JPH0430452B2 - - Google Patents

Info

Publication number
JPH0430452B2
JPH0430452B2 JP28188585A JP28188585A JPH0430452B2 JP H0430452 B2 JPH0430452 B2 JP H0430452B2 JP 28188585 A JP28188585 A JP 28188585A JP 28188585 A JP28188585 A JP 28188585A JP H0430452 B2 JPH0430452 B2 JP H0430452B2
Authority
JP
Japan
Prior art keywords
powder
alloy
sintered
density
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP28188585A
Other languages
Japanese (ja)
Other versions
JPS62142750A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP28188585A priority Critical patent/JPS62142750A/en
Publication of JPS62142750A publication Critical patent/JPS62142750A/en
Publication of JPH0430452B2 publication Critical patent/JPH0430452B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 〔発明の概要〕 鉄−コバルト合金粉とコバルト粉との混合粉を
使用することによつて圧粉成形性、焼結性を向上
させた鉄−コバルト焼結合金を得る。
[Detailed Description of the Invention] [Summary of the Invention] An iron-cobalt sintered alloy with improved compactability and sinterability by using a mixed powder of iron-cobalt alloy powder and cobalt powder is provided. obtain.

〔産業上の利用分野〕[Industrial application field]

本発明はFe−Co焼結合金に係り、特にFe−Co
合金粉とCo粉を使用するFe−Co焼結合金軟質磁
性材料に関するものである。
The present invention relates to Fe-Co sintered alloys, and particularly to Fe-Co sintered alloys.
The present invention relates to a Fe-Co sintered alloy soft magnetic material using alloy powder and Co powder.

〔従来の技術と問題点〕[Conventional technology and problems]

一般に磁気的に軟らかい材料である軟質磁性材
料は透磁率および磁束密度が高い。この軟質磁性
材料は鉄、けい素鋼(Fe−Si)、パーマロイ(Fe
−Ni)、センダスト(Fe−Si−Al)、パーメンジ
ユール(Fe−Co)等の材料がある。
Soft magnetic materials, which are generally magnetically soft materials, have high magnetic permeability and magnetic flux density. This soft magnetic material is made of iron, silicon steel (Fe-Si), permalloy (Fe-Si), and permalloy (Fe-Si).
-Ni), sendust (Fe-Si-Al), and permendile (Fe-Co).

本発明が対象とする鉄・コバルト(Fe−Co)
合金軟質磁性材料はコバルト50%、鉄50%の組成
(重量%)において最高の飽和磁束密度を有し且
つ最大透磁率を示すが冷間加工が困難である。
Iron/cobalt (Fe-Co) targeted by the present invention
Alloy soft magnetic materials have the highest saturation magnetic flux density and maximum magnetic permeability at a composition (wt%) of 50% cobalt and 50% iron, but are difficult to cold work.

そこでバナジウム(V)を2%添加し、冷間加
工性をわずかに改善した2V−パーメンジユール
(スーパーメンダー)が使用されているが未だ十
分な冷間加工性を有するに至つておらず、なお冷
間加工性改善の要望が高まつている。
Therefore, 2V-Permendeur (Super Mender), which has 2% vanadium (V) added to slightly improve cold workability, is used, but it still does not have sufficient cold workability. Demand for improved workability is increasing.

粉末冶金法は上記のような難加工性材料の製造
方法として有力なものの一つであるが、粉末冶金
で製造したパーメンジユールと、溶製によつて得
られたパーメンジユールを比較すると、従来、前
者のパーメンジユールの磁気的性質、例えば飽和
磁束密度、最大透磁率等が後者のそれと比較して
低いものであつた。
Powder metallurgy is one of the most effective methods for producing difficult-to-process materials such as those mentioned above, but when we compare permendial produced by powder metallurgy and permendial obtained by melting, we find that the former Permendial's magnetic properties, such as saturation magnetic flux density and maximum permeability, were lower than those of the latter.

