JPH04304616A - Formation of resist pattern - Google Patents

Formation of resist pattern

Info

Publication number
JPH04304616A
JPH04304616A JP3092647A JP9264791A JPH04304616A JP H04304616 A JPH04304616 A JP H04304616A JP 3092647 A JP3092647 A JP 3092647A JP 9264791 A JP9264791 A JP 9264791A JP H04304616 A JPH04304616 A JP H04304616A
Authority
JP
Japan
Prior art keywords
resist
wafer
pattern
mask
resist layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3092647A
Other languages
Japanese (ja)
Inventor
Hiroshi Maehara
前原 広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP3092647A priority Critical patent/JPH04304616A/en
Publication of JPH04304616A publication Critical patent/JPH04304616A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electron Beam Exposure (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To provide a formation method for a resist pattern in forming a pattern excellent in resolution by removing the electrification of the resist layer during the formation of a pattern, and keeping the distance between a wafer and an X-ray mask constant. CONSTITUTION:The resist pattern formation method prevents the electrification of a resist layer by the ionization during proximity exposure using radiation and prevents the fluctuation of the distance between a mask and a wafer being arranged in close vicinity by conductively treating the surface layer of the radiation sensitive resist layer with a cationic or ampholytic surface active agent.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、大規模集積回路(LS
I)等の微細パターンを放射線露光によりウェーハ等に
焼き付ける際に用いるリソグラフィー方法に関する。
[Industrial Application Field] The present invention relates to large-scale integrated circuits (LS
The present invention relates to a lithography method used when printing a fine pattern such as I) on a wafer or the like by radiation exposure.

【0002】0002

【従来の技術】DRAMに代表される大規模集積回路は
今や4MDRAMの量産期にあり、しかも16MDRA
Mから64MDRAMへと急速に技術的に進歩している
。これに伴いデバイスに要求される最小線幅も、ハーフ
ミクロンからクォーターミクロンへと縮小している。 これらの半導体デバイスは近紫外光若しくは遠紫外光を
利用してマスクから半導体基板へと転写されるが、これ
らの光の波長では加工できるデバイスの線幅も限界に近
づきつつある。又、微細化に伴う焦点深度の低下も免れ
ない。そこで、更に波長の短いX線によるリソグラフィ
ー技術が考案されているが、これは上記の問題を同時に
解決するものとして期待が大きい。
[Prior Art] Large-scale integrated circuits represented by DRAM are currently in the mass production period of 4M DRAM, and even 16M DRAM.
Technology is rapidly progressing from M to 64M DRAM. Along with this, the minimum line width required for devices has also been reduced from half a micron to a quarter micron. These semiconductor devices are transferred from a mask to a semiconductor substrate using near-ultraviolet light or far-ultraviolet light, but the line width of devices that can be processed using these wavelengths of light is approaching its limit. Further, the depth of focus inevitably decreases with miniaturization. Therefore, a lithography technique using X-rays with an even shorter wavelength has been devised, and there are great expectations that this will solve the above problems at the same time.

