JPH0430479B2 - - Google Patents

Info

Publication number
JPH0430479B2
JPH0430479B2 JP61003177A JP317786A JPH0430479B2 JP H0430479 B2 JPH0430479 B2 JP H0430479B2 JP 61003177 A JP61003177 A JP 61003177A JP 317786 A JP317786 A JP 317786A JP H0430479 B2 JPH0430479 B2 JP H0430479B2
Authority
JP
Japan
Prior art keywords
particles
plating
columnar body
plated
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61003177A
Other languages
Japanese (ja)
Other versions
JPS62161997A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP317786A priority Critical patent/JPS62161997A/en
Publication of JPS62161997A publication Critical patent/JPS62161997A/en
Publication of JPH0430479B2 publication Critical patent/JPH0430479B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、粒子分散金属メツキ方法に係り、特
に、分散させる粒子が極めて微細な場合において
少量の粒子により粒子密度の高い複合メツキが得
られるものに関し、例えば、超砥粒砥石の製造等
に利用できるものである。 [従来の技術] メツキ浴中に粒子を分散(懸濁)させてメツキ
すればメツキ金属中に該粒子を含む複合メツキが
得られる。 こうして得られた複合メツキ層は、メツキ金属
と粒子とのそれぞれの特性を兼ね備えているた
め、メツキ金属と粒子の組み合わせを適宜選択す
ることにより、硬度、摩耗性、潤滑性もしくは耐
熱強度にすぐれた複合メツキ層を比較的容易に得
ることができる。 従来より、この性質を利用して、例えば、機械
的摺動部材の表面にニツケル(Ni)もしくはコ
バルト(Co)と耐摩耗性粒子との複合メツキ層
を形成させて摺動部の強度と耐摩耗性を向上させ
たり、あるいは、電気接点部材の表面に銀
(Ag)、パラジユウム(Pd)、金(Au)もしくは
白金(Pt)等と酸化チタン(TiO2)もしくは炭
化シリコン(SiC)等の粒子との複合メツキ層を
形成させて接点部の耐摩耗性や耐アーク損傷性を
向上させることが行なわれている。 このような複合メツキ層を形成させる場合、従
来は、メツキ浴に陰電極を兼ねる被メツキ体と陽
電極板とを設置し、該メツキ浴中に粒子を加え、
然る後に該メツキ浴に強撹拌、エアーバブリング
もしくは液体ポンプによつてメツキ液を循環させ
る等の手段を講ずることにより前記粒子をメツキ
浴中に分散させつつメツキを行つていた。 [発明が解決しようとする問題点] ところが、分散させる粒子が極めて微細な場合
にはこのような従来のメツキ方法では所望の粒子
密度を有し、粒子分布の均一な複合メツキ層を得
ることが困難であつた。 即ち、所望の複合メツキ層を得るためには粒子
の大きさもしくは比重等に応じて粒子の分散濃度
もしくは運動速度等を適切な値に維持しつつメツ
キ液中に一様に分散させなければならないが、分
散させる粒子が極めて微細な場合には従来の撹拌
の手段によつて粒子を分散することは一見容易と
考えられるが、その半面、分散メツキ層の形態に
よつては、メツキ浴全体に均一な分散状態にする
ことは困難になる。 これは、微細粒子の場合、メツキ液と粒子との
相対運動速度が小さいため、メツキ液の動きが滞
るとその箇所で微細粒子が堆積しやすく、一旦堆
積すると、これを再分散させるにはその近傍のメ
ツキ液を相当激しく動かさねばならないからであ
る。したがつて、一般に微細な粒子ほど、被メツ
キ面での粒子付着密度の濃淡が生じやすく、粒子
含有密度の均一なメツキ層の形成が困難である。 尚、比較的強い撹拌によれば粒子分散状態の均
一性は得られるが所望の複合メツキは得難くな
る。 従つて、従来の方法では粒子がメツキ層に一様
に保持されるような適切な分散状態に維持するこ
とができなかつた。 また、一般に、形成させる複合メツキ層の粒子
密度を所望の値にするにはメツキ液中の粒子濃度
を一定値以上にしなければならないが、従来の方
法は、メツキ浴全体に粒子を分散させるものであ
るから、メツキ浴に多量の粒子を添加しなければ
ならない。 このため、例えば、超砥粒砥石製造の際のよう
に、添加する粒子がダイヤモンド粒子や立方晶窒
化ホウ素(CBN)粒子のように高価なものであ
る場合には、その製造コストが極めて高いものと
なる。 本発明の目的は、上記欠点を除去した粒子分散
金属メツキ方法を提供することにある。 [問題点を解決するための手段] 本発明に係わる粒子分散金属メツキ方法は、メ
ツキ浴中に、軸線を略水平にして柱状体を浸漬
し、この柱状体の外周面の全周を、粒子は通さず
メツキ液を通す隔膜で包囲してこの隔膜を柱状体
に固定し、この隔膜により前記外周面を含む閉じ
られた領域を形成し、この領域内にメツキ層を形
成すべき被メツキ体の被メツキ面を配置するとと
もに、この領域に前記粒子およびこの粒子よりも
大径の粒体を一定量封入し、前記柱状体を軸線回
りに回転させつつ、前記被メツキ面に金属を析出
させることを特徴としている。 [実施例] 第1図は本発明に係る粒子分散金属メツキ方法
を実施するための装置例を示す断面図であり、第
2図は第1図における−線断面図である。 以下、第1図及び第2図に示される装置によつ
て本発明に係る方法を実施する例を説明する。 図において、メツキ液1が満たされたメツキ槽
2内には少なくともその表面がニツケル(Ni)
その他の導電性を有する材料で形成され、外形が
円柱状をなした柱状体3が回転自在に据え付けら
れている。この実施例では、柱状体3そのものが
被メツキ体を兼ねており、柱状体3の外周面が被
