JPH0430432B2 - - Google Patents

Info

Publication number
JPH0430432B2
JPH0430432B2 JP12452184A JP12452184A JPH0430432B2 JP H0430432 B2 JPH0430432 B2 JP H0430432B2 JP 12452184 A JP12452184 A JP 12452184A JP 12452184 A JP12452184 A JP 12452184A JP H0430432 B2 JPH0430432 B2 JP H0430432B2
Authority
JP
Japan
Prior art keywords
oxide
rare earth
europium
mixed
phosphor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12452184A
Other languages
Japanese (ja)
Other versions
JPS614783A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP12452184A priority Critical patent/JPS614783A/en
Publication of JPS614783A publication Critical patent/JPS614783A/en
Publication of JPH0430432B2 publication Critical patent/JPH0430432B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はユーロピウム付活希土類酸化物蛍光体
の製造方法に係り、特に粒子結晶が良好、輝度が
高く、更に焼成・粉砕後の後処理を必要としない
赤色に発光するユーロピウム付活希土類酸化物蛍
光体の製造方法に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for producing a europium-activated rare earth oxide phosphor, which has particularly good particle crystallinity, high brightness, and further requires post-treatment after firing and pulverization. The present invention relates to a method for producing a europium-activated rare earth oxide phosphor that emits a red color.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

ユーロピウム付活希土類酸化物蛍光体、その中
でも(Y,Eu)2O3=Y2O3:Eu蛍光体はガドリウ
ムに比較してイツトリウムが安価であるという理
由から三波長型蛍光ランプの赤色発光成分蛍光体
として現在広く実用されている。
Europium-activated rare earth oxide phosphors, among them (Y, Eu) 2 O 3 = Y 2 O 3 :Eu phosphors are used to emit red light in three-wavelength fluorescent lamps because yttrium is cheaper than gadolinium. It is currently widely used as a component phosphor.

このY2O3:Eu蛍光体の製造方法はEu2O3xモル
に対してY2O3が(1−x)モルとなる割合で混
合し、混合希土類酸化物の組成が(Y1-x,Eux
2O3で表わされる混合希土類酸化物を形成したの
ち、この混合希土類酸化物を焼成後粉砕して得ら
れる。
This Y 2 O 3 :Eu phosphor is produced by mixing Y 2 O 3 in a ratio of (1-x) moles to x moles of Eu 2 O 3 , and the composition of the mixed rare earth oxide is (Y 1 -x , Eu x )
It is obtained by forming a mixed rare earth oxide represented by 2 O 3 and then pulverizing this mixed rare earth oxide after firing.

この混合希土類酸化物はそれぞれの原料の所定
量をボールミル、ミキサーミル等によつて物理的
に混合する製造方法を使用してもよいが、母体中
における付活剤の分散を良くするために化学的に
混合する製造方法が一般に採用されている。
This mixed rare earth oxide may be manufactured by physically mixing predetermined amounts of each raw material using a ball mill, mixer mill, etc., but in order to improve the dispersion of the activator in the matrix, chemical Generally, a manufacturing method is adopted in which the components are mixed separately.

即ち、それぞれの原料を所定量ずつ塩酸または
硝酸により溶解し、この溶液に水溶液を加えて
Euとの共沈蓚酸塩沈澱を生成する。次に、この
共沈蓚酸塩沈澱を空気中で800℃乃至1100℃の温
度で加熱分解して(Y1-x,Eux2O3で表わされる
混合希土類酸化物とする製造方法である。
That is, a predetermined amount of each raw material is dissolved in hydrochloric acid or nitric acid, and an aqueous solution is added to this solution.
Co-precipitation with Eu produces oxalate precipitate. Next, this coprecipitated oxalate precipitate is thermally decomposed in air at a temperature of 800°C to 1100°C to produce a mixed rare earth oxide represented by (Y 1-x , Eu x ) 2 O 3 . .

従来、この混合希土類酸化物を焼成する蛍光体
の製造方法には次の2つの方法がある。
Conventionally, there are the following two methods for producing phosphors by firing mixed rare earth oxides.

第1の製造方法は混合希土類酸化物を空気中で
1300℃乃至1500℃の温度で2時間乃至10時間焼成
後粉砕する方法である。
The first production method is to prepare mixed rare earth oxides in air.
This method involves firing at a temperature of 1300°C to 1500°C for 2 to 10 hours and then pulverizing.