【0003】0003

【発明が解決しようとしている問題点】ところが、X線
の様に光子エネルギーの大きい放射線によって露光し、
レジストパターンを形成しようとした場合、X線が基板
上に塗布された感光性樹脂層に到達する電離作用によっ
て、この感光性樹脂層が帯電し、ウェーハと近接して設
置されたX線マスクと電気的な作用によって、これらウ
ェーハとX線マスクの距離が一定に保てなくなったり、
更にはマスクとウェーハとが接触してしまうという重大
な問題を発生することがあった。これらウェーハとマス
クの距離が変化した場合、回折現象等による露光光のレ
ジスト内での広がりの大きさが変化し、このため、現像
後のレジストの形状や線幅の再現性が得られなくなり、
更には所望の解像度が得られないという問題をも発生す
ることがあった。又、最悪の場合は数μmから数十μm
の距離に保たれたウェーハとマスクが密着してしまうと
いう深刻な事態に至る場合があった。従って、本発明の
目的は、パターン形成に際してレジスト層の帯電を無く
し、ウェーハとX線マスクの距離を一定に保ち、解像度
に優れたパターンを形成するレジストパターンの形成方
法を提供することである。
[Problem to be solved by the invention] However, when exposed to radiation with high photon energy such as X-rays,
When attempting to form a resist pattern, the ionization effect of X-rays reaching the photosensitive resin layer coated on the substrate causes the photosensitive resin layer to become electrically charged, causing the X-ray mask placed close to the wafer to become charged. Due to electrical effects, the distance between these wafers and the X-ray mask cannot be kept constant,
Furthermore, a serious problem may arise in that the mask and wafer come into contact with each other. If the distance between the wafer and the mask changes, the extent of the spread of exposure light within the resist due to diffraction phenomena will change, and as a result, the reproducibility of the shape and line width of the resist after development will no longer be obtained.
Furthermore, a problem may arise in that a desired resolution cannot be obtained. In addition, in the worst case, it is several μm to several tens of μm.
In some cases, the wafer and the mask, which were kept at a distance of Therefore, an object of the present invention is to provide a resist pattern forming method that eliminates charging of the resist layer during pattern formation, maintains a constant distance between the wafer and the X-ray mask, and forms a pattern with excellent resolution.

【0004】0004

【問題点を解決する為の手段】上記目的は以下の本発明
によって達成される。即ち、本発明は、放射線による近
接露光方法によるレジストパターン形成方法において、
放射線感応性レジスト層の表層をカチオン系又は両性界
面活性剤で導電性処理することによって、放射線露光中
の電離作用によるレジスト層の帯電を防止し、近接配置
されたマスクとウェーハ間の距離の変動を防止すること
を特徴とするレジストパターンの形成方法である。
[Means for Solving the Problems] The above object is achieved by the following present invention. That is, the present invention provides a resist pattern forming method using a radiation proximity exposure method, which includes:
By treating the surface layer of the radiation-sensitive resist layer with a cationic or amphoteric surfactant to make it conductive, the resist layer is prevented from being charged due to ionization during radiation exposure, and the distance between the mask and the wafer, which are placed in close proximity, can be reduced. This is a resist pattern forming method characterized by preventing.

【0005】[0005]

【作用】放射線感応性レジストの表層をカチオン系又は
両性の界面活性剤で表面処理することにより、レジスト
の帯電を防止し、ついてはこの帯電を防止することによ
り電気的な反発力若しくは引力によるウェーハとマスク
の距離の変動を防止することが出来る。
[Function] By treating the surface layer of the radiation-sensitive resist with a cationic or amphoteric surfactant, it is possible to prevent the resist from being charged. It is possible to prevent variations in the mask distance.

【0006】[0006]

【好ましい実施態様】本発明の方法に使用可能なカチオ
ン系の界面活性剤は、露光の目的が半導体デバイスの製
造である場合には、例えば、テトラデシルアミン酢酸塩
、オクタデシルアミン酢酸塩、第4級アンモニウムクロ
ライド、第4級アンモニウムサルフェート、第4級アン
モニウムナイトレート等のアルカリ金属元素を含まない
化合物を使用することが出来る。又、露光の目的がマイ
クロメカニクス等の半導体デバイスではない場合には、
例えば、ドデシルトリメチルアンモニウムクロライド、
ヤシアルキルトリメチルアンモニウムクロライド、オク
タデシルトリメチルアンモニウムクロライド、テトラデ
シルジメチルベンジルアンモニウムクロライド、オクタ
デシルジメチルベンジルアンモニウムクロライド、テト
ラメチルアンモニウムクロライド等も使用することが出
来る。レジストの表層の表面処理を行う場合は、これら
のカチオン性又は両性界面活性剤を適正な溶媒に溶解し
て、回転塗布法によって成膜し、この後熱処理によって
乾燥する方法が望ましい。回転塗布に使用する溶媒は、
イオン交換水又はメタノール、エタノール、n−プロパ
ノール、イソプロピルアルコール等のアルコール類等を
材料に応じて用いることが出来る。
[Preferred Embodiment] When the purpose of exposure is to manufacture semiconductor devices, cationic surfactants that can be used in the method of the present invention include, for example, tetradecylamine acetate, octadecylamine acetate, quaternary Compounds that do not contain an alkali metal element, such as quaternary ammonium chloride, quaternary ammonium sulfate, and quaternary ammonium nitrate, can be used. In addition, if the purpose of exposure is not a semiconductor device such as micromechanics,
For example, dodecyltrimethylammonium chloride,
Coconut alkyltrimethylammonium chloride, octadecyltrimethylammonium chloride, tetradecyldimethylbenzylammonium chloride, octadecyldimethylbenzylammonium chloride, tetramethylammonium chloride, etc. can also be used. When performing surface treatment on the surface layer of a resist, it is desirable to dissolve these cationic or amphoteric surfactants in an appropriate solvent, form a film by spin coating, and then dry by heat treatment. The solvent used for spin coating is
Ion-exchanged water or alcohols such as methanol, ethanol, n-propanol, isopropyl alcohol, etc. can be used depending on the material.