メツキ面である。 即ち、前記柱状体3にはその軸心に沿つて少な
くてもその表面が絶縁された回転軸4が取り付け
られ、この回転軸4の両端部は前記メツキ槽2の
側壁に回転可能に支持され、また、該回転軸4の
一端は外部に配置された駆動モータ(駆動機構)
5の回転軸に連結されている。 これにより、前記駆動モータ5を作動させると
前記柱状体3が回転駆動される。 また、前記柱状体3の両側部には該柱状体3の
外径よりも大径を有しアクリルその他の非導電性
材料からなる2枚の円板体6が同軸的に取り付け
られ、この2枚の円板体6間には前記柱状体3の
外周面を一定間隔をおいて覆うように、一定大き
さ以上の粒子を通さずメツキ液を通す濾布もしく
はカチオン交換膜等の隔膜7が張設され、これに
より前記メツキ面を含む閉じられた領域8が形成
されている。 また、前記柱状体3の近傍には、ニツケル等で
形成された2枚の陽極板9が設けられている。 更に、前記回転軸4の一端部には電気接点刷子
(陰極通電手段)10が設けられており、図示し
ないが、該電気接点刷子10は前記柱状体3の少
なくとも導電性を有する表面に外部から通電でき
るように電気的に接続されており、この柱状体3
の表面は陰極を構成している。 従つて、第3図にその一部拡大断面図を示すよ
うに前記領域8内に所定の粒子11及び粒体12
を封入し、前記柱状体3を回転しつつ前記陽極板
9及び電気接点刷子10に通電することにより前
記陰極を構成する柱状体3の表面に前記粒子11
を含む複合メツキ層を形成させることができる。 次に、上記装置を用いて本発明に係る粒子分散
金属メツキ方法を実施し、実際に超砥粒砥石を製
造した例について説明する。 まず以下の処理条件により前記柱状体3の表面
にメツキを施し、複合メツキ層を形成させた。 (A) 柱状体3 a 寸法 直径 …100mm 幅 …80mm メツキ面の面積…240cm2(柱状体3の幅方向
の両端部をマスキングテー
プで被覆) b 表面 ステンレス(SUS−304)の研磨光沢面を
メツキ前に沈降性炭酸カルシユウムを用い
て研磨脱脂洗浄 c 回転速度 …10rpm (B) 隔膜7 a 素材
…カチオン交換膜(ネオセプターC66) b メツキ面との間隔…10mm(領域8の容積=
270cm3) (C) 分散粒子 a 種類 …ダイヤモンド(人工) b 粒径 …3/6μ c 分散量 …113.5g d 分散濃度 …50g/l (D) 分散粒体 a 種類 …ガラスビーズ b 粒径 …1000〜3000μm c 分散量 …2.7g d 分散濃度 …10g/l (E) メツキ液(スルフアミン酸ニツケルメツキ
液)組成 a スルフアミン酸Ni …450g/l b NiCl2 …5g/l c H3BO3 …30g/l d ピツト防止剤 …少量 (PH;4.2) (F) メツキ条件 a 浴温 …50℃ b 陰極電流密度 …1.0A/dm2 c メツキ時間 …2時間 こうして複合メツキ層が得られたら、次に、前
記柱状体3から隔膜7を取り外し、残留ダイヤモ
ンド粒子を回収し、然る後、前記複合メツキ層の
上に重ねて金属の単独メツキ層を施して前記ダイ
ヤモンド粒子の埋め込み固定を行つた。 この場合のメツキ条件は、陰極電流密度が
2A/dm2、メツキ時間が10分であるほかは上述
のメツキ条件と同じとした。 このメツキ処理が終了した後、前記柱状体3の
表面から得られた複合メツキ層を剥離して長さ
300mm、幅80mm、厚さ50μ、ダイヤモンド粒子含
有率42Vol%でかつ粒子分布の極めて均一な超砥
粒砥石シートを得た。なお、この砥石シート中に
はガラスビーズ12が全く含まれていなかつた。 このように、本実施例に係る方法によれば狭い
領域8内にダイヤモンド粒子11とガラスビーズ
12とを封入し、柱状体3を回転させることによ
り前記粒体12と粒子11を共に撹拌させるもの
であるから、柱状体3の回転につれ、柱状体3と
隔膜7との間のメツキ液1が回転し、それに伴つ
て粒子11およびガラスビーズ12を周回する。
粒子11が微細な場合、粒子11は隔膜7の内面
などに堆積しようとするが、一方のガラスビーズ
12は粒度の差により粒子11とは異なる速度で
運動するため、ガラスビーズ12は粒子11と衝
突を繰り返して粒子11の運動を撹乱し、粒子1
1の堆積を阻止してその分散性を高める。 また、粒子11およびガラスビーズ12は、隔
膜7の内面に沿つて柱状体3の軸線方向全長に亙
り均等に巻き上げられた後、柱状体3の上側で被
メツキ面に降下して均等に付着するため、前記の
分散作用と相まつて、柱状体3の軸線方向におけ
る被メツキ面への粒子付着密度の分布、および柱
状体3の周方向での粒子付着密度分布がいずれも
均一になり、全面に亙つて粒子含有密度の均一度
が高いメツキ層が容易に形成できる。 さらに、この方法では、柱状体3の主に上側で
被メツキ面に粒子が付着し、その一部が順次析出
する金属によつて被メツキ面に仮固定され、さら
に柱状体が回転すると被メツキ面から仮固定され
なかつた過剰の粒子が落下し、仮固定された粒子
の周囲に金属が順次析出して粒子が埋め込まれる
というサイクルが繰り返されるため、柱状体3の
回転速度を調整することにより、ガラスビーズ1
2は十分に仮固定されずに被メツキ面から落下
し、微細な粒子11のみがメツキ層に取り込まれ
る条件を選択することができ、ガラスビーズ12
を含まないメツキ層を形成することが容易であ
る。 さらに、粒子11は隔膜7と柱状体3との間の
狭い領域にのみ封入すればよいので、少ない粒子
使用量で被メツキ面近傍での粒子濃度を十分に高
めることが可能で、所望の粒子含有量のメツキ層
が低コストで形成できる。 尚、前記実施例では本発明に係る方法により超
砥粒砥石を製造する場合を示したが、本発明はこ
れに限られることはなく、砥石以外の製品、例え
ばBN,MoS2もしくは(C2F)n等の自己潤滑性
粉体を含むメツキ層からなる潤滑性部材その他の
製品の有効な製造手段としても利用できる。 [発明の効果] 本発明の粒子分散金属メツキ方法では、柱状体
の回転につれ、柱状体と隔膜との間のメツキ液が
回転し、それに伴つて粒子および大径粒体も周回
する。粒子が微細な場合、粒子は隔膜の内面など
に堆積しようとするが、一方の大径粒体は粒度の
差により粒子とは異なる速度で運動するため、大
径粒体は微細粒子と衝突と繰り返して粒子の運動