しかしながら、このようにして得られた蛍光体
は蛍光体粒子が微細かつ不規則形状で蛍光体粒子
同志が凝集しているため、次のような問題点を有
している。
However, the phosphor thus obtained has the following problems because the phosphor particles are fine and irregularly shaped and the phosphor particles aggregate together.

第1に蛍光体粒子が不規則であり、粒子結晶が
良くない。
First, the phosphor particles are irregular and have poor particle crystallinity.

第2に蛍光体粒子同志が凝集しているため粒子
分布が不均一である。
Second, since the phosphor particles are aggregated together, the particle distribution is non-uniform.

第3に蛍光体粒子が微細なため輝度が低い。 Thirdly, the brightness is low because the phosphor particles are fine.

第2の製造方法は混合希土類酸化物の原料に微
量のLi2B4O7、NaF2などのアルカリ金属化合物
及びBa2B4O7などのアルカリ土類化合物を融剤と
して添加混合しこの混合希土類酸化物を空気中で
1100℃から1400℃の温度で2時間乃至10時間焼成
後粉砕する方法である。
The second production method involves adding and mixing small amounts of alkali metal compounds such as Li 2 B 4 O 7 and NaF 2 and alkaline earth compounds such as Ba 2 B 4 O 7 as fluxes to the mixed rare earth oxide raw materials. Mixed rare earth oxides in air
This method involves firing at a temperature of 1100°C to 1400°C for 2 to 10 hours and then pulverizing.

しかしながら、このようにして得られた蛍光体
は蛍光体粒子の結晶性は改善されるが次のような
問題点を有している。
However, the phosphor thus obtained has the following problems, although the crystallinity of the phosphor particles is improved.

第1に蛍光ランプに悪影響をおよぼすアルカリ
金属及びアルカリ土類金属が蛍光体中に混入して
いるため、焼成、粉砕後、このアルカリ金属及び
アルカリ土類金属を除去する後処理が必要であ
る。
First, since alkali metals and alkaline earth metals, which have an adverse effect on fluorescent lamps, are mixed into the phosphor, post-treatment is required to remove these alkali metals and alkaline earth metals after firing and crushing.

第2にアルカリ金属及びアルカリ土類金属が焼
成中に蛍光体焼成容器と反応し、容器の破損が著
しい。
Second, alkali metals and alkaline earth metals react with the phosphor firing container during firing, resulting in significant damage to the container.

〔発明の目的〕[Purpose of the invention]

本発明は上述した諸問題点に鑑みてなされたも
のであり、蛍光体の粒子結晶を改善し、後処理を
必要としないばかりでなく、紫外線励起により輝
度の高い赤色に発光するユーロピウム付活希土類
酸化物蛍光体の製造方法を提供することを目的と
している。
The present invention was made in view of the above-mentioned problems, and it is a europium-activated rare earth that not only improves the particle crystal of the phosphor and does not require post-treatment, but also emits a bright red color when excited by ultraviolet rays. The present invention aims to provide a method for manufacturing an oxide phosphor.

〔発明の概要〕[Summary of the invention]

即ち、本発明は、酸化イツトリウムもしくはイ
ツトリウム化合物および酸化ガドリニウム化合物
のうち少くともいずれか1つと、酸化ユーロピウ
ムもしくはユーロピウム化合物とを酸化ユーロピ
ウムxモルに対して酸化イツトリウムもしくは酸
化ガドリニウムのうちの少くとも1つが(1−
x)モルとなるような割合で混合し、全酸化物に
換算した時の混合希土類酸化物の組成が(L1-x
Eux2O3で表わされる混合希土類酸化物を形成
し、この混合希土類酸化物1モルに対し、ガリウ
ムとして2×10-3モル乃至3×10-2モルの範囲と
なる割合の酸化ガリウム、燐酸ガリウムもしくは
ガリウム化合物のうちの少くとも1つを添加混合
し、空気中もしくは酸化性雰囲気中で1200℃乃至
1500℃の温度で焼成したのち、粉砕することを特
徴としている。但しLはイツトリウム、ガドリニ
ウムのうちの少くとも1つ、xは10-3<x<2×
10-1を満足する数である。
That is, in the present invention, at least one of yttrium oxide or a yttrium compound and a gadolinium oxide compound, and europium oxide or a europium compound are combined in a ratio of at least one of yttrium oxide or gadolinium oxide to x moles of europium oxide. (1-
x) The composition of the mixed rare earth oxide when converted to total oxide is (L 1-x ,
Eu x ) 2 O 3 forms a mixed rare earth oxide, and gallium oxide in a proportion ranging from 2 x 10 -3 mol to 3 x 10 -2 mol as gallium per 1 mol of this mixed rare earth oxide. , at least one of gallium phosphate or a gallium compound is added and mixed, and heated to 1200°C in air or an oxidizing atmosphere.
It is characterized by being fired at a temperature of 1500℃ and then crushed. However, L is at least one of yttrium and gadolinium, and x is 10 -3 <x<2×
This is a number that satisfies 10 -1 .

