JPS61293287A - Production of rare earth element oxide phosphor - Google Patents
Production of rare earth element oxide phosphorInfo
- Publication number
- JPS61293287A JPS61293287A JP13293985A JP13293985A JPS61293287A JP S61293287 A JPS61293287 A JP S61293287A JP 13293985 A JP13293985 A JP 13293985A JP 13293985 A JP13293985 A JP 13293985A JP S61293287 A JPS61293287 A JP S61293287A
- Authority
- JP
- Japan
- Prior art keywords
- borate
- phosphor
- moles
- lithium
- rare earth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Luminescent Compositions (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は希土類酸化物蛍光体に係り、特にy、o、:E
uまたはGd、 0. : Eu等の希土類酸化物蛍光
体に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to rare earth oxide phosphors, particularly y, o, :E
u or Gd, 0. : Concerning rare earth oxide phosphors such as Eu.
水銀蒸気放電灯や投射形ブラウン管に用いられる赤色発
光蛍光体としてY、03:Eu、 Gd、O,:Eu、
(Y。Y, 03:Eu, Gd, O, :Eu, as red-emitting phosphors used in mercury vapor discharge lamps and projection cathode ray tubes.
(Y.
Gd)、O,などの希土類酸化物蛍光体がある。There are rare earth oxide phosphors such as Gd), O, etc.
これらの希土類酸化物蛍光体の製造方法としては、従来
一次の2つの方法がある。Conventionally, there are two methods for manufacturing these rare earth oxide phosphors: a primary method.
〔従来法1〕
原料として酸化イツトリウムまたは酸化ガドリニウムと
付活剤としての酸化ユーロピウムとを所定量配合した原
料混合物をるつぼに入れ、酸化雰囲気中で1300℃乃
至1600℃の温度範囲で加熱焼成する。[Conventional method 1] A raw material mixture containing a predetermined amount of yttrium oxide or gadolinium oxide as a raw material and europium oxide as an activator is placed in a crucible and heated and calcined in an oxidizing atmosphere in a temperature range of 1300° C. to 1600° C.
しかし、この製造方法で得られる蛍光体には次の様な問
題点がある。However, the phosphor obtained by this manufacturing method has the following problems.
第1に粉砕して得られる蛍光体の粒径のばらっきが大き
く、粒度分布が広い。First, the particle size of the phosphor obtained by pulverization varies widely, and the particle size distribution is wide.
第2に、微粒子の蛍光体が多く含まれ、融着または凝集
しやすい。Second, it contains a large amount of fine particle phosphor, which tends to fuse or aggregate.
第3に、蛍光体粒子の結晶性が悪い。Thirdly, the crystallinity of the phosphor particles is poor.
〔従来法2〕
従来法1で得られた原料混合物に更に融剤として、ほう
酸塩化物またはアルカリ金属化合物等を添加混合し、1
200℃乃至1500℃の温度範囲内に30分乃至10
時間加熱する。[Conventional method 2] Borate chloride or an alkali metal compound, etc., are further added and mixed as a flux to the raw material mixture obtained in Conventional method 1, and 1
30 minutes to 10 minutes within the temperature range of 200℃ to 1500℃
Heat for an hour.
しかし、この製造方法で得られる蛍光体には次の様な問
題点がある。However, the phosphor obtained by this manufacturing method has the following problems.
第1に、加熱焼成後の焼成体が硬く、粉砕処理に長時間
を要する。First, the fired body after heating and firing is hard and requires a long time to be pulverized.
第2に、蛍光体の粒径のコントロールが難しい。Second, it is difficult to control the particle size of the phosphor.
このことは、例えば三波長方式蛍光ランプには小粒子蛍
光体が望まれ、投射形ブラウン管には大粒子蛍光体が望
まれるが、これら要望に対して供給が容易にできないこ
とを意味する。This means that, for example, small-particle phosphors are desired for three-wavelength fluorescent lamps and large-particle phosphors are desired for projection type cathode ray tubes, but it is not easy to supply these demands.
第3に、以上の結果として発光輝度が十分でなく、また
生産性が悪い。Thirdly, as a result of the above, the luminance of the emitted light is insufficient and the productivity is poor.
本発明は上述した問題点を解消するためになされたもの
であり、特に発光輝度を高くすることが可能な希土類酸
化物蛍光体の製造方法を提供することを目的としている
。The present invention has been made to solve the above-mentioned problems, and in particular, it is an object of the present invention to provide a method for producing a rare earth oxide phosphor that can increase luminance.