このように粉末冶金法で製造したパーメンジユ
ールの方が溶製によつて得られた、パーメンジユ
ールより特性が低いのは鉄粉とコバルト粉と潤滑
剤とを混合し、成形し、焼結していたことに起因
するものと思われる。すなわち鉄のコバルト中へ
の拡散係数がコバルトの鉄中への拡散係数よりも
大きいために鉄にカーケンドールボイド
(Kirkendall void)が発生すること、および焼
結温度領域(1150〜1450℃)における鉄・コバル
ト合金の結晶構造(fcc相)に起因する拡散係数
の低さのために焼結工程において緻密化、および
合金としての均一化が不十分で良好な磁気的性質
が得られなかつた。
In this way, permendial manufactured by powder metallurgy has lower properties than permendil obtained by melting, because iron powder, cobalt powder, and lubricant are mixed, molded, and sintered. This seems to be due to this. In other words, Kirkendall voids occur in iron because the diffusion coefficient of iron into cobalt is larger than the diffusion coefficient of cobalt into iron. -Due to the low diffusion coefficient due to the crystal structure (fcc phase) of cobalt alloy, densification and uniformity of the alloy were insufficient during the sintering process, and good magnetic properties could not be obtained.

本発明の目的は粉末冶金法による鉄・コバルト
合金の磁気的性質を改善することであり、良好な
磁気的性質を有する鉄・コバルト系の焼結軟質磁
性材料を提供することにある。
An object of the present invention is to improve the magnetic properties of an iron-cobalt alloy produced by powder metallurgy, and to provide an iron-cobalt-based sintered soft magnetic material having good magnetic properties.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的は、本発明によれば、実質的にFe
およびCoから成るFe−Co合金粉末とCo粉末との
混合粉末を原料として焼結を行うFe−Co焼結合
金の製造方法であつて、前記Fe−Co合金粉末と
前記Co粉末の平均粒径の比が30:1〜10:3で
あることを特徴とするFe−Co焼結合金の製造方
法によつて達成される。
According to the present invention, the above object is achieved by substantially Fe
A method for producing an Fe-Co sintered alloy, which comprises sintering a mixed powder of Fe-Co alloy powder and Co powder consisting of This is achieved by a method for producing an Fe--Co sintered alloy characterized in that the ratio of

〔作用〕[Effect]

すなわち本発明は磁気的性質の低下を引き起す
原因となる第3元素の添加によらず出発材料とし
て、平均粒径の比が30:1〜10:3であるFe−
Co合金粉末とCo粉末との混合粉末を用いること
により圧粉成形性を向上させFe−Co合金粉とCo
粉の相互拡散係数を調節し焼結体の緻密化、均一
化を向上させたものである。
That is, the present invention does not involve the addition of a third element that causes a decrease in magnetic properties, but instead uses Fe-1 as a starting material, the average particle size ratio of which is 30:1 to 10:3.
By using a mixed powder of Co alloy powder and Co powder, the compactability is improved and Fe-Co alloy powder and Co
This improves the densification and uniformity of the sintered body by adjusting the interdiffusion coefficient of the powder.

本発明において、混合粉末を構成するFe−Co
合金粉末とCo粉末との平均粒径の比を30:1〜
10:3としたのは、焼結時のカーケンドールボイ
ドの発生を防止して高い焼結密度が得られるよう
にFeおよびCoの相互拡散係数を適切に調整する
ためである。この観点から、Fe−Co合金粉末の
平均粒径を10〜30μmとし、Co粉末の平均粒径を
1〜3μmとすることが望ましい。
In the present invention, Fe-Co constituting the mixed powder
The average particle size ratio of alloy powder and Co powder is 30:1 ~
The reason for setting the ratio to 10:3 is to appropriately adjust the interdiffusion coefficients of Fe and Co so as to prevent the occurrence of Kirkendall voids during sintering and obtain a high sintered density. From this point of view, it is desirable that the average particle size of the Fe-Co alloy powder be 10 to 30 μm, and the average particle size of the Co powder be 1 to 3 μm.

〔実施例〕〔Example〕

以下本発明の実施例を説明する。 Examples of the present invention will be described below.