を撹乱し、粒子の局部的な堆積を阻止してその分
散性を高める作用を果たす。 また、粒子および大径粒体は、隔膜の内面に沿
つて柱状体の軸線方向全長に亙り均等に巻き上げ
られた後、柱状体の上側で被メツキ面に降下して
均等に付着するため、前記の分散作用と相まつ
て、柱状体の軸線方向での被メツキ面への粒子付
着密度の分布、および柱状体の周方向での被メツ
キ面への粒子付着密度分布がいずれも均一にな
り、全面に亙つて粒子含有密度の均一度が高いメ
ツキ層が容易に形成できる。 さらに、この方法では、柱状体の主に上側で被
メツキ面に粒子が付着した後、その一部が順次析
出する金属によつて被メツキ面に仮固定され、さ
らに柱状体が回転すると被メツキ面から仮固定さ
れなかつた過剰の粒子が落下し、仮固定された粒
子の周囲に金属が順次析出して粒子が埋め込まれ
るというサイクルが繰り返されるため、柱状体の
回転速度を調整することにより、被メツキ面での
大径粒体と粒子の滞留時間をそれぞれ正確に調整
して、大径粒体は十分に仮固定される前に被メツ
キ面から落下し、微細な粒子のみがメツキ層に取
り込まれる条件を選択することができ、大径粒体
を含まないメツキ層を形成することが容易であ
る。 さらにまた、粒子は隔膜と柱状体との間の領域
にのみ封入すればよいので、少ない粒子使用量で
被メツキ体近傍での粒子濃度を十分に高めること
が可能で、所望の粒子含有量のメツキ層が低コス
トで形成できるという効果も奏する。
[Industrial Application Field] The present invention relates to a particle dispersion metal plating method, and in particular to a method for obtaining a composite plating with a high particle density using a small amount of particles when the particles to be dispersed are extremely fine. It can be used for manufacturing grain grindstones, etc. [Prior Art] If particles are dispersed (suspended) in a plating bath and plated, a composite plating containing the particles in the plating metal can be obtained. The composite plating layer obtained in this way has the respective characteristics of the plating metal and particles, so by appropriately selecting the combination of the plating metal and particles, it can have excellent hardness, abrasion resistance, lubricity, or heat-resistant strength. A composite plating layer can be obtained relatively easily. Conventionally, this property has been utilized to improve the strength and durability of the sliding part, for example, by forming a composite plating layer of nickel (Ni) or cobalt (Co) and wear-resistant particles on the surface of mechanical sliding members. To improve abrasion resistance, or add silver (Ag), palladium (Pd), gold (Au), platinum (Pt), etc. and titanium oxide (TiO 2 ), silicon carbide (SiC), etc. to the surface of the electrical contact member. A composite plating layer is formed with particles to improve the wear resistance and arc damage resistance of the contact portion. When forming such a composite plating layer, conventionally, a body to be plated which also serves as a negative electrode and a positive electrode plate are placed in a plating bath, particles are added to the plating bath,
Thereafter, plating was carried out while dispersing the particles in the plating bath by taking measures such as strong stirring, air bubbling, or circulating the plating liquid in the plating bath using a liquid pump. [Problems to be Solved by the Invention] However, when the particles to be dispersed are extremely fine, it is difficult to obtain a composite plating layer with a desired particle density and uniform particle distribution