【0007】尚、本発明方法で使用する他の構成、例え
ば、ウェーハ、レジスト、X線マスク、露光方法、現像
方法等はいずれも従来公知の構成でよく、特に限定され
ない。図1に図解的に説明する様に、レジストの表層を
帯電防止処理しない従来技術の場合には、近接露光時に
レジスト層が帯電して、X線吸収体パターンを有してい
るX線透過膜がたわみ、その結果レジスト層に形成され
るパターンの解像度が低下し、甚だしい場合にはマスク
とレジスト層とが密着する。これに対して本発明方法の
場合には、パターン形成に際してレジスト層の帯電がな
く、従ってレジスト層とX線マスクの距離が変動するこ
とがないので、解像度の安定性に優れたパターンを形成
することができる。
[0007] The other components used in the method of the present invention, such as the wafer, resist, X-ray mask, exposure method, and development method, may all be conventionally known components and are not particularly limited. As illustrated in FIG. 1, in the case of the conventional technique in which the surface layer of the resist is not subjected to antistatic treatment, the resist layer becomes electrically charged during close exposure, resulting in an X-ray transparent film having an X-ray absorber pattern. As a result, the resolution of the pattern formed on the resist layer decreases, and in extreme cases, the mask and resist layer come into close contact. On the other hand, in the case of the method of the present invention, the resist layer is not charged during pattern formation, and therefore the distance between the resist layer and the X-ray mask does not change, so a pattern with excellent resolution stability can be formed. be able to.

【実施例】次に実施例を挙げて本発明を更に具体的に説
明する。尚、本発明は次の実施例のみに限られないこと
は言うまでもない。
EXAMPLES Next, the present invention will be explained in more detail with reference to Examples. It goes without saying that the present invention is not limited to the following embodiments.

【0008】実施例1 帯電防止剤としてジメチルジヒドロキシエチルアンモニ
ウムのメチルサルフェートをイオン交換水に溶解した後
、0.2μmのテフロン製メンブレンフィルターでろ過
し、帯電防止剤のスピンコート用溶液とした。シップレ
ー社製のネガ型レジストSAL−601レジストを1μ
mの厚みにシリコンウェーハ上にスピンナーで塗布した
後、ホットプレート上で105℃で1分間プリベークし
た。この上に上記の帯電防止剤のイオン交換水溶液をス
ピンナーを用いてスピンコートし、更に105℃で1分
間加熱し乾燥させた。次に、このウェーハとX線マスク
を10μmの距離で対向させて固定し、RhのX線管球
を用いてX線露光を行った後110℃で1分間露光後ベ
ークを行なった。現像はシップレー社製MF−312で
10分間浸漬して行なった。得られたレジストパターン
の断面形状をSEMを用いて観察したところパターン形
状の悪化はなく、且つレジストの線幅の再現性も良好だ
った。又、マスクとウェーハの接触も発生しなかった。
Example 1 Methyl sulfate of dimethyldihydroxyethylammonium as an antistatic agent was dissolved in ion-exchanged water and filtered through a 0.2 μm Teflon membrane filter to prepare an antistatic agent solution for spin coating. 1μ negative resist SAL-601 resist manufactured by Shipley
The film was coated onto a silicon wafer with a spinner to a thickness of m, and then prebaked on a hot plate at 105°C for 1 minute. The above ion-exchanged aqueous solution of the antistatic agent was spin-coated onto this using a spinner, and the resultant was further dried by heating at 105° C. for 1 minute. Next, this wafer and an X-ray mask were fixed facing each other at a distance of 10 μm, and after X-ray exposure was performed using a Rh X-ray tube, post-exposure baking was performed at 110° C. for 1 minute. Development was carried out by immersion in Shipley's MF-312 for 10 minutes. When the cross-sectional shape of the obtained resist pattern was observed using a SEM, there was no deterioration in the pattern shape, and the reproducibility of the line width of the resist was also good. Further, no contact between the mask and the wafer occurred.

