JPH0430341Y2 - - Google Patents

Info

Publication number
JPH0430341Y2
JPH0430341Y2 JP1986166734U JP16673486U JPH0430341Y2 JP H0430341 Y2 JPH0430341 Y2 JP H0430341Y2 JP 1986166734 U JP1986166734 U JP 1986166734U JP 16673486 U JP16673486 U JP 16673486U JP H0430341 Y2 JPH0430341 Y2 JP H0430341Y2
Authority
JP
Japan
Prior art keywords
intake
valve
intake port
port
intake valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1986166734U
Other languages
Japanese (ja)
Other versions
JPS6373532U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986166734U priority Critical patent/JPH0430341Y2/ja
Publication of JPS6373532U publication Critical patent/JPS6373532U/ja
Application granted granted Critical
Publication of JPH0430341Y2 publication Critical patent/JPH0430341Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は内燃機関の吸気装置に関する。[Detailed explanation of the idea] [Industrial application field] The present invention relates to an intake system for an internal combustion engine.

〔従来の技術〕[Conventional technology]

機関低負荷運転時に燃焼室内にシリンダ軸線回
りの強力な旋回流を発生せしめつつ機関高負荷運
転時に高い充填効率を確保するためにヘリカル型
吸気ポートの一側面上から他側面に向けて突出し
かつ吸気弁のすぐ上流からヘリカル型吸気ポート
上流に向けて延びる隔壁をヘリカル型吸気ポート
内に形成し、隔壁の突出先端縁を上述の吸気ポー
ト他側面から間隙を隔てて配置すると共にこの隔
壁によりヘリカル型吸気ポート内部を上方通路と
下方通路に2分割し、機関高負荷運転時に全開す
る吸気制御弁を下方通路内に設けた内燃機関が公
知である(実開昭59−150945号公報参照)。この
内燃機関では機関低負荷運転時に吸気制御弁を閉
弁せしめることによつて大部分の吸入空気が上方
通路内に流入し、次いでこの吸入空気はヘリカル
型吸気通路の渦巻部において旋回しつつ燃焼室内
に流入するので燃焼室内にはシリンダ軸線回りの
強力な旋回流が発生せしめられる。
In order to generate a strong swirling flow around the cylinder axis in the combustion chamber during low-load engine operation, and to ensure high charging efficiency during high-load engine operation, the helical intake port protrudes from one side to the other side and is designed to provide intake air. A partition wall extending from immediately upstream of the valve toward the upstream side of the helical-type intake port is formed within the helical-type intake port, and the protruding tip edge of the partition wall is placed with a gap from the other side of the above-mentioned intake port, and this partition wall forms a helical-type intake port. An internal combustion engine is known in which the inside of an intake port is divided into an upper passage and a lower passage, and an intake control valve that is fully opened during engine high load operation is provided in the lower passage (see Japanese Utility Model Application Publication No. 150945/1983). In this internal combustion engine, most of the intake air flows into the upper passage by closing the intake control valve during low-load engine operation, and then this intake air is combusted while swirling in the spiral part of the helical intake passage. Since it flows into the chamber, a strong swirling flow around the cylinder axis is generated in the combustion chamber.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

しかしながら燃焼室内にシリンダ軸線回りの旋
回流を発生せしめると燃焼室内に供給された混合
気中の燃料液滴が遠心力により燃焼室周辺部に集
まつてシリンダ内周壁面上に付着し、次いでこの
付着燃料がピストンのトツプランドとシリンダ内
周壁面の環状空隙、即ちピストンクレビス内に滞
留する。しかしながらピストンクレビスはクエン
チ領域であつて火炎が届かないためにピストンク
レビス内に滞留した燃料は未燃HCとして燃焼室
から排出され、斯くして燃焼室内にシリンダ軸線
回りの旋回流を発生せしめると多量の未燃HCが
機関排気系に排出されるという問題がある。ま
た、上述の内燃機関では吸気ポートがヘリカル状
に形成されているので流れ抵抗が大きく、斯くし
て機関高負荷運転時に高い充填効率が得られない
という問題もある。
However, when a swirling flow around the cylinder axis is generated in the combustion chamber, fuel droplets in the mixture supplied into the combustion chamber gather around the combustion chamber due to centrifugal force and adhere to the inner circumferential wall of the cylinder. The adhering fuel remains in the annular gap between the top land of the piston and the inner circumferential wall of the cylinder, that is, the piston clevis. However, since the piston clevis is a quench area and cannot be reached by the flame, the fuel accumulated in the piston clevis is discharged from the combustion chamber as unburned HC. There is a problem in that unburned HC is discharged into the engine exhaust system. Further, in the above-mentioned internal combustion engine, since the intake port is formed in a helical shape, the flow resistance is large, and thus there is a problem that high charging efficiency cannot be obtained when the engine is operated under high load.

〔問題を解決するための手段〕[Means to solve the problem]

上記問題点を解決するために本考案によれば、
第1吸気弁と第2吸気弁を具備し、吸気ポートが
吸気ポート入口部からほぼ水平方向に延びた後に
第1吸気弁に向けて徐々に下向きに湾曲するスト
レートポートからなり、吸気ポートの一側面上か
ら他側面に向けて突出しかつ第1吸気弁ステム周
りから吸気ポート上流に向けて延びる隔壁を吸気
ポート内に形成し、隔壁の突出先端縁を吸気ポー
トの他側面から間隔を隔てて配置すると共に隔壁
により吸気ポート内部を上方通路と下方通路に2
分割し、機関高負荷運転時に全開する吸気制御弁
を下方通路内に設けると共に吸気制御弁下流の下
方通路内に第2吸気弁を配置している。
According to the present invention, in order to solve the above problems,
The intake port includes a first intake valve and a second intake valve, and the intake port is a straight port that extends from the intake port inlet in a substantially horizontal direction and then gradually curves downward toward the first intake valve. A partition is formed in the intake port that protrudes from one side surface toward the other side surface and extends from around the first intake valve stem toward the upstream side of the intake port, and the protruding tip edge of the partition wall is arranged at a distance from the other side surface of the intake port. At the same time, the partition wall divides the inside of the intake port into an upper passage and a lower passage.
An intake control valve that is divided and fully opened during high engine load operation is provided in the lower passage, and a second intake valve is arranged in the lower passage downstream of the intake control valve.

〔実施例〕〔Example〕

第1図および第2図を参照すると、1はシリン
ダブロツク、2はピストン、3はシリンダヘツ
ド、4は燃焼室、5は第1吸気弁、6は第1吸気
弁5よりも小径の第2吸気弁、7は排気弁、8は
第1吸気弁5および第2吸気弁6に対して共通の
吸気ポートを示す。この吸気ポート8は全体とし
て吸気ポート入口部9からほぼ水平方向に延びた
後に第1吸気弁5に向けて徐々に下向きに湾曲す
るストレートポートからなるが吸気ポート入口部
9から第2吸気弁6までの吸気ポート8の横巾は
第2吸気弁6から第1吸気弁5までの横巾に比べ
て広く形成されている。
1 and 2, 1 is a cylinder block, 2 is a piston, 3 is a cylinder head, 4 is a combustion chamber, 5 is a first intake valve, and 6 is a second intake valve having a smaller diameter than the first intake valve 5. An intake valve 7 indicates an exhaust valve, and 8 indicates an intake port common to the first intake valve 5 and the second intake valve 6. The intake port 8 as a whole consists of a straight port that extends in a substantially horizontal direction from the intake port inlet part 9 and then gradually curves downward toward the first intake valve 5. The width of the intake port 8 from the second intake valve 6 to the first intake valve 5 is wider than the width from the second intake valve 6 to the first intake valve 5.

第1図から第5図に示すように吸気ポート8の
一側面8aの中間高さ位置からは吸気ポート8の
他側面8bに向けて隔壁10が突出する。この隔
壁10は第1吸気弁5のステム5a周りから吸気
ポート入口部9まで延びており、隔壁10の突出
先端縁11はその全長に亘つて吸気ポート他側面
8bから間隔を隔てて配置される。この隔壁10
によつて吸気ポート8内は隔壁10の上方に位置
する上方通路12と、隔壁10の下方に位置する
下方通路13とに2分割される。第3図に示され
るように吸気ポート入口部9においては隔壁10
はほぼ水平をなすが、第2図、第4図、第5図か
らわかるように隔壁10の根本部14は第1吸気
弁5に近づくに従つて上昇し、隔壁10の突出先
端縁11は第1吸気弁5に近づくに従つて若干下
降する。従つて隔壁10の横断面における傾斜角
は第1吸気弁5に近づくに従つて次第に急にな
る。第2図に示されるように第2吸気弁6の上方
の内壁15は湾曲せしめられており、この湾曲内
壁15は隔壁10の下壁面に滑らかに接続する。
As shown in FIGS. 1 to 5, a partition wall 10 projects from an intermediate height position of one side surface 8a of the intake port 8 toward the other side surface 8b of the intake port 8. As shown in FIGS. This partition wall 10 extends from around the stem 5a of the first intake valve 5 to the intake port inlet portion 9, and the protruding tip edge 11 of the partition wall 10 is spaced apart from the other side surface 8b of the intake port over its entire length. . This partition wall 10
As a result, the inside of the intake port 8 is divided into an upper passage 12 located above the partition wall 10 and a lower passage 13 located below the partition wall 10. As shown in FIG. 3, a partition wall 10
However, as can be seen from FIGS. 2, 4, and 5, the root portion 14 of the partition wall 10 rises as it approaches the first intake valve 5, and the protruding tip edge 11 of the partition wall 10 As it approaches the first intake valve 5, it descends slightly. Therefore, the angle of inclination in the cross section of the partition wall 10 becomes gradually steeper as it approaches the first intake valve 5. As shown in FIG. 2, the upper inner wall 15 of the second intake valve 6 is curved, and this curved inner wall 15 smoothly connects to the lower wall surface of the partition wall 10.

下方通路13の入口部には吸気制御弁16が配
置され、吸気制御弁16はリンク機構17を介し
てアクチユエータ18に連結される。この吸気制
御弁16はアクチユエータ18によつて機関低中
負荷運転時には第2図において実線で示すように
閉鎖され、機関高負荷運転時には第2図において
破線で示すように全開する。従つてアクチユエー
タ18は負圧ダイアフラム室を吸気ポート8内に
連結した負圧ダイアフラム装置から形成すること
ができる。吸気ポート8の上壁面には燃料噴射弁
19が配置され、燃料噴射弁19から燃料が上方
通路12内に向けて噴射される。
An intake control valve 16 is arranged at the entrance of the lower passage 13, and the intake control valve 16 is connected to an actuator 18 via a link mechanism 17. The intake control valve 16 is closed by the actuator 18 as shown by the solid line in FIG. 2 when the engine is operating at a low to medium load, and is fully opened as shown by the broken line in FIG. 2 when the engine is operating at a high load. Actuator 18 can thus be formed from a negative pressure diaphragm device that connects a negative pressure diaphragm chamber into intake port 8 . A fuel injection valve 19 is arranged on the upper wall surface of the intake port 8, and fuel is injected from the fuel injection valve 19 into the upper passage 12.

上述したように機関低中負荷運転時には吸気制
御弁16が閉鎖せしめられる。このとき大部分の
吸入空気は上方通路12内に送り込まれる。この
吸入空気に燃料が噴射され、斯くして形成された
混合気は吸気ポート8の上壁面に沿つて進み、次
いで第1吸気弁5上方の湾曲上壁面に沿つて下向
きに向きを変えて矢印Kで示すように燃焼室4の
周辺部に下方に向けて流入する。なお、破線2′
はピストン2が下降したときを示している。燃焼
室4内に流入した混合気はピストン2の頂面に衝
突して向きを変え、斯くして燃焼室4内には水平
軸回周りの旋回流が発生する。従つて混合気中に
含まれる燃料粒子は慣性力或いは遠心力によつて
ピストン2の頂面上に付着する。しかしながらこ
の付着燃料は燃焼せしめられるので未燃HCとな
ることがなく、斯くして未燃HCの排出量を低減
することができる。なお、第1図および第2図に
示されるように第2吸気弁6は吸気制御弁16下
流の下方通路13内に配置されている。従つて吸
気制御弁16が閉鎖せしめられると吸気制御弁1
6によつて下方通路13内への吸入空気の流入が
阻止されるために吸入空気は第2吸気弁6を介し
て燃焼室4内にさほど流入せず、大部分の吸入空
気が上方通路12を通つて第1吸気弁5から燃焼
室4内に流入する。また隔壁10の根本部14は
第1吸気弁5に向けて徐々に上昇せしめられるの
で上方通路12内を流れる混合気流は吸気ポート
8の上壁面に集められると共に増速せしめられ
る。従つて多量の混合気が矢印Kで示すように高
速度で燃焼室4内に流入するので燃焼室4内には
強力な旋回流が発生せしめられる。
As described above, the intake control valve 16 is closed when the engine is operating at a low to medium load. At this time, most of the intake air is sent into the upper passage 12. Fuel is injected into this intake air, and the air-fuel mixture thus formed travels along the upper wall surface of the intake port 8, then changes direction downward along the curved upper wall surface above the first intake valve 5, and then turns downward along the curved upper wall surface above the first intake valve 5. As shown by K, it flows downward into the periphery of the combustion chamber 4. In addition, the broken line 2'
indicates when the piston 2 has descended. The air-fuel mixture that has entered the combustion chamber 4 collides with the top surface of the piston 2 and changes direction, thus generating a swirling flow around the horizontal axis within the combustion chamber 4. Therefore, the fuel particles contained in the air-fuel mixture adhere to the top surface of the piston 2 due to inertial force or centrifugal force. However, since this adhering fuel is combusted, it does not become unburned HC, and thus the amount of unburned HC discharged can be reduced. Note that, as shown in FIGS. 1 and 2, the second intake valve 6 is arranged in the lower passage 13 downstream of the intake control valve 16. Therefore, when the intake control valve 16 is closed, the intake control valve 1
6 prevents intake air from flowing into the lower passage 13, the intake air does not flow much into the combustion chamber 4 through the second intake valve 6, and most of the intake air flows into the upper passage 12. The air flows into the combustion chamber 4 from the first intake valve 5 through the first intake valve 5 . Further, since the root portion 14 of the partition wall 10 is gradually raised toward the first intake valve 5, the mixed air flow flowing in the upper passage 12 is collected on the upper wall surface of the intake port 8 and its speed is increased. Therefore, a large amount of air-fuel mixture flows into the combustion chamber 4 at a high velocity as shown by arrow K, so that a strong swirling flow is generated within the combustion chamber 4.

一方、機関高負荷運転時には吸気制御弁16が
全開するので下方通路13からも吸入空気が流入
する。下方通路13内に流入した吸入空気は一方
では第2吸気弁6を介して燃焼室4内に流入し、
他方では第1吸気弁5を介して燃焼室4内に流入
する。このように機関高負荷運転時には吸気ポー
ト8の全断面積が吸入空気流路として使用され、
しかも第2吸気弁6からも多量の空気が燃焼室4
内に供給されるために高い充填効率を得ることが
できる。また、吸気ポート8は全体として流れ抵
抗の小さなストレートポートとして形成されてい
るので更に充填効率が高められる。また、第2吸
気弁6は第1吸気弁5よりも吸気ポート入口部9
に近い側に配置されているので吸気ポート入口部
9から第2吸気弁6に至る通路抵抗は小さく、斯
くして並列配置された一対の吸気弁を具えた場合
に比べて更に充填効率を高めることができる。
On the other hand, during high-load engine operation, the intake control valve 16 is fully opened, so that intake air also flows in from the lower passage 13. The intake air that has flowed into the lower passage 13 flows into the combustion chamber 4 via the second intake valve 6 on the one hand;
On the other hand, it flows into the combustion chamber 4 via the first intake valve 5 . In this way, during high engine load operation, the entire cross-sectional area of the intake port 8 is used as the intake air flow path.
Moreover, a large amount of air flows into the combustion chamber 4 from the second intake valve 6.
High filling efficiency can be achieved because the fuel is supplied within the tank. Furthermore, since the intake port 8 is formed as a straight port with low flow resistance as a whole, the filling efficiency is further improved. Further, the second intake valve 6 has a lower intake port inlet portion 9 than the first intake valve 5.
Since the second intake valve 6 is located close to the second intake valve 6, the passage resistance from the intake port inlet 9 to the second intake valve 6 is small, and the filling efficiency is further improved compared to the case where a pair of intake valves are arranged in parallel. be able to.

〔考案の効果〕[Effect of idea]

上述したように本考案によればストレートポー
トからなる吸気ポートが隔壁によつて上方通路と
下方通路とに2分割されており、吸気制御弁下流
の下方通路内に第2吸気弁が配置されている。従
つて機関低中負荷運転時に吸気制御弁が閉鎖せし
められると吸気制御弁によつて下方通路内への吸
入空気の流入が阻止されるので吸入空気は第2吸
気弁を介して燃焼室内にさほど流入せず、大部分
の吸入空気は上方通路を通つて第1吸気弁から燃
焼室内に流入する。このように機関低負荷運転時
には大部分の吸入空気が上方通路を通つて第1吸
気弁から流入するので燃焼室内には水平軸線周り
の強力な旋回流が発生せしめられ、斯くして液滴
燃料の付着に基く未燃HCの発生を抑制できると
共に強力な旋回流の発生により良好な燃焼を得る
ことができる。また、機関高負荷運転時に吸気制
御弁が開弁すると第2吸気弁からも多量の吸入空
気が燃焼室内に供給されるので機関高負荷運転時
に高い充填効率を得ることができる。
As described above, according to the present invention, the intake port consisting of a straight port is divided into an upper passage and a lower passage by a partition wall, and the second intake valve is disposed in the lower passage downstream of the intake control valve. There is. Therefore, when the intake control valve is closed during engine low-medium load operation, the intake control valve prevents intake air from flowing into the lower passage, so that the intake air does not enter the combustion chamber through the second intake valve. Most of the intake air flows into the combustion chamber from the first intake valve through the upper passage. In this way, when the engine is running at low load, most of the intake air flows through the upper passage and from the first intake valve, so a strong swirling flow around the horizontal axis is generated in the combustion chamber, and the droplet fuel is thus generated. It is possible to suppress the generation of unburned HC due to the adhesion of HC, and to obtain good combustion by generating a strong swirling flow. Further, when the intake control valve opens during high engine load operation, a large amount of intake air is also supplied into the combustion chamber from the second intake valve, so that high charging efficiency can be obtained during high engine load operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は隔壁に沿つて切断したときのシリンダ
ヘツドの平面断面図、第2図は第1図の側面断面
図、第3図は第1図の−線に沿つてみた断面
図、第4図は第1図の−線に沿つてみた断面
図、第5図は第1図の−線に沿つてみた断面
図である。 5……第1吸気弁、6……第2吸気弁、8……
吸気通路、10……隔壁、12……上方通路、1
3……下方通路、16……吸気制御弁。
Fig. 1 is a plan sectional view of the cylinder head taken along the partition wall, Fig. 2 is a side sectional view of Fig. 1, Fig. 3 is a sectional view taken along the - line in Fig. 1, and Fig. 4 is a sectional view taken along the - line in Fig. 1. The figure is a sectional view taken along the - line in FIG. 1, and FIG. 5 is a sectional view taken along the - line in FIG. 1. 5...First intake valve, 6...Second intake valve, 8...
Intake passage, 10... Partition wall, 12... Upper passage, 1
3... lower passage, 16... intake control valve.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 第1吸気弁と第2吸気弁を具備し、吸気ポート
が吸気ポート入口部からほぼ水平方向に延びた後
に第1吸気弁に向けて徐々に下向きに湾曲するス
トレートポートからなり、吸気ポートの一側面上
から他側面に向けて突出しかつ第1吸気弁ステム
周りから吸気ポート上流に向けて延びる隔壁を吸
気ポート内に形成し、隔壁の突出先端縁を上記吸
気ポートの他側面から間隔を隔てて配置すると共
に該隔壁により吸気ポート内部を上方通路と下方
通路に2分割し、機関高負荷運転時に全開する吸
気制御弁を該下方通路内に設けると共に該吸気制
御弁下流の下方通路内に第2吸気弁を配置した内
燃機関の吸気装置。
The intake port includes a first intake valve and a second intake valve, and the intake port is a straight port that extends from the intake port inlet in a substantially horizontal direction and then gradually curves downward toward the first intake valve. A partition is formed in the intake port that projects from above the side surface toward the other side surface and extends from around the first intake valve stem toward the upstream side of the intake port, and the protruding tip edge of the partition wall is spaced apart from the other side surface of the intake port. At the same time, the inside of the intake port is divided into an upper passage and a lower passage by the partition wall, and an intake control valve that opens fully during engine high load operation is provided in the lower passage, and a second intake control valve is provided in the lower passage downstream of the intake control valve. An internal combustion engine intake system with an intake valve.
JP1986166734U 1986-10-31 1986-10-31 Expired JPH0430341Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986166734U JPH0430341Y2 (en) 1986-10-31 1986-10-31

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986166734U JPH0430341Y2 (en) 1986-10-31 1986-10-31

Publications (2)

Publication Number Publication Date
JPS6373532U JPS6373532U (en) 1988-05-17
JPH0430341Y2 true JPH0430341Y2 (en) 1992-07-22

Family

ID=31097993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986166734U Expired JPH0430341Y2 (en) 1986-10-31 1986-10-31

Country Status (1)

Country Link
JP (1) JPH0430341Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200067495A (en) 2018-12-04 2020-06-12 엘지이노텍 주식회사 Motor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5540277A (en) * 1978-09-18 1980-03-21 Toyota Motor Corp Intake device for internal combustion engine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59150945U (en) * 1983-03-28 1984-10-09 トヨタ自動車株式会社 Helical intake port

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5540277A (en) * 1978-09-18 1980-03-21 Toyota Motor Corp Intake device for internal combustion engine

Also Published As

Publication number Publication date
JPS6373532U (en) 1988-05-17

Similar Documents

Publication Publication Date Title
US4354463A (en) Device for improving combustion efficiency of mixture in four cycle internal combustion engine
JPS5920850B2 (en) Helical intake port for internal combustion engines
JPS6125894B2 (en)
EP0216477A2 (en) Internal combustion engine with cylinder intake port
JPH02153222A (en) Combustion chamber construction of two-cycle internal combustion engine
JPH0264220A (en) Combustion chamber of internal combustion engine
US4308837A (en) Intake system of an internal combustion engine
JPS6158921A (en) Intake device of internal-combustion engine
JPS589248B2 (en) Intake system for multi-cylinder internal combustion engine
JPS5845574B2 (en) Internal combustion engine intake passage device
JPS5922046B2 (en) Internal combustion engine intake system
US6691670B1 (en) Method and engine providing mixing of at least one gaseous fluid such as air and of a fuel in the combustion chamber of a direct-injection internal-combustion engine
JPS5840647B2 (en) Internal combustion engine intake system
JPH0430341Y2 (en)
JPS6217090B2 (en)
JPS6334288B2 (en)
JPH0410339Y2 (en)
JPH0415944Y2 (en)
JPS5849382Y2 (en) Internal combustion engine helical intake port
JPS6242101Y2 (en)
JPS589253B2 (en) Internal combustion engine intake system
JPS6335165Y2 (en)
JPS6218729B2 (en)
JPS6035532B2 (en) internal combustion engine
JPS5849385Y2 (en) Intake system for multi-cylinder internal combustion engine