using such conventional plating methods. It was difficult. That is, in order to obtain the desired composite plating layer, it is necessary to uniformly disperse the particles in the plating solution while maintaining the dispersion concentration or movement speed of the particles at appropriate values depending on the particle size, specific gravity, etc. However, if the particles to be dispersed are extremely fine, it may seem easy to disperse them by conventional stirring means, but on the other hand, depending on the form of the dispersed plating layer, it may be difficult to disperse the particles throughout the plating bath. It becomes difficult to achieve a uniformly dispersed state. This is because in the case of fine particles, the relative movement speed between the plating liquid and the particles is low, so if the movement of the plating liquid is stagnant, the fine particles tend to accumulate at that point, and once they have accumulated, it is difficult to redisperse them. This is because the plating liquid in the vicinity must be moved quite violently. Therefore, in general, the finer the particles, the more likely the particle adhesion density on the surface to be plated will vary, making it difficult to form a plating layer with a uniform particle content density. Incidentally, if relatively strong stirring is used, uniformity of the particle dispersion state can be obtained, but it becomes difficult to obtain the desired composite plating. Therefore, with conventional methods, it has not been possible to maintain the particles in an appropriate dispersed state so that they are uniformly retained in the plating layer. Additionally, in general, in order to achieve the desired particle density in the composite plating layer to be formed, the particle concentration in the plating solution must be above a certain value, but conventional methods involve dispersing particles throughout the plating bath. Therefore, a large amount of particles must be added to the plating bath. For this reason, for example, when manufacturing superabrasive grinding wheels, when the particles added are expensive such as diamond particles or cubic boron nitride (CBN) particles, the manufacturing cost is extremely high. becomes. An object of the present invention is to provide a particle-dispersed metal plating method that eliminates the above-mentioned drawbacks. [Means for Solving the Problems] In the particle-dispersed metal plating method according to the present invention, a columnar body is immersed in a plating bath with its axis substantially horizontal, and the entire circumference of the outer peripheral surface of the columnar body is covered with particles. The object to be plated is surrounded by a diaphragm that allows the