヤル型の片レンズが形成される。
Furthermore, in the example shown in FIG. 10, on the side where the target electrode 4 and hence the fluorescent surface are arranged,
Similarly, the target voltage V 0 is applied opposite to the intermediate electrode 9.
A first auxiliary electrode 10 is provided, and a second auxiliary electrode 11 is further provided between this electrode 10 and the target electrode 4, and a back electrode potential V 1 is applied to this. In this case, a unipotential lens system is constructed in the same way as the example shown in FIG. 9, but in this case, a bipotential single lens is also formed between the electrodes 10 and 11. .

更に、第11図に示す例では、ターゲツト電極
4の配置側に、これと手段7との間に背面電極電
圧V1が与えられる補助電極12を設けたもので
あり、更に、前述した各例と相違する点は、電子
銃2の最終段の電極、第4グリツドG4に背面電
極電位V1を与え、偏向手段7の両電極板7a及
び7bに、最高電圧の陽極電圧、すなわちターゲ
ツト電圧V0を与えたことである。この場合にお
いても、垂直偏向の信号電圧+α〜−αは、背面
電極5側の電極板7aに与えられる。
Furthermore, in the example shown in FIG. 11, an auxiliary electrode 12 to which a back electrode voltage V 1 is applied is provided between the target electrode 4 and the means 7 on the side where the target electrode 4 is arranged. The difference is that the back electrode potential V1 is applied to the fourth grid G4 , which is the final stage electrode of the electron gun 2, and the highest anode voltage, that is, the target voltage, is applied to both electrode plates 7a and 7b of the deflection means 7. This is because V 0 was given. Also in this case, the vertical deflection signal voltages +α to -α are applied to the electrode plate 7a on the back electrode 5 side.

このような構成による場合においても、非点収
差レンズ系が構成されるが、この場合、電子ビー
ム通路の、特にターゲツト電極4が配置される側
(図において下側)に片寄つた位置に、手段7−
補助電極12−ターゲツト電極4によつて構成さ
れるユニポテンシヤル型のレンズ系が構成される
ので、ターゲツト電極4側に片寄つて通る電子ビ
ーム、すなわち螢光面上の電子銃2に近い方の位
置にランデイングするように螢光面に向う電子ビ
ームに対しては、より強いレンズ作用が働き、こ
のビームに対しターゲツト電極4と垂直方向の縮
小を、より強くすることができることになるの
で、この例においても、結果的に螢光面上におけ
るビームスポツトの歪の補正を、その垂直走査位
置に応じて補正するいわゆるダイナミツク補正と
することができる。
Even in such a configuration, an astigmatism lens system is constructed, but in this case, the means is located at a position of the electron beam path, particularly on the side where the target electrode 4 is arranged (lower side in the figure). 7-
Since a unipotential lens system consisting of the auxiliary electrode 12 and the target electrode 4 is constructed, the electron beam that passes toward the target electrode 4 side, that is, the position closer to the electron gun 2 on the fluorescent surface. A stronger lens effect acts on the electron beam that heads toward the fluorescent surface so as to land on the phosphor surface, and this beam can be more strongly reduced in the direction perpendicular to the target electrode 4. As a result, the distortion of the beam spot on the fluorescent surface can be corrected by so-called dynamic correction in accordance with its vertical scanning position.

上述したように本発明によれば、特に扁平型構
成としたことによるビームスポツトの歪を効果的
に補正でき、画像の歪がみ、解像度の低下、更に
カラー陰極線管においては色ずれ等のない良質の
画像を再生できるものである。
As described above, according to the present invention, it is possible to effectively correct the distortion of the beam spot caused by the flat structure, and there is no distortion of the image, decrease in resolution, and color shift in color cathode ray tubes. It is capable of reproducing high-quality images.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は扁平型陰極線管の正面図及
びその一部を破断した側面図、第3図はその電極
配置図、第4図はそのビーム入射角と倍率の関係
の説明図、第5図はビーム入射角と倍率との関係
を示す曲線図、第6図は本発明による扁平型陰極
線管の一例の電極の配置構成を示す斜視図、第7
図及び第8図はその電位分布の説明図、第9図な
いし第11図は夫々本発明の他の例の電極の配置
構成を示す略線的断面図である。 1は管体、2は電子銃、3は螢光面、4はター
ゲツト電極、5は背面電極、6は水平偏向手段、
7は垂直偏向手段、7a及び7bはその静電偏向
電極板、9は中間電極、10〜12は補助電極で
ある。
1 and 2 are a front view and a partially cutaway side view of a flat cathode ray tube, FIG. 3 is a diagram of its electrode arrangement, and FIG. 4 is an explanatory diagram of the relationship between the beam incidence angle and magnification. FIG. 5 is a curve diagram showing the relationship between beam incidence angle and magnification, FIG. 6 is a perspective view showing the arrangement of electrodes in an example of a flat cathode ray tube according to the present invention, and FIG.
8 and 8 are explanatory diagrams of the potential distribution, and FIGS. 9 to 11 are schematic cross-sectional views showing the arrangement of electrodes in other examples of the present invention, respectively. 1 is a tube body, 2 is an electron gun, 3 is a fluorescent surface, 4 is a target electrode, 5 is a back electrode, 6 is a horizontal deflection means,
7 is a vertical deflection means, 7a and 7b are electrostatic deflection electrode plates thereof, 9 is an intermediate electrode, and 10 to 12 are auxiliary electrodes.