発明者等は上述した目的を達成するためにY、O,:l
Eu蛍光体の製造方法を検討し第1図に示す結果を得た
。In order to achieve the above-mentioned purpose, the inventors have developed Y,O,:l
We investigated the manufacturing method of Eu phosphor and obtained the results shown in FIG.
即ち、一次焼成物を粉砕した後、ほう酸バリウムを添加
して、1300℃、3時間で二次焼成し、粉砕して得ら
れた発光輝度は横軸に焼成物1モルに対するほう酸バリ
ウムの添加量(モル)、縦軸に一次焼成、二次焼成とも
にほう酸バリウムを添加しない場合の発光輝度をlOO
としたときの相、対輝度を取ると、曲線(b)に示すよ
うになった。That is, after pulverizing the primary fired product, barium borate is added and secondary firing is performed at 1300°C for 3 hours. (mol), and the vertical axis shows the luminance when barium borate is not added in both primary firing and secondary firing.
When the phase and luminance are taken, the result is as shown in curve (b).
この比較例として一次焼成温度を1200℃にした時は
曲線(a)に示すようになり、一次焼成温度を1550
℃にした時は曲線(C)に示すようになった。As a comparative example, when the primary firing temperature was set to 1200°C, the result was as shown in curve (a), and the primary firing temperature was set to 1550°C.
When the temperature was changed to ℃, the result was as shown in curve (C).
第1図に示す通り、ほう酸バリウムの添加により発光輝
度が向上しており、その添加量は3×10−4モル乃至
3 X 10−2モルの範囲が好ましく。As shown in FIG. 1, the luminance is improved by adding barium borate, and the amount added is preferably in the range of 3 x 10-4 mol to 3 x 10-2 mol.
lXl0−’モル乃至5X10−”モルの範囲がより好
ましい。そして、ほう酸バリウム添加量が3X10−”
モルを越えると蛍光体の単一粒子間の融着が起り、分散
性、粒子形状1粒子分布が悪くなる。The range of 1X10-' moles to 5X10-' moles is more preferable.Then, the amount of barium borate added is 3X10-' moles.
If the amount exceeds a molar amount, fusion between single particles of the phosphor occurs, resulting in poor dispersibility and particle shape distribution.
即ち、一次焼成温度が1200℃即ち、曲線(a)のも
のおよび1550℃即ち1曲線(c)のものは本発明の
1350℃即ち、曲線(b)のものより発光輝度が低い
。詳細実験の結果、一次焼成が1200℃未満では蛍光
体粒子の成長が不充分であり、1500℃を越えると蛍
光体単一粒子の融着が起こり1分散性、粒子形状および
粒度分布が悪くなることがわかった。That is, the primary firing temperature of 1200° C., that is, curve (a), and that of 1550° C., that is, curve 1 (c), have lower luminance than that of the present invention, that is 1350° C., that is, curve (b). As a result of detailed experiments, if the primary firing is below 1200°C, the growth of the phosphor particles is insufficient, and if the primary firing exceeds 1500°C, fusion of single phosphor particles occurs, resulting in poor dispersibility, particle shape, and particle size distribution. I understand.
また、第2図は同様にY、03:[Eu蛍光体の製造方
法の例を示すものであり、一次焼成物を粉砕した後、ふ
っ化リチウムを添加した例およびほう酸リチウムを添加
混合し、1300”C,3時間二次焼成し、粉砕して得
られた蛍光体の相対発光輝度であり、ふっ化リチウムを
曲線(d)、ほう酸リチウムを曲線(e)に示す。In addition, FIG. 2 similarly shows an example of the method for producing Y, 03:[Eu phosphor, in which after pulverizing the primary fired product, lithium fluoride is added and lithium borate is added and mixed, The relative luminance of the phosphor obtained by secondary firing at 1300''C for 3 hours and pulverization is shown in curve (d) for lithium fluoride and curve (e) for lithium borate.
第2図を見てもわかるようにふっ化リチウムやほう酸リ
チウムの添加量は3 X 10−’モル乃至3×l0一
2モルの範囲において良好な特性を示す。As can be seen from FIG. 2, good characteristics are exhibited when the amount of lithium fluoride or lithium borate added is in the range of 3.times.10-' moles to 3.times.10-12 moles.
次に、二次焼成において、ほう酸塩化合物やアルカリ金
属化合物を添加することの効果について説明する。Next, the effect of adding a borate compound or an alkali metal compound in secondary firing will be explained.