plating liquid to pass through but not through the diaphragm, and this diaphragm is fixed to the columnar body, and the diaphragm forms a closed region including the outer peripheral surface, and the plating layer is to be formed in this region. A surface to be plated is arranged, a certain amount of the particles and particles having a larger diameter than the particles are enclosed in this region, and metal is deposited on the surface to be plated while rotating the columnar body around the axis. It is characterized by [Example] FIG. 1 is a cross-sectional view showing an example of an apparatus for carrying out the particle-dispersed metal plating method according to the present invention, and FIG. 2 is a cross-sectional view taken along the line -- in FIG. 1. An example of implementing the method according to the present invention using the apparatus shown in FIGS. 1 and 2 will be described below. In the figure, at least the surface of plating tank 2 filled with plating liquid 1 is made of nickel (Ni).
A columnar body 3 made of another conductive material and having a cylindrical outer shape is rotatably installed. In this embodiment, the columnar body 3 itself also serves as the body to be plated, and the outer peripheral surface of the columnar body 3 is the surface to be plated. That is, a rotating shaft 4 whose surface is insulated at least is attached to the columnar body 3 along its axis, and both ends of the rotating shaft 4 are rotatably supported by the side walls of the plating tank 2. , and one end of the rotating shaft 4 is connected to a drive motor (drive mechanism) disposed outside.
It is connected to the rotating shaft of 5. Thereby, when the drive motor 5 is operated, the columnar body 3 is rotationally driven. Further, two disk bodies 6 made of acrylic or other non-conductive material are coaxially attached to both sides of the columnar body 3 and have a diameter larger than the outer diameter of the columnar body 3. A diaphragm 7 such as a filter cloth or a cation exchange membrane that allows the plating solution to pass through but not to pass particles larger than a certain size is installed between the disk bodies 6 so as to cover the outer peripheral surface of the columnar body 3 at regular intervals. This forms a closed area 8 including the plated surface. Further, two anode plates 9 made of nickel or the like are provided near the columnar body 3. Furthermore, an electric contact brush (cathode energizing means) 10 is provided at one end of the rotating shaft 4, and although not shown, the electric contact brush 10 is used to inject at least the electrically conductive surface of the columnar body 3 from the outside. This columnar body 3 is electrically connected so that it can be energized.