〔発明の実施例〕[Embodiments of the invention]

発明者らは先に述べた混合希土類酸化物を焼成
し蛍光体とするに際し、酸化ガリウム(Ga2O3)、
燐酸ガリウム(GaPO4)などのガリウム化合物
のうちの少くとも1つの所定量を添加混合し、酸
化性雰囲気(空気も含む)中で所定温度で焼成す
ることにより目的が達成されることを見出した。
The inventors used gallium oxide (Ga 2 O 3 ),
It has been discovered that the objective can be achieved by adding and mixing at least a predetermined amount of at least one gallium compound such as gallium phosphate (GaPO 4 ) and firing at a predetermined temperature in an oxidizing atmosphere (including air). .

実験の結果、Ga2O3、GaPO4の中のGaの添加
量(モル)と出来上つた蛍光体の相対輝度との関
係はそれぞれ第1図の曲線1,2となり、Gaの
添加量は2×10-3モル乃至3×10-2モルが良好で
あることがわかつた。
As a result of the experiment, the relationship between the amount of Ga added (in moles) in Ga 2 O 3 and GaPO 4 and the relative brightness of the finished phosphor is shown by curves 1 and 2 in Figure 1, respectively, and the amount of Ga added is It has been found that 2×10 −3 mol to 3×10 −2 mol is good.

これはGaが融剤として作用すると共に母体の
例えばY2O3に浸入してY3+に歪を与え、Eu3+
Y3+へのドーピングを容易にさせるためと思われ
る。
This is because Ga acts as a flux and also penetrates into the matrix , e.g.
This seems to be to facilitate doping to Y 3+ .

しかし焼成温度と蛍光体の相対輝度との関係は
第2図の曲線3に示すようになり、1200℃以下で
は急激な輝度低下が起る。これはY3+へのGa3+
ドーピングが起りEu3+の置換が行なわれないと
考えられる。
However, the relationship between the firing temperature and the relative brightness of the phosphor is as shown by curve 3 in FIG. 2, and a sharp drop in brightness occurs below 1200°C. This is considered to be because Ga 3+ is doped into Y 3+ and Eu 3+ is not substituted.

次に実施例により本発明を説明する。 Next, the present invention will be explained with reference to examples.

実施例 1 酸化イツトリウム(Y2O3)277.5gと酸化ユー
ロピウム(Eu2O3)22.5gとを濃硝酸(70%)
600c.c.を純水600c.c.に薄めた硝酸に溶解し、充分撹
拌する。次に、この溶液に蓚酸(C2O4H2
2H2O)600gを添加し、充分にかく拌しながら
希土類似素と蓚酸塩を共沈させる。この沈澱物を
純水により充分洗浄し、脱水後200℃で乾燥した
のち、石英容器に入れて1000℃で2時間加熱分解
し、混合希土類酸化物を作る。
Example 1 277.5 g of yttrium oxide (Y 2 O 3 ) and 22.5 g of europium oxide (Eu 2 O 3 ) were added to concentrated nitric acid (70%).
Dissolve 600 c.c. in nitric acid diluted with 600 c.c. of pure water and stir thoroughly. Next, add oxalic acid (C 2 O 4 H 2
Add 600 g of 2H 2 O) and co-precipitate the rare earth analog and oxalate while stirring thoroughly. This precipitate is thoroughly washed with pure water, dehydrated, dried at 200°C, placed in a quartz container, and heated and decomposed at 1000°C for 2 hours to produce a mixed rare earth oxide.

次にこの混合希土類酸化物1モルに対し、酸化
ガリウム(Ga2O3)を0.005モル添加し、ボール
ミルで充分混合した後、石英ルツボに詰めめて
1400℃で5時間電気炉により焼成したのち粉砕し
た。以上のようにして蛍光体粒子の結晶のよい高
揮度なユーロピウム付活希土類酸化物蛍光体が得
られた。
Next, 0.005 mole of gallium oxide (Ga 2 O 3 ) was added to 1 mole of this mixed rare earth oxide, mixed thoroughly in a ball mill, and then packed in a quartz crucible.
After firing in an electric furnace at 1400°C for 5 hours, it was pulverized. As described above, a europium-activated rare earth oxide phosphor with high volatility and good crystallization of phosphor particles was obtained.

実施例 2 実施例1の混合希土類酸化物1モルに対し燐酸
ガリウム(GaPO4)0.01モルを添加し、ボールミ
ルで充分混合した後、石英ルツボに詰めて1350℃
で5時間電気炉により焼成したのち粉砕した。以
上のようにして蛍光体粒子の結晶のよい高輝度な
ユーロピウム付活希土類酸化物蛍光体が得られ
た。
Example 2 0.01 mole of gallium phosphate (GaPO 4 ) was added to 1 mole of the mixed rare earth oxide of Example 1, and after thorough mixing in a ball mill, the mixture was packed in a quartz crucible and heated at 1350°C.
After firing in an electric furnace for 5 hours, the mixture was pulverized. In the manner described above, a high-brightness europium-activated rare earth oxide phosphor with good crystallization of phosphor particles was obtained.

実施例 3 酸化ガドリニウム(Gd2O3)445.5gと酸化ユ
ーロピウム(Eu2O3)22.5gを実施例1と同様な
方法を用いて混合希土類酸化物を作る。この混合
希土類酸化物1モルに対し、酸化ガリウム
(Ga2O3)を0.005モル添加し、ボールミルで充分
混合した後、石英ルツボに詰めて1350℃で5時間
で電気炉により焼成したのち粉砕した。以上のよ
うにして蛍光体粒子の結晶のよい高輝度なユーロ
ピウム付活希土類酸化物蛍光体が得られた。
Example 3 A mixed rare earth oxide is prepared using 445.5 g of gadolinium oxide (Gd 2 O 3 ) and 22.5 g of europium oxide (Eu 2 O 3 ) in the same manner as in Example 1. To 1 mol of this mixed rare earth oxide, 0.005 mol of gallium oxide (Ga 2 O 3 ) was added, thoroughly mixed in a ball mill, packed in a quartz crucible, fired in an electric furnace at 1350°C for 5 hours, and then pulverized. . In the manner described above, a high-brightness europium-activated rare earth oxide phosphor with good crystallization of phosphor particles was obtained.

〔発明の効果〕〔Effect of the invention〕

上述のように本発明の製造方法によれば粒子結
晶がよく後処理を必要としないばかりでなく、輝
度の高い赤色に発光するユーロピウム付活希土類
酸化物蛍光体を提供できる。
As described above, according to the manufacturing method of the present invention, it is possible to provide a europium-activated rare earth oxide phosphor that not only has good crystal grains and does not require post-treatment, but also emits red light with high brightness.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の実験過程における
実験結果を示す図であり、第1図はGaの添加量
による蛍光体の相対輝度を示すグラフ、第2図は
焼成温度により蛍光体の相対輝度を示すグラフで
ある。 1……Ga2O3中のGaの添加量と相対輝度の関
係を示す曲線、2……GaPO4中のGaの添加量と
相対輝度の関係を示す曲線、3……焼成温度と相
対輝度の関係を示す曲線。
Figures 1 and 2 are diagrams showing experimental results in the experimental process of the present invention. Figure 1 is a graph showing the relative brightness of the phosphor depending on the amount of Ga added, and Figure 2 is a graph showing the relative brightness of the phosphor depending on the firing temperature. It is a graph showing relative brightness. 1... Curve showing the relationship between the amount of Ga added in Ga 2 O 3 and relative brightness, 2... Curve showing the relationship between the amount of Ga added in GaPO 4 and relative brightness, 3... Curve showing the relationship between the amount of Ga added in GaPO 4 and relative brightness. A curve that shows the relationship between

Claims (1)

【特許請求の範囲】 1 酸化イツトリウムもしくはイツトリウム化合
物および酸化ガドリニウムもしくはガドリニウム
化合物のうち少くともいずれか1つと、酸化ユー
ロピウムもしくはユーロピウム化合物とを前記酸
化ユーロピウムxモルに対して前記酸化イツトリ
ウムもしくは前記ガドリニウムのうちの少くとも
1つが(1−x)モルとなるような割合で混合
し、全酸化物に換算した時の混合希土類酸化物の
組成が(L1-x,Eux2O3で表わされる混合希土類
酸化物を形成し、この混合希土類酸化物1モルに
対し、ガリウムとして2×10-3モル乃至3×10-2
モルの範囲となる割合の酸化ガリウム、燐酸ガリ
ウムなどのガリウム化合物のうちの少くとも1つ
を添加混合し、空気中もしくは酸化性雰囲気中で
1200℃乃至1500℃の温度で焼成したのち、粉砕す
ることを特徴とするユーロピウム付活希土類酸化
物蛍光体の製造方法。 但しLはイツトリウム、ガドリニウムのうちの
少くとも1つ、xは10-3<x<2×10-1を満足す
る数である。
[Scope of Claims] 1. At least one of yttrium oxide or a yttrium compound, and gadolinium oxide or a gadolinium compound, and europium oxide or a europium compound, based on x moles of the europium oxide, of the yttrium oxide or the gadolinium. The composition of the mixed rare earth oxide when converted to total oxide is expressed as (L 1-x , Eu x ) 2 O 3 A mixed rare earth oxide is formed, and 2×10 -3 mol to 3×10 -2 gallium is added to 1 mol of the mixed rare earth oxide.
At least one of gallium compounds such as gallium oxide and gallium phosphate is added and mixed in a molar ratio, and the mixture is mixed in air or in an oxidizing atmosphere.
A method for producing a europium-activated rare earth oxide phosphor, which comprises firing at a temperature of 1200°C to 1500°C and then pulverizing it. However, L is at least one of yttrium and gadolinium, and x is a number satisfying 10 −3 <x<2×10 −1 .
JP12452184A 1984-06-19 1984-06-19 Production of europium-activated rare earth element oxide phosphor Granted JPS614783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12452184A JPS614783A (en) 1984-06-19 1984-06-19 Production of europium-activated rare earth element oxide phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12452184A JPS614783A (en) 1984-06-19 1984-06-19 Production of europium-activated rare earth element oxide phosphor

Publications (2)

Publication Number Publication Date
JPS614783A JPS614783A (en) 1986-01-10
JPH0430432B2 true JPH0430432B2 (en) 1992-05-21

Family

ID=14887539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12452184A Granted JPS614783A (en) 1984-06-19 1984-06-19 Production of europium-activated rare earth element oxide phosphor

Country Status (1)

Country Link
JP (1) JPS614783A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794658B2 (en) * 1986-02-14 1995-10-11 化成オプトニクス株式会社 High color rendering fluorescent lamp

Also Published As

Publication number Publication date
JPS614783A (en) 1986-01-10

Similar Documents

Publication Publication Date Title
CN100572497C (en) The preparation method of high brilliancy environmental protection type alkaline earth ion solid solution titanate fluorescent powder
US5422040A (en) High performance phosphate green fluorescent powder and its method of preparation
US3457184A (en) Process for preparing phosphors
JPWO2002044303A1 (en) Method for producing metal oxide phosphor
JPS6366357B2 (en)
US3798173A (en) Product and process for europium-activated rare earth phosphor
CN102428160B (en) Green luminescent materials and their preparing methods
US3562175A (en) Gadolinium oxide particle growth in lithium oxide flux
JPH0430432B2 (en)
US20110052472A1 (en) Process for the Preparation of an Yttrium and Rare Earth Mixed Oxide
US3574131A (en) Process for preparing rare earth oxide phosphors
JPH0662939B2 (en) Method for manufacturing phosphor
KR100387659B1 (en) Manufacturing method of strontium aluminate phosphor by the sol-gel method
Du et al. Sol-gel processing, spectral features and thermal stability of Li-stuffed Li6CaLa2Nb2O12: RE garnet phosphors (RE= Pr, Sm, Tb, Dy)
JPS6250384A (en) Zinc silicate phosphor
KR100417607B1 (en) Preparation of Phosphor Oxide by Pyrophoric Synthesis Method
CN113150782B (en) Preparation method of rare earth ion doped orthorhombic indium acid gadolinium-calcium-titanium ore fluorescent powder
JP2599399B2 (en) Phosphor manufacturing method
US3692689A (en) Phosphor comprising lanthanum cerium thorium phosphate
JPH04293990A (en) Manganese-activated zinc silicogermanate phosphor and its manufacture
KR100424861B1 (en) Preparing process for spherical red phosphor based on borates using hydrolysis
JPS61293287A (en) Production of rare earth element oxide phosphor
CN100562555C (en) A kind of blue light luminescent material in vanadium yttrium phosphate system and preparation method thereof
JPH09255950A (en) Preparation of light-storing luminescent pigment
KR100419863B1 (en) Preparing method for spherical red phosphor based on borates