【0009】実施例2 帯電防止剤としてトリメチルアセトキシメチルアンモニ
ウムをイオン交換水に溶解した後、0.2μmのテフロ
ン製メンブレンフィルターでろ過し、帯電防止剤のスピ
ンコート用溶液とした。ヘキスト社製のポジ型レジスト
RAY−PFレジストを1μmの厚みにシリコンウェー
ハ上にスピンナーで塗布した後、ホットプレート上で1
10℃で1分間プリベークした。この上に上記の帯電防
止剤のイオン交換水溶液をスピンナーを用いてスピンコ
ートし、更に110℃で1分間加熱し乾燥させた。次に
、このウェーハとX線マスクを10μmの距離で対向さ
せて固定し、RhのX線管球を用いてX線露光を行なっ
た後、120℃で1分間露光後ベークを行った。現像は
ヘキスト社製AZ現像液(イオン交換水で3倍に希釈)
で2分間浸漬して行った。得られたレジストパターンの
断面形状をSEMを用いて観察したところパターン形状
の悪化はなく、且つレジストの線幅の再現性も良好だっ
た。又、マスクとウェーハとの接触も発生しなかった。
Example 2 Trimethylacetoxymethylammonium as an antistatic agent was dissolved in ion-exchanged water and filtered through a 0.2 μm Teflon membrane filter to prepare an antistatic agent solution for spin coating. After applying a positive resist RAY-PF resist manufactured by Hoechst to a thickness of 1 μm onto a silicon wafer using a spinner,
Prebaked at 10°C for 1 minute. The above ion-exchanged aqueous solution of the antistatic agent was spin-coated onto this using a spinner, and the resultant was further dried by heating at 110° C. for 1 minute. Next, this wafer and an X-ray mask were fixed facing each other at a distance of 10 μm, and after X-ray exposure was performed using a Rh X-ray tube, post-exposure baking was performed at 120° C. for 1 minute. Developed using Hoechst AZ developer (diluted 3 times with ion-exchanged water)
It was immersed in water for 2 minutes. When the cross-sectional shape of the obtained resist pattern was observed using a SEM, there was no deterioration in the pattern shape, and the reproducibility of the line width of the resist was also good. Further, no contact between the mask and the wafer occurred.

【0010】比較例 実施例1に述べたレジスト表層の帯電防止剤処理を行わ
ないで、その他は実施例1と同様の処理によりレジスト
パターンを作成し、測長SEMでレジストの線幅の評価
を行ったところ、レジストの線幅の再現性が不良であっ
た。
Comparative Example A resist pattern was prepared in the same manner as in Example 1, except that the resist surface layer was not treated with an antistatic agent as described in Example 1, and the line width of the resist was evaluated using a length measurement SEM. When tested, the reproducibility of the line width of the resist was found to be poor.