The surface of constitutes the cathode. Therefore, as shown in a partially enlarged cross-sectional view in FIG.
The particles 11 are enclosed on the surface of the columnar body 3 constituting the cathode by energizing the anode plate 9 and the electric contact brush 10 while rotating the columnar body 3.
A composite plating layer containing the following can be formed. Next, a description will be given of an example in which a superabrasive grindstone was actually produced by implementing the particle dispersion metal plating method according to the present invention using the above-mentioned apparatus. First, the surface of the columnar body 3 was plated under the following processing conditions to form a composite plating layer. (A) Column 3 a Dimensions Diameter...100mm Width...80mm Area of plating surface...240cm 2 (Cover both widthwise ends of columnar 3 with masking tape) b Polished glossy surface of stainless steel (SUS-304) Before plating, polish and degrease using precipitated calcium carbonate c. Rotation speed...10 rpm (B) Diaphragm 7 a. Material...Cation exchange membrane (Neoseptor C66) b. Distance from plating surface...10 mm (volume of area 8 =
270cm 3 ) (C) Dispersed particles a Type...Diamond (artificial) b Particle size...3/6μ c Dispersion amount...113.5g d Dispersion concentration...50g/l (D) Dispersed particles a Type...Glass beads b Particle size... 1000-3000μm c Dispersion amount...2.7g d Dispersion concentration...10g/l (E) Composition of plating liquid (sulfamic acid nickel plating liquid) a Ni sulfamic acid...450g/l b NiCl 2 ...5g/l c H 3 BO 3 ...30g /l d Anti-pitting agent…small amount (PH; 4.2) (F) Plating conditions a Bath temperature…50℃ b Cathode current density…1.0A/dm 2 c Plating time…2 hours Once the composite plating layer is obtained, Next, the diaphragm 7 was removed from the columnar body 3, the remaining diamond particles were collected, and then a single metal plating layer was applied over the composite plating layer to embed and fix the diamond particles. In this case, the plating conditions are such that the cathode current density is
The plating conditions were the same as those described above except that the plating rate was 2 A/dm 2 and the plating time was 10 minutes. After this plating process is completed, the composite plating layer obtained from the surface of the columnar body 3 is peeled off and the length is
A superabrasive grinding wheel sheet of 300 mm, width 80 mm, thickness 50 μ, diamond particle content of 42 Vol%, and extremely uniform particle distribution was obtained. Note that this grindstone sheet did not contain any glass beads 12 at all. As described above, according to the method according to this embodiment, the diamond particles 11 and the glass beads 12 are enclosed in the narrow region 8, and the particles 12 and the particles 11 are stirred together by rotating the columnar body 3. Therefore, as the columnar body 3 rotates, the plating liquid 1 between the columnar body 3 and the diaphragm 7 rotates, and accordingly circulates around the particles 11 and glass beads 12.
When the particles 11 are fine, the particles 11 tend to accumulate on the inner surface of the diaphragm 7, but the glass beads 12 move at a different speed than the particles 11 due to the difference in particle size, so the glass beads 12 and the particles 11 do not move at a different speed. By repeating the collision, the movement of particle 11 is disturbed, and particle 1
1 and improves its dispersibility. Further, the particles 11 and the glass beads 12 are evenly rolled up along the inner surface of the diaphragm 7 over the entire length of the columnar body 3 in the axial direction, and then fall onto the surface to be plated on the upper side of the columnar body 3 and are evenly attached thereto. Therefore, together with the above-mentioned dispersion effect, the distribution of the particle adhesion density on the surface to be plated in the axial direction of the columnar body 3 and the particle adhesion density distribution in the circumferential direction of the columnar body 3 become uniform, and the particle adhesion density distribution on the surface to be plated in the axial direction of the columnar body 3 becomes uniform. A plating layer in which the particle content density is highly uniform can be easily formed. Furthermore, in this method, particles adhere to the surface to be plated mainly on the upper side of the columnar body 3, and some of the particles are temporarily fixed to the surface to be plated by the metal that sequentially precipitates. The cycle in which excess particles that are not temporarily fixed fall from the surface, metal is sequentially deposited around the temporarily fixed particles, and the particles are embedded is repeated, so by adjusting the rotation speed of the columnar body 3. , glass beads 1
It is possible to select the conditions under which the glass beads 12 fall from the surface to be plated without being sufficiently temporarily fixed, and only the fine particles 11 are incorporated into the plating layer.