Claims (1)

【特許請求の範囲】 1 蛍光面に対向して背面電極が設けられて両者
間に電子ビームの主偏向系が形成され、上記蛍光
面の面方向に沿う方向に延長して電子銃が配置さ
れてなる扁平型陰極線管において、 上記電子銃と上記主偏向系との間に静電型垂直
偏向電極を設けると共に、上記静電型偏向電極近
傍に、 上記電子銃から上記主偏向系に入る電子ビーム
を、上記蛍光面及び背面電極とほぼ直交する方向
に関して縮小させ、且つ該縮小の度合が上記蛍光
面に対し、上記電子銃より遠い方にランデイング
する電子ビームに関して弱められるようになされ
た静電レンズ系が上記静電型偏向電極を一部の構
成電極として構成されて成る扁平型陰極線管。
[Claims] 1. A back electrode is provided opposite to the phosphor screen, a main deflection system for electron beams is formed between the two, and an electron gun is arranged extending in the direction along the surface of the phosphor screen. In a flat cathode ray tube, an electrostatic vertical deflection electrode is provided between the electron gun and the main deflection system, and electrons entering the main deflection system from the electron gun are provided near the electrostatic deflection electrode. an electrostatic charge that reduces the beam in a direction substantially perpendicular to the phosphor screen and the back electrode, and the degree of the reduction is weakened with respect to the electron beam landing farther from the electron gun with respect to the phosphor screen; A flat cathode ray tube in which a lens system includes the electrostatic deflection electrode as a part of the constituent electrodes.
JP8709780A 1980-06-26 1980-06-26 Flat type cathode-ray tube Granted JPS5713653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8709780A JPS5713653A (en) 1980-06-26 1980-06-26 Flat type cathode-ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8709780A JPS5713653A (en) 1980-06-26 1980-06-26 Flat type cathode-ray tube

Publications (2)

Publication Number Publication Date
JPS5713653A JPS5713653A (en) 1982-01-23
JPH043057B2 true JPH043057B2 (en) 1992-01-21

Family

ID=13905439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8709780A Granted JPS5713653A (en) 1980-06-26 1980-06-26 Flat type cathode-ray tube

Country Status (1)

Country Link
JP (1) JPS5713653A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5816451A (en) * 1981-07-22 1983-01-31 Sony Corp Flat type crt
JP3881278B2 (en) * 2002-05-16 2007-02-14 北菱電興株式会社 Weft feeler

Also Published As

Publication number Publication date
JPS5713653A (en) 1982-01-23

Similar Documents

Publication Publication Date Title
KR0173722B1 (en) Color ray tube
US5663609A (en) Electron gun assembly having a quadruple lens for a color cathode ray tube
US6111350A (en) Color cathode ray tube having an improved electron gun
JP2661024B2 (en) Cathode ray tube
JP2603415B2 (en) Electron gun for color cathode ray tube
US6614156B2 (en) Cathode-ray tube apparatus
JPH043057B2 (en)
JPH0665004B2 (en) Electron gun device
TW522430B (en) Cathode-ray tube apparatus
TW439080B (en) Cathode-ray tube
US4656387A (en) Cathode ray tube having a zig-zag shaped deflection electrode
US5543681A (en) In-line type electron guns for color picture tube
JPH0560211B2 (en)
US7071606B2 (en) Color picture tube
US20020130608A1 (en) Color cathode ray tube employing a halo-reduced electron gun
US7122977B2 (en) Cathode-ray tube apparatus
JP2878731B2 (en) Color picture tube equipment
US6492766B1 (en) Color cathode ray tube with wide deflection angle
JPH0381934A (en) Dynamic focus electron gun
JPH0117811Y2 (en)
KR0177133B1 (en) Electron gun for color cathode ray tube
JP2004039300A (en) Electron gun for cathode-ray tube, and cathode-ray tube
JPH11219667A (en) Color cathode-ray tube
JPH05325822A (en) Cathode-ray tube
JPS61230243A (en) Cathode-ray tube