原料粉としてアトマイズ法により得られた平均
粒径10〜30μmのFe−x重量%Co合金粉(x=
10,20,30,40)と還元法により得られた平均粒
径1〜3μmのコバルト粉を用意し、Fe/Coの重
量比が1となるように調製し、さらに潤滑剤とし
て0.75重量%のステアリン酸亜鉛を加えて混合し
た。これらの混合粉を392MPa(4t/cm2)の成形
圧力で外径45mm、内径35mm、厚さ7mmのリング形
状に圧粉成形した。引き継いて400℃の温度で加
熱することにより前述の潤滑剤を圧粉体から蒸発
除去し、次に550〜850℃の温度、水素雰囲気中で
1時間仮焼結し、更に588MPa(6t/cm2)の圧力
で再圧縮成形を行つた。最後にこの仮焼結品をプ
ツシヤー型水素雰囲気炉で1300〜1400℃で1時間
焼結した。上記工程では出発材料をFe−Co合金
粉とCo粉との混合粉を使用した以外は通常の工
程である。得られたFe−Co焼結合金の組成はFe
が45〜55重量%であつた。またこの工程によつて
得られたFe−Co焼結合金の特性は以下に説明す
る比較例と共に説明する。
Fe-x wt% Co alloy powder (x =
10, 20, 30, 40) and cobalt powder with an average particle size of 1 to 3 μm obtained by a reduction method, prepared so that the weight ratio of Fe/Co was 1, and further added 0.75% by weight as a lubricant. of zinc stearate was added and mixed. These mixed powders were compacted into a ring shape having an outer diameter of 45 mm, an inner diameter of 35 mm, and a thickness of 7 mm at a molding pressure of 392 MPa (4 t/cm 2 ). The lubricant mentioned above is then removed by evaporation from the green compact by heating at a temperature of 400℃, followed by pre-sintering for 1 hour in a hydrogen atmosphere at a temperature of 550 to 850℃, and further heated to 588MPa (6t/cm). 2 ) Recompression molding was performed at the pressure. Finally, this pre-sintered product was sintered in a pusher type hydrogen atmosphere furnace at 1300-1400°C for 1 hour. The above process is a normal process except that a mixed powder of Fe--Co alloy powder and Co powder is used as the starting material. The composition of the obtained Fe-Co sintered alloy is Fe
was 45-55% by weight. Further, the characteristics of the Fe-Co sintered alloy obtained by this process will be explained together with comparative examples explained below.

実施例 2 原料粉としてアトマイズ法により得られた平均
粒径10〜30μmのFe−x重量%Co合金粉(x=
10,20,30,40)と還元法により得られた平均粒
径1〜3μmのコバルト粉を用意し、Fe/Coの重
量比が1となるように調製し、さらに潤滑剤とし
て0.75重量%のステアリン酸亜鉛を加えて混合し
た。これらの混合粉を392MPa(4t/cm2)の成形
圧力で外径45mm、内径35mm、厚さ7mmのリング形
状に圧粉成形した。引き継いて400℃の温度で加
熱することにより前述の潤滑剤を圧粉体から蒸発
除去し、プツシヤー型水素雰囲気炉で1300〜1400
℃で1時間焼結した。得られた材料の特性は実施
例1と同様である。上記工程では仮焼結工程、再
圧縮工程を省略している。このため、製品形状に
制限が少なくなる。さらに、2工程を省略できる
ので作業工程の大幅な短縮が可能となり、コスト
の低下につながる。
Example 2 Fe-x wt% Co alloy powder (x =
10, 20, 30, 40) and cobalt powder with an average particle size of 1 to 3 μm obtained by a reduction method, prepared so that the weight ratio of Fe/Co was 1, and further added 0.75% by weight as a lubricant. of zinc stearate was added and mixed. These mixed powders were compacted into a ring shape having an outer diameter of 45 mm, an inner diameter of 35 mm, and a thickness of 7 mm at a molding pressure of 392 MPa (4 t/cm 2 ). The above-mentioned lubricant is then evaporated from the green compact by heating it at a temperature of 400℃, and the powder is heated at a temperature of 1300 to 1400℃ in a pusher-type hydrogen atmosphere furnace.
Sintered at ℃ for 1 hour. The properties of the obtained material are similar to those in Example 1. In the above process, the temporary sintering process and the recompression process are omitted. Therefore, there are fewer restrictions on the product shape. Furthermore, since two steps can be omitted, the work steps can be significantly shortened, leading to a reduction in costs.