即ち、第1表に発明者等の実験により得られた結果を示
す。この表はY2O,:Eu蛍光体を例として一次焼成
温度、二次焼成温度はそれぞれ1350℃、融剤はほう
酸バリウムを試用した例を示す。That is, Table 1 shows the results obtained by the inventors' experiments. This table shows an example in which the primary firing temperature and the secondary firing temperature were each 1350°C, and barium borate was used as the flux, using Y2O,:Eu phosphor as an example.
第1表
第1表かられかるように、一次焼成では融剤を添加せず
、二次焼成で融剤を添加した蛍光体は発光輝度が高い。Table 1 As can be seen from Table 1, the phosphors in which no fluxing agent was added in the primary firing and the fluxing agent was added in the secondary firing had high luminance.
この傾向は他の蛍光体および添加剤の組合せでも同様で
ある。This tendency is similar for other combinations of phosphors and additives.
(実施例1)
酸化イツトリウム416.2g、 酸化ユーロピウム3
3.8 gを6N硝酸20001dに溶解して70℃に
保ち、これに蓚酸900g を添加し、攪拌して共沈
蓚酸塩沈殿を得る。この沈殿物を水洗し、脱水、濾過、
乾燥した後、100℃乃至200℃で乾燥し、石英るつ
ぼに入れて1000℃、2時間の加熱を行なうと、混合
希土類酸化物が得られる。この酸化物を石英るつぼに入
れて大気中で1350℃、3時間の一次焼成を行なう。(Example 1) Yttrium oxide 416.2g, europium oxide 3
3.8 g was dissolved in 6N nitric acid 20001d and kept at 70°C, and 900 g of oxalic acid was added thereto and stirred to obtain coprecipitated oxalate precipitate. This precipitate is washed with water, dehydrated, filtered,
After drying, the mixture is dried at 100°C to 200°C, placed in a quartz crucible, and heated at 1000°C for 2 hours to obtain a mixed rare earth oxide. This oxide is placed in a quartz crucible and subjected to primary firing at 1350° C. for 3 hours in the atmosphere.
次に、この一次焼成物を粉砕し、ふるいにかけたのち、
焼成物150g に対し、ほう酸バリウム0.28g
を添加混合して石英るつぼに詰めてから大気中で130
0℃、3時間の二次焼成を行なう。Next, after crushing this primary fired product and sifting it,
Barium borate 0.28g for 150g of fired product
Added and mixed, packed in a quartz crucible, and heated in air for
Secondary firing is performed at 0°C for 3 hours.
次にこの二次焼成物を粉砕、水洗、濾過、乾燥を行なう
ことにより、Y2O,:Eu蛍光体が得られた。Next, this secondary fired product was pulverized, washed with water, filtered, and dried to obtain a Y2O,:Eu phosphor.
この蛍光体に紫外線を照射して発光輝度を評価した結果
を第2表、またこの蛍光体を円環形蛍光ランプに試用し
、ランプの明るさを評価した結果を第3表に示す。この
第2表及び第3表には比較例として同種の蛍光体で融剤
を用いないもの、即ち従来法1および一次焼成時に融剤
として、ほう酸ガリウムを添加し、二次焼成を行なわな
いもの、即ち、従来法2を対比して示しである。Table 2 shows the results of evaluating the luminance of this phosphor by irradiating it with ultraviolet rays, and Table 3 shows the results of evaluating the brightness of the lamp when this phosphor was used in an annular fluorescent lamp. Tables 2 and 3 show comparative examples of similar phosphors that do not use a flux, that is, conventional method 1 and those that add gallium borate as a flux during primary firing and do not perform secondary firing. , that is, the conventional method 2 is shown in comparison.
(実施例2)
実施例1と同様な製造方法で得られた一次焼成物150
g に対してふっ化リチウム0.08 gを添加混
合し、1200℃、3時間の二次焼成を行う。次に、こ
の二次焼成物を粉砕、水洗、濾過、乾燥を行なうことに
よりY□O,:Eu蛍光体が得られた。この蛍光体に紫
外線を照射して発光輝度を評価した結果を第2表に示し
、円環形蛍光ランプに試用し、ランプの明るさを評価し
た結果を第3表に示す。(Example 2) Primary fired product 150 obtained by the same manufacturing method as Example 1
0.08 g of lithium fluoride is added and mixed with respect to g, and secondary firing is performed at 1200° C. for 3 hours. Next, this secondary fired product was pulverized, washed with water, filtered, and dried to obtain a Y□O,:Eu phosphor. Table 2 shows the results of evaluating the luminance of this phosphor by irradiating it with ultraviolet rays, and Table 3 shows the results of evaluating the brightness of the lamp when it was used in an annular fluorescent lamp.