It is easy to form a plating layer that does not contain Furthermore, since the particles 11 only need to be sealed in a narrow area between the diaphragm 7 and the columnar body 3, it is possible to sufficiently increase the particle concentration near the surface to be plated with a small amount of particles used. A plating layer with a high content can be formed at low cost. In addition, although the above-mentioned example shows the case where a superabrasive grinding wheel is manufactured by the method according to the present invention, the present invention is not limited to this, and products other than the grinding wheel, such as BN, MoS 2 or (C 2 F) It can also be used as an effective means for producing lubricating members and other products consisting of a plating layer containing self-lubricating powder such as n. [Effects of the Invention] In the particle-dispersed metal plating method of the present invention, as the columnar bodies rotate, the plating liquid between the columnar bodies and the diaphragm rotates, and the particles and large-diameter particles also circulate accordingly. If the particles are fine, they tend to accumulate on the inner surface of the diaphragm, but large particles move at a different speed due to the difference in particle size, so large particles tend to collide with fine particles. It repeatedly disturbs the movement of particles, prevents local accumulation of particles, and enhances their dispersibility. In addition, the particles and large-diameter particles are evenly rolled up along the inner surface of the diaphragm over the entire length of the columnar body in the axial direction, and then descend to the surface to be plated on the upper side of the columnar body and adhere evenly. Coupled with the dispersion effect of A plating layer with a highly uniform particle content density can be easily formed over the period. Furthermore, in this method, after the particles adhere to the surface to be plated mainly on the upper side of the columnar body, some of the particles are temporarily fixed to the surface to be plated by the metal that sequentially precipitates. Excess particles that were not temporarily fixed fall from the surface, metal is sequentially deposited around the temporarily fixed particles, and the particles are embedded.The cycle is repeated, so by adjusting the rotation speed of the columnar body, By accurately adjusting the residence time of large particles and particles on the surface to be plated, the large particles fall from the surface to be plated before they are sufficiently temporarily fixed, and only the fine particles form the plating layer. The conditions for incorporating can be selected, and it is easy to form a plating layer that does not contain large-diameter particles. Furthermore, since the particles only need to be encapsulated in the area between the diaphragm and the columnar body, it is possible to sufficiently increase the particle concentration near the body to be plated with a small amount of particles used, making it possible to achieve the desired particle content. Another effect is that the plating layer can be formed at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る粒子分散金属メツキ方法
を実施するための装置例を示す断面図であり、第
2図は第1図における−線断面図、第3図第
1図の一部拡大図である。 1……メツキ液、2……メツキ槽、3……柱状
体、4……回転軸、6……円板体、7……隔膜、
8……領域、9……陽極、10……電気接点刷子
(陰極通電手段)、11……粒子、12……大径の
粒体。
FIG. 1 is a cross-sectional view showing an example of an apparatus for carrying out the particle dispersion metal plating method according to the present invention, FIG. 2 is a cross-sectional view taken along the line - in FIG. 1, and FIG. It is a diagram. 1... Plating liquid, 2... Plating tank, 3... Column body, 4... Rotating shaft, 6... Disc body, 7... Diaphragm,
8...Region, 9...Anode, 10...Electric contact brush (cathode current supply means), 11...Particle, 12...Large diameter particles.