〔比較例〕[Comparative example]

上記実施例において平均粒径を20〜30μmのコ
バルト粉を用いた以外は本比較例の諸条件は同一
である。
The conditions of this comparative example are the same as in the above example except that cobalt powder having an average particle size of 20 to 30 μm was used.

第1図は実施例と比較例(従来例)におけるグ
リーン(圧粉体)密度および焼結密度を示す。グ
リーン密度とは圧粉成形を行つた段階での密度を
意味しており、寸法および重量を測定し、計算に
より密度を求めた。また、焼結密度はJISZ2505
に規定されている「金属焼結体の密度測定方法」
によつて求めた。このようにして求めたそれぞれ
の密度を溶製材のFe−50%Co合金(パーメンジ
ユール )の密度8.18g/c.c.(R.M.Bozorth:
Ferromagnetism,D.Van Nostrand Co.,Inc.,
P.190(1964))で除して相対密度とした。図−1
から明らかなように粒径の小さなCo粉を使用す
ることにより、グリーン密度および焼結密度とも
大きく向上していることがわかる。次に得られた
焼結合金に励磁コイルおよびサーチコイルを共に
42ターン巻き、最大印加磁場4KA/m(50Oe)に
て直流自記磁束計を用いて、BHヒステリシス曲
線を描き磁束密度、保磁力、および透磁率を測定
した。
FIG. 1 shows the green (green compact) density and sintered density in the example and comparative example (conventional example). Green density means the density at the stage of powder compaction, and the density was determined by measuring the dimensions and weight and calculating. In addition, the sintered density is JISZ2505
"Method for measuring the density of metal sintered bodies" specified in
It was determined by The density of the Fe-50% Co alloy (Permendial) obtained in this way is 8.18 g/cc (RMBozorth:
Ferromagnetism, D. Van Nostrand Co., Inc.
P.190 (1964)) to obtain the relative density. Figure-1
As is clear from the figure, both green density and sintered density are greatly improved by using Co powder with a small particle size. Next, an excitation coil and a search coil are attached to the obtained sintered alloy.
A BH hysteresis curve was drawn and the magnetic flux density, coercive force, and magnetic permeability were measured using a DC self-recording magnetometer with 42 turns of winding and a maximum applied magnetic field of 4 KA/m (50 Oe).

第2図は上記実施例と比較例における磁気的性
質を示す。第2図から明らかなように粒径の小さ
なCo粉を用いることにより、軟質磁性材料とし
て好ましい磁気的性質(高磁束密度、低保磁力、
高透磁率)が向上する。
FIG. 2 shows the magnetic properties of the above example and comparative example. As is clear from Figure 2, by using Co powder with a small particle size, it has favorable magnetic properties (high magnetic flux density, low coercive force, etc.) as a soft magnetic material.
High magnetic permeability) is improved.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、グリーン
密度および焼結密度を高め、その結果として良好
な磁気的性質を有するFe−Co焼結合金を得るこ
とができる。したがつて本発明による焼結軟質磁
性材料を電磁部品に応用すれば、切削加工が非常
に困難なパーメンジユール溶製材を用いるよりも
経済的に有利である。
As explained above, according to the present invention, the green density and the sintered density can be increased, and as a result, an Fe--Co sintered alloy having good magnetic properties can be obtained. Therefore, if the sintered soft magnetic material of the present invention is applied to electromagnetic parts, it is economically more advantageous than using permendial melt material, which is extremely difficult to cut.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例と比較例(従来例)におけるグ
リーン(圧粉体)密度および焼結密度を示し、第
2図は上記実施例と比較例における磁気的特性を
示す。
FIG. 1 shows the green (green compact) density and sintered density in the example and comparative example (conventional example), and FIG. 2 shows the magnetic properties in the above example and comparative example.