(実施例3)
酸化ガドリニウム668.2g と酸化ユーロピウム
33.8 gとを使用し実施例1と同様な工程を経て一
次焼成物を得る。この焼成物150g に対し、ほう
酸バリウム0.28gを添加混合し、1300℃、3時
間の二次焼成を行ない、以下同様な工程を経てGd□0
、:Eu蛍光体を得た。この蛍光体の発光輝度および蛍
光ランプに使用した明るさを第2表および第3表に示す
。(Example 3) A primary fired product is obtained through the same steps as in Example 1 using 668.2 g of gadolinium oxide and 33.8 g of europium oxide. To 150 g of this fired product, 0.28 g of barium borate was added and mixed, and secondary firing was performed at 1300°C for 3 hours.
, :Eu phosphor was obtained. Tables 2 and 3 show the luminance of this phosphor and the brightness used in the fluorescent lamp.
第2表
第3表
上述の実施例では二次焼成時に加える融剤として主とし
てほう酸バリウムについて述べたが、これに限定される
ものでなく、ほう酸リチウムほう酸ナトリウム、ほう酸
カリウム、ほう酸アンモニウムなどのほうWj1塩化合
物やりん酸リチウム、ふっ化リチウム、塩化リチウム、
ふっ化ナトリウムなどのアルカリ金属化合物、またはほ
う酸塩化合物とアルカリ金属化合物両者を用いてもほぼ
同様な効果が得られる。Table 2 Table 3 In the above embodiments, barium borate was mainly used as the flux added during secondary firing, but the flux is not limited to this, and lithium borate, sodium borate, potassium borate, ammonium borate, etc. Salt compounds, lithium phosphate, lithium fluoride, lithium chloride,
Almost the same effect can be obtained by using an alkali metal compound such as sodium fluoride, or both a borate compound and an alkali metal compound.
上述のように本発明の製造方法によれば粒度分布が狭く
分散性がよく(′a集超粒子ない)、任意粒子径状を得
ることができ、更に高輝度の希土類酸化物蛍光体が得ら
れる6As described above, according to the production method of the present invention, a rare earth oxide phosphor with a narrow particle size distribution, good dispersibility (no super-aggregated particles), arbitrary particle diameters, and high brightness can be obtained. 6
第1図は一次焼成時の本発明の実施例と比較例との一次
焼成温度とほう酸ガリウム量による相対輝度を示す曲線
図、第2図は二次焼成後粉砕して得られた希土類蛍光体
の二次焼成時に添加するふっ化リチウムとほう酸リチウ
ムの添加量と相対発光輝度の関係を示す曲線図である。Figure 1 is a curve diagram showing the relative brightness according to the primary firing temperature and the amount of gallium borate between the examples of the present invention and comparative examples during primary firing, and Figure 2 is a rare earth phosphor obtained by crushing after secondary firing. FIG. 2 is a curve diagram showing the relationship between relative luminance and the amounts of lithium fluoride and lithium borate added during secondary firing.
Claims (1)
くとも一つと、酸化ユーロピウムとを含む原料混合物を
酸化雰囲気中で1300℃乃至1500℃の温度範囲内
で一次焼成する工程と、この一次焼成により得られた一
次焼成物1モルに対し、1×10^−^4モル乃至4×
10^−^2モルの範囲内のほう酸リチウム、ほう酸ナ
トリウム、ほう酸カリウム、ほう酸バリウム、ほう酸ア
ンモニウムの少なくとも一つのほう酸塩化合物、および
または3×10^−^4モル乃至3×10^−^2モル
の範囲内のりん酸リチウム、ふっ化リチウム、塩化リチ
ウム、ふっ化ナトリウムの少なくとも一つのアルカリ金
属化合物を添加混合し、この混合物を酸化雰囲気中で1
200℃乃至1400℃の温度範囲内で二次焼成する工
程と、この焼成体を粉砕する工程とを有することを特徴
とする希土類酸化物蛍光体の製造方法。A step of primary firing a raw material mixture containing at least one of yttrium oxide or gadolinium oxide and europium oxide in an oxidizing atmosphere within a temperature range of 1300°C to 1500°C, and a primary fired product 1 obtained by this primary firing. For moles, 1×10^-^4 moles to 4×
at least one borate compound of lithium borate, sodium borate, potassium borate, barium borate, ammonium borate in the range of 10^-^2 moles, and or from 3 x 10^-^4 moles to 3 x 10^-^2 At least one alkali metal compound of lithium phosphate, lithium fluoride, lithium chloride, and sodium fluoride is added and mixed in a molar range, and this mixture is mixed in an oxidizing atmosphere with a
A method for producing a rare earth oxide phosphor, comprising the steps of secondary firing within a temperature range of 200°C to 1400°C, and pulverizing the fired body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13293985A JPH0692579B2 (en) | 1985-06-20 | 1985-06-20 | Method for producing rare earth oxide phosphor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13293985A JPH0692579B2 (en) | 1985-06-20 | 1985-06-20 | Method for producing rare earth oxide phosphor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61293287A true JPS61293287A (en) | 1986-12-24 |
JPH0692579B2 JPH0692579B2 (en) | 1994-11-16 |
Family
ID=15093032
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13293985A Expired - Lifetime JPH0692579B2 (en) | 1985-06-20 | 1985-06-20 | Method for producing rare earth oxide phosphor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0692579B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6683406B2 (en) | 2002-06-24 | 2004-01-27 | Koninklijke Philips Electronics N.V. | Low pressure mercury vapor fluorescent lamps |
WO2006052008A1 (en) * | 2004-11-12 | 2006-05-18 | Sumitomo Chemical Company, Limited | Silicate fluorescent material powder and process for producing the same |
JP2009167345A (en) * | 2008-01-18 | 2009-07-30 | Noritake Co Ltd | Phosphor and fluorescent display device |
-
1985
- 1985-06-20 JP JP13293985A patent/JPH0692579B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6683406B2 (en) | 2002-06-24 | 2004-01-27 | Koninklijke Philips Electronics N.V. | Low pressure mercury vapor fluorescent lamps |
WO2006052008A1 (en) * | 2004-11-12 | 2006-05-18 | Sumitomo Chemical Company, Limited | Silicate fluorescent material powder and process for producing the same |
JP2009167345A (en) * | 2008-01-18 | 2009-07-30 | Noritake Co Ltd | Phosphor and fluorescent display device |
Also Published As
Publication number | Publication date |
---|---|
JPH0692579B2 (en) | 1994-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1038619A (en) | Luminescent screen | |
US5422040A (en) | High performance phosphate green fluorescent powder and its method of preparation | |
EP0125731B1 (en) | Luminescent screen | |
JP2001172627A (en) | Rare earth phosphate, method for producing the same and rare earth phosphate fluorescent substance | |
CN101358132B (en) | Rare-earth red luminous material for plasma panel display and non-mercury fluorescent lamp and preparing process thereof | |
US3842012A (en) | Method of manufacturing an oxide of yttrium and/or lanthanum and/or the lanthanides | |
US3798173A (en) | Product and process for europium-activated rare earth phosphor | |
JPS61293287A (en) | Production of rare earth element oxide phosphor | |
Du et al. | Sol-gel processing, spectral features and thermal stability of Li-stuffed Li6CaLa2Nb2O12: RE garnet phosphors (RE= Pr, Sm, Tb, Dy) | |
EP0456936B1 (en) | Method of making lanthanum cerium terbium phosphate phosphor with improved brightness | |
CN101962550B (en) | Method for preparing europium-activated vanadium phosphate red fluorescent powder | |
CN102888219A (en) | Method for preparing rare-earth aluminate blue-green fluorescent powder for energy-saving lamp | |
Van Broekhoven | Lamp Phosphors | |
KR20100058467A (en) | Process for the preparation of an yttrium and rare earth mixed oxide | |
JPS62260885A (en) | Fluorescent substance and production thereof | |
KR100361847B1 (en) | Oxide fluorescent material and producing methods of the same | |
JPH09249879A (en) | Fluorescent substance and its production | |
JPS6235439B2 (en) | ||
JP2004263088A (en) | Process for producing fluorescent substance | |
JPH04293990A (en) | Manganese-activated zinc silicogermanate phosphor and its manufacture | |
JP2536752B2 (en) | Fluorescent body | |
JPS614783A (en) | Production of europium-activated rare earth element oxide phosphor | |
CN106244144A (en) | A kind of purple LED blue colour fluorescent powder and preparation method thereof and the lighting source being made from | |
KR910005818B1 (en) | Manufacturing method of a fluorescent screen | |
KR930005691B1 (en) | Red-luminous phosphor |