Claims (1)

【特許請求の範囲】 1 メツキ浴中に粒子を分散させてメツキを施す
ことにより被メツキ体に該粒子を含むメツキ層を
形成させる粒子分散金属メツキ方法において、 前記メツキ浴中に、軸線を略水平にして柱状体
を浸漬し、この柱状体の外周面の全周を、前記粒
子は通さずメツキ液を通す隔膜で包囲してこの隔
膜を柱状体に固定し、前記隔膜により前記外周面
を含む閉じられた領域を形成し、この領域内にメ
ツキ層を形成すべき被メツキ体の被メツキ面を配
置するとともに、この領域に前記粒子およびそれ
よりも大径の粒体を一定量封入し、前記柱状体を
軸線回りに回転させつつ、前記被メツキ面に金属
を析出させることを特徴とした粒子分散金属メツ
キ方法。
[Scope of Claims] 1. A particle dispersion metal plating method in which a plating layer containing the particles is formed on a plated object by dispersing particles in a plating bath and plating the particles, comprising: The columnar body is immersed horizontally, and the entire circumference of the outer peripheral surface of the columnar body is surrounded by a diaphragm that allows the plating liquid to pass through but not the particles, and this diaphragm is fixed to the columnar body. A closed region containing the particles is formed, and the surface to be plated of the object to be plated in which the plating layer is to be formed is arranged in this region, and a certain amount of the particles and particles with a larger diameter than the particles are enclosed in this region. . A particle dispersion metal plating method, characterized in that metal is deposited on the surface to be plated while rotating the columnar body around an axis.
JP317786A 1986-01-10 1986-01-10 Particle dispersion metal plating method Granted JPS62161997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP317786A JPS62161997A (en) 1986-01-10 1986-01-10 Particle dispersion metal plating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP317786A JPS62161997A (en) 1986-01-10 1986-01-10 Particle dispersion metal plating method

Publications (2)

Publication Number Publication Date
JPS62161997A JPS62161997A (en) 1987-07-17
JPH0430479B2 true JPH0430479B2 (en) 1992-05-21

Family

ID=11550105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP317786A Granted JPS62161997A (en) 1986-01-10 1986-01-10 Particle dispersion metal plating method

Country Status (1)

Country Link
JP (1) JPS62161997A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5233841A (en) * 1975-09-11 1977-03-15 Us Government Electrolytic plating method of fine particles and apparatus therefor
JPS55479A (en) * 1979-04-16 1980-01-05 Hitachi Ltd Liquid monitor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5233841A (en) * 1975-09-11 1977-03-15 Us Government Electrolytic plating method of fine particles and apparatus therefor
JPS55479A (en) * 1979-04-16 1980-01-05 Hitachi Ltd Liquid monitor

Also Published As

Publication number Publication date
JPS62161997A (en) 1987-07-17

Similar Documents

Publication Publication Date Title
Zahavi et al. Electrodeposited nickel composites containing diamond particles
JPS622946B2 (en)
KR20050024394A (en) Process for electroplating metallic and metall matrix composite foils, coatings and microcomponents
JPH06114739A (en) Electrodeposition grinding wheel
JP6722821B2 (en) Electroplating method and apparatus
JPWO2009150885A1 (en) Stainless steel and surface treatment method of stainless steel
US4855020A (en) Apparatus and method for the electrolytic plating of layers onto computer memory hard discs
JPH0430479B2 (en)
JP3423702B2 (en) Metal plating method
JP2504418B2 (en) Grinding stone manufacturing method
JPH0430478B2 (en)
JPH0430480B2 (en)
JP6559544B2 (en) Super abrasive tool manufacturing method
EP0004449B1 (en) Bonding process for grinding tools
JP3623123B2 (en) Method for producing superabrasive electrodeposition grindstone and superabrasive electrodeposition grindstone
JP5072749B2 (en) Electrodeposition tool production equipment
US1978037A (en) Method and apparatus for electrodeposition
JPH0584664A (en) Manufacturing device for electrodeposited grinding wheel
CN109440090B (en) Method for chemically plating nickel phosphide-diamond composite coating on surface of hard alloy substrate
CN116770281A (en) Rolling chemical plating device and method for diamond superfine grinding wheel
JP3295575B2 (en) Cubic BN fine particles with two-layer metal plating and method for producing the same
JP2949952B2 (en) Powder coating apparatus and plating method
JP2893341B2 (en) Grindstone for electrodischarge grinding
JPH0679533A (en) Complex electrolytic polishing process
JP3280580B2 (en) Method and apparatus for manufacturing grinding wheel