【0011】[0011]

【効果】以上の如き本発明によれば、放射線感応性レジ
ストの表層をカチオン系又は両性の界面活性剤で表面処
理することにより、レジストの帯電を防止し、ついては
この帯電を防止することにより電気的な反発力若しくは
引力によるウェーハとマスクの距離の変動を防止するこ
とが出来る。
[Effect] According to the present invention as described above, by treating the surface layer of a radiation-sensitive resist with a cationic or amphoteric surfactant, the resist is prevented from being charged, and by preventing this charging, it is possible to prevent the resist from becoming electrically charged. Fluctuations in the distance between the wafer and the mask due to repulsive force or attractive force can be prevented.

【0012】0012

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】レジスト表層の帯電防止処理を行わない場合の
近接露光を説明する図。
FIG. 1 is a diagram illustrating close exposure when no antistatic treatment is performed on the resist surface layer.

【図2】レジスト表層の帯電防止処理を行った場合の近
接露光を説明する図。
FIG. 2 is a diagram illustrating proximity exposure when antistatic treatment is performed on the resist surface layer.

【符号の説明】[Explanation of symbols]

1:X線マスク 2:レジスト層 3:ウェーハ 1: X-ray mask 2: Resist layer 3: Wafer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  放射線による近接露光方法によるレジ
ストパターン形成方法において、放射線感応性レジスト
層の表層をカチオン系又は両性界面活性剤で導電性処理
することによって、放射線露光中の電離作用によるレジ
スト層の帯電を防止し、近接配置されたマスクとウェー
ハ間の距離の変動を防止することを特徴とするレジスト
パターンの形成方法。
Claim 1: In a resist pattern forming method using a radiation proximity exposure method, the surface layer of a radiation-sensitive resist layer is treated with a cationic or amphoteric surfactant to make the resist layer conductive, thereby reducing the resistance of the resist layer due to ionization during radiation exposure. A method for forming a resist pattern, which is characterized by preventing charging and preventing variations in the distance between a mask and a wafer that are placed in close proximity.
JP3092647A 1991-04-01 1991-04-01 Formation of resist pattern Pending JPH04304616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3092647A JPH04304616A (en) 1991-04-01 1991-04-01 Formation of resist pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3092647A JPH04304616A (en) 1991-04-01 1991-04-01 Formation of resist pattern

Publications (1)

Publication Number Publication Date
JPH04304616A true JPH04304616A (en) 1992-10-28

Family

ID=14060249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3092647A Pending JPH04304616A (en) 1991-04-01 1991-04-01 Formation of resist pattern

Country Status (1)

Country Link
JP (1) JPH04304616A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0595361A3 (en) * 1992-10-30 1997-04-02 Matsushita Electric Ind Co Ltd Method of forming micropatterns

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0595361A3 (en) * 1992-10-30 1997-04-02 Matsushita Electric Ind Co Ltd Method of forming micropatterns

Similar Documents

Publication Publication Date Title
TW393699B (en) Semiconductor device and its manufacturing method
US8187798B2 (en) Method of forming fine patterns
KR100634780B1 (en) Method for forming fine pattern
JP2013543282A (en) Double patterning with inline critical dimension slimming
JP3825294B2 (en) Resist pattern refinement method and resist pattern refinement coating forming liquid used in the method
CN101025569A (en) Method for forming fine pattern of semiconductor device
JP2011099903A (en) Resist pattern thickening material, and semiconductor device and production method thereof
JPH04304616A (en) Formation of resist pattern
JPH07105336B2 (en) Resist development method
JPH0572747A (en) Pattern forming method
JP2009139695A (en) Method for manufacturing semiconductor device
JP3035721B2 (en) Method of forming resist pattern
JP2009105248A (en) Pattern formation method
KR100472733B1 (en) Method of forming photoresist pattern in semiconductor device
JPS63177518A (en) Formation of pattern
JPH04338959A (en) Pattern forming method
JPH0814699B2 (en) Pattern formation method
JP2008159754A (en) Pattern forming method
JP3179127B2 (en) Pattern formation method
JP3098090B2 (en) Conductive resist
JP4425720B2 (en) Pattern formation method
JPH08241853A (en) Rinsing solution drying method and device
KR100557923B1 (en) Method of manufacturing semiconductor memory device
JPH0943855A (en) Formation of resist pattern
JPS58113925A (en) Resist for electron beam depiction