Claims (1)

【特許請求の範囲】 1 実質的にFeおよびCoから成るFe−Co合金粉
末とCo粉末との混合粉末を原料として焼結を行
うFe−Co焼結合金の製造方法であつて、前記Fe
−Co合金粉末と前記Co粉末の平均粒径の比が
30:1〜10:3であることを特徴とするFe−Co
焼結合金の製造方法。 2 前記Fe−Co合金粉末の平均粒径が10〜30μm
であり、前記Co粉末の平均粒径が1〜3μmであ
ることを特徴とする特許請求の範囲第1項に記載
の方法。 3 前記Fe−Co合金粉末としてアトマイズ法に
より制造されたFe−Co合金粉末を用い、前記Co
粉末として還元法により製造されたCo粉末を用
いることを特徴とする特許請求の範囲第1項また
は第2項に記載の方法。 4 前記混合粉末のFe含有量とCo含有量の重量
比がほぼ1:1であることを特徴とする特許請求
の範囲第1項に記載の方法。
[Scope of Claims] 1. A method for producing an Fe-Co sintered alloy in which sintering is performed using a mixed powder of Fe-Co alloy powder and Co powder consisting essentially of Fe and Co, the method comprising:
−The ratio of the average particle size of the Co alloy powder and the Co powder is
Fe-Co characterized by a ratio of 30:1 to 10:3
Method for manufacturing sintered alloy. 2 The average particle size of the Fe-Co alloy powder is 10 to 30 μm
The method according to claim 1, wherein the Co powder has an average particle size of 1 to 3 μm. 3 Using Fe-Co alloy powder produced by an atomization method as the Fe-Co alloy powder,
The method according to claim 1 or 2, characterized in that Co powder produced by a reduction method is used as the powder. 4. The method according to claim 1, wherein the weight ratio of Fe content to Co content in the mixed powder is approximately 1:1.
JP28188585A 1985-12-17 1985-12-17 Sintered fe-co alloy Granted JPS62142750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28188585A JPS62142750A (en) 1985-12-17 1985-12-17 Sintered fe-co alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28188585A JPS62142750A (en) 1985-12-17 1985-12-17 Sintered fe-co alloy

Publications (2)

Publication Number Publication Date
JPS62142750A JPS62142750A (en) 1987-06-26
JPH0430452B2 true JPH0430452B2 (en) 1992-05-21

Family

ID=17645323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28188585A Granted JPS62142750A (en) 1985-12-17 1985-12-17 Sintered fe-co alloy

Country Status (1)

Country Link
JP (1) JPS62142750A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989012112A1 (en) * 1988-05-30 1989-12-14 Kawasaki Steel Corporation SINTERED MAGNETIC Fe-Co MATERIAL AND PROCESS FOR ITS PRODUCTION
JP2022035559A (en) 2020-08-21 2022-03-04 株式会社村田製作所 Composite magnetic body

Also Published As

Publication number Publication date
JPS62142750A (en) 1987-06-26

Similar Documents

Publication Publication Date Title
JP2008028162A (en) Soft magnetic material, manufacturing method therefor, and dust core
JP4968519B2 (en) Permanent magnet and method for manufacturing the same
JPH0366105A (en) Rare earth anisotropic powder and magnet, and manufacture thereof
US4891078A (en) Rare earth-containing magnets
US5002728A (en) Method of manufacturing soft magnetic Fe-Si alloy sintered product
US4601754A (en) Rare earth-containing magnets
JPH0430452B2 (en)
US4601876A (en) Sintered Fe-Cr-Co type magnetic alloy and method for producing article made thereof
US4776902A (en) Method for making rare earth-containing magnets
JPS63178505A (en) Anisotropic r-fe-b-m system permanent magnet
JPH06204021A (en) Composite magnetic material and its manufacture
JPH0373612B2 (en)
JPS62284002A (en) Magnetic alloy powder consisting of rare earth element
JPS6254041A (en) Manufacture of sintered iron-cobalt alloy
JP3217665B2 (en) Improved RE-Fe-B-based magnet and method for producing the same
JP3492884B2 (en) Method for producing soft magnetic sintered metal
JP3231000B2 (en) Manufacturing method of rare earth permanent magnet
JP3526493B2 (en) Manufacturing method of anisotropic sintered magnet
JPS59215460A (en) Permanent magnet material and its production
JPS59219452A (en) Permanent magnet material and its production
JPH0645832B2 (en) Rare earth magnet manufacturing method
JPS62103343A (en) Iron-nickel type soft magnetic sintered material and its manufacture
JP3378417B2 (en) Manufacturing method of raw material powder for permanent magnet
JPH10147832A (en) Manufacture of 'permalloy(r)' sintered compact
JPS62257704A (en) Permanent magnet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees