JPH04303186A - Regenerating device for cryopump - Google Patents

Regenerating device for cryopump

Info

Publication number
JPH04303186A
JPH04303186A JP3067275A JP6727591A JPH04303186A JP H04303186 A JPH04303186 A JP H04303186A JP 3067275 A JP3067275 A JP 3067275A JP 6727591 A JP6727591 A JP 6727591A JP H04303186 A JPH04303186 A JP H04303186A
Authority
JP
Japan
Prior art keywords
working space
vacuum
cryopump
degree
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3067275A
Other languages
Japanese (ja)
Inventor
Nobuaki Okumura
奥 村 暢 朗
Atsuyuki Miura
三 浦 篤 之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP3067275A priority Critical patent/JPH04303186A/en
Publication of JPH04303186A publication Critical patent/JPH04303186A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the regenerating time of a cryopump. CONSTITUTION:A heating means controlled by a control means, a roughing means and a purge gas supply means are disposed in the operating space of a cryopump. Output signals of a temperature sensitive means and a vacuum degree detecting means which respectively detect the temperature of a cold head disposed in the operating space and the degree of vacuum of the operating space are directly input to a control means through an A/D converter. Accordingly, the amount of information input to the control means is not limited and the control width can be broadened so as to correspond to the supply of purge gas to the operating space. The head exchange between the heating means and condensed and solidified gas is promoted by the supply of purge gas to the operating space, so that the dissolution of condensed and solidified gas smoothly proceeds so as to reduce the regenerating time of the cryopump.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、クライオポンプの再生
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cryopump regeneration device.

【0002】0002

【従来の技術】一般に溜め込み式ポンプであるクライオ
ポンプには、その作動空間に溜め込んだ凝縮・凝固ガス
を排出するための再生が必要である。
2. Description of the Related Art Cryopumps, which are generally storage pumps, require regeneration to discharge condensed and coagulated gas stored in their working space.

【0003】即ち、クライオポンプの通常作動時には、
その作動空間と真空を必要とする空間とをバルブを介し
て連通し、空間の気体分子を作動空間中に配設したクラ
イオパネルに凝着させて空間に高度の真空を得る。一方
、再生時にはバルブを閉じることで作動空間と空間を遮
断し、作動空間の温度を上げることでクライオパネルに
凝着した凝縮・凝固ガスを蒸発させて外部へと排出する
。そして、再生終了後は作動空間を粗引きしクライオポ
ンプを起動して再度バルブを開き、作動空間と空間とを
連通して空間に真空を供給する。
That is, during normal operation of the cryopump,
The working space and a space requiring vacuum are communicated via a valve, and gas molecules in the space are made to adhere to a cryopanel disposed within the working space, thereby creating a high degree of vacuum in the space. On the other hand, during regeneration, the valve is closed to isolate the working space from the working space, and by raising the temperature of the working space, the condensed and solidified gas that has adhered to the cryopanel is evaporated and discharged to the outside. After the regeneration is completed, the working space is roughly evacuated, the cryopump is activated, and the valve is opened again to communicate the working space with the space and supply vacuum to the space.

【0004】0004

【発明が解決しようとする課題】しかし、上述の従来技
術では、クライオポンプの各装置を制御する制御手段に
は、作動空間のコールドヘツドの温度及び作動空間の真
空度がそれぞれ外付けの温度計(2接点)及び真空計(
2接点)でしか入力されないので、作動空間の温度情報
はT1とT2の2つの値しか入力されず、作動空間の真
空度情報もP1とP2の2つの値しか入力されない。 従つて、作動空間にパージガスを供給して凝縮・凝固ガ
スの溶解促進を行うことで再生時間の短縮が図れるが、
この従来技術では、パージガス供給時の真空度がP1・
P2よりも更に悪い真空度であり、P1・P2は他の制
御に使用するために制御手段がパージガス供給方法に対
応できず、再生時間の短縮化に支障をきたしていた。
[Problems to be Solved by the Invention] However, in the above-mentioned prior art, the control means for controlling each device of the cryopump uses external thermometers to measure the temperature of the cold head in the working space and the degree of vacuum in the working space. (2 contacts) and vacuum gauge (
Since only two values, T1 and T2, are input as the temperature information of the working space, and only two values, P1 and P2, as the vacuum degree information of the working space are input. Therefore, the regeneration time can be shortened by supplying purge gas to the working space to promote dissolution of the condensed and solidified gas.
In this conventional technology, the degree of vacuum during purge gas supply is P1.
The degree of vacuum is even worse than that of P2, and since P1 and P2 are used for other controls, the control means cannot cope with the purge gas supply method, which poses a problem in shortening the regeneration time.

【0005】そこで、本発明ではクライオポンプの再生
時間短縮を、その技術的課題とする。
Therefore, the technical objective of the present invention is to shorten the regeneration time of a cryopump.

【0006】[0006]

【発明の構成】[Structure of the invention]

【0007】[0007]

【課題を解決するための手段】前述した本発明の技術的
課題を解決するために講じた本発明の技術的手段は、ク
ライオポンプの再生装置を、作動空間と、作動空間の真
空度を検出する真空度検出手段と、作動空間に配設され
たコールドヘツドの温度を検出する感温手段と、作動空
間の周囲に配設される加熱手段と、作動空間と第1弁手
段を介して接続される粗引手段と、作動空間と第2弁手
段を介して接続されるパージガス供給手段と、作動空間
内に配設される冷凍手段と、加熱手段、粗引手段、パー
ジガス供給手段及び冷凍手段の作動を制御する制御手段
とから構成し、真空度検出手段及び感温手段のアナログ
信号出力を、それぞれ制御手段に入力するようにしたこ
とである。
[Means for Solving the Problems] The technical means of the present invention taken to solve the above-mentioned technical problems of the present invention is to detect the working space and the degree of vacuum of the working space in a cryopump regeneration device. a temperature sensing means for detecting the temperature of a cold head disposed in the working space; a heating means disposed around the working space; and a first valve means connected to the working space. a purge gas supply means connected to the working space via the second valve means, a refrigeration means disposed within the working space, a heating means, a roughing means, a purge gas supply means, and a refrigeration means. The analog signal outputs of the vacuum degree detection means and the temperature sensing means are respectively input to the control means.

【0008】[0008]

【作用】上述した本発明の技術的手段によれば、作動空
間の温度及び真空度がそれぞれ感温手段及び真空度検出
手段を介して制御手段にダイレクトに入力されている。
According to the technical means of the present invention described above, the temperature and vacuum degree of the working space are directly input to the control means via the temperature sensing means and the vacuum degree detection means, respectively.

【0009】従つて、制御手段に入力される情報量が接
点数に制限されないのでその制御幅が広がり、作動空間
へのパージガス供給にも対応することができる。この結
果、クライオポンプの再生時間短縮を図ることができる
[0009] Therefore, since the amount of information input to the control means is not limited by the number of contacts, the control range is widened, and it is also possible to cope with the supply of purge gas to the working space. As a result, the regeneration time of the cryopump can be shortened.

【0010】0010

【実施例】以下、本発明の技術的手段を具体化した実施
例について添付図面に基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples embodying the technical means of the present invention will be described below with reference to the accompanying drawings.

【0011】図1に示すクライオポンプの再生装置10
では、空間11に高真空を得るために、空間11をクラ
イオポンプ12の作動空間13と図示しないバルブ手段
を介して接続している。作動空間13内には、冷凍手段
(例えばギフオード・マクマホンサイクルや逆スターリ
ングサイクル等の冷凍サイクルを利用したもの)14の
コールドヘツド15に熱的に結合されるクライオパネル
16が配設されて、コールドヘツド15を例えば20K
程度まで冷却する。尚、17は作動空間13内に配設さ
れるバツフルを示す。
Cryopump regeneration device 10 shown in FIG.
In order to obtain a high vacuum in the space 11, the space 11 is connected to the working space 13 of the cryopump 12 via a valve means (not shown). A cryopanel 16 is disposed in the working space 13 and is thermally coupled to a cold head 15 of a refrigeration means 14 (for example, one utilizing a refrigeration cycle such as a Gifford-McMahon cycle or a reverse Stirling cycle). For example, set the head 15 to 20K.
Cool to a certain degree. Note that 17 indicates a baffle disposed within the working space 13.

【0012】コールドヘツド15には感温手段(例えば
温度センサ等)18が配設されて、コールドヘツド15
の温度を検出できるようになつている。また、作動空間
13には真空度検出手段(例えばピラン測定子、サーモ
カツプル測定子等)19が接続されて、作動空間13内
の真空度が検出できるようになつている。図2に示すよ
うに、各手段18・19のアナログ信号出力は、それぞ
れアナログ信号増幅回路20・21により増幅された後
、A/Dコンバータ22においてデジタル信号に変換さ
れ、制御手段24のCPU23に入力される。
A temperature sensing means (for example, a temperature sensor, etc.) 18 is disposed in the cold head 15.
It is now possible to detect the temperature of Further, a degree of vacuum detection means (for example, a piran measuring element, a thermocouple measuring element, etc.) 19 is connected to the working space 13, so that the degree of vacuum in the working space 13 can be detected. As shown in FIG. 2, the analog signal outputs of each means 18 and 19 are amplified by analog signal amplification circuits 20 and 21, respectively, and then converted into digital signals by an A/D converter 22 and sent to the CPU 23 of the control means 24. is input.

【0013】尚、CPU23は、制御手段24に配設さ
れた図示しない表示手段(温度及び真空度等を表示)を
駆動するための表示回路25や、周辺バツフア26を介
して温度接点リレー27・再生出力28に信号を出力す
る。
The CPU 23 controls temperature contact relays 27 and 27 via a display circuit 25 for driving display means (not shown) provided in the control means 24 (displays temperature, degree of vacuum, etc.) and a peripheral buffer 26. A signal is output to the reproduction output 28.

【0014】作動空間13を画定する真空ドーム29の
外周部には、例えばヒータ等の加熱手段30が配設され
ている。また、作動空間13はバルブ(第1弁手段)3
1を介して粗引きポンプ(粗引手段)32と接続される
と共に、バルブ(第2弁手段)33を介してパージガス
源(パージガス供給手段)34とも接続される。
A heating means 30, such as a heater, is provided on the outer periphery of the vacuum dome 29 that defines the working space 13. Further, the working space 13 includes a valve (first valve means) 3
It is connected to a roughing pump (roughing means) 32 via 1, and also connected to a purge gas source (purge gas supply means) 34 via a valve (second valve means) 33.

【0015】以上の構成を有するクライオポンプの再生
装置10の作動について、以下に説明する。
The operation of the cryopump regeneration device 10 having the above configuration will be explained below.

【0016】空間11に真空を得るために、まず、バル
ブ手段を開けて空間11と作動空間13とを連通させ、
空間11内の気体分子を作動空間13内のクライオパネ
ル16及びバツフル17に凝着させる。このとき、コー
ルドヘツド15は冷凍手段14の作用により約20K程
度以下に冷却されている。
In order to obtain a vacuum in the space 11, first, the valve means is opened to communicate the space 11 and the working space 13;
Gas molecules in the space 11 are made to adhere to the cryopanel 16 and the buffer 17 in the working space 13. At this time, the cold head 15 is cooled to about 20K or less by the action of the freezing means 14.

【0017】クライオパネル16への気体分子の凝着が
進行すると、クライオポンプ12の能力がダウンするた
め再生を行う。これを、図3乃至図6のフローチヤート
に基づいて説明する。尚、クライオポンプ12の作動中
には、常時作動空間13内の温度及び真空度がそれぞれ
感温手段18及び真空度検出手段19により検出されて
、各アナログ信号はアナログ信号増幅回路20・21及
びA/Dコンバータ23を介してCPU24に入力され
ている。
As the adhesion of gas molecules to the cryopanel 16 progresses, the capacity of the cryopump 12 decreases, so regeneration is performed. This will be explained based on the flowcharts of FIGS. 3 to 6. During operation of the cryopump 12, the temperature and degree of vacuum in the working space 13 are constantly detected by the temperature sensing means 18 and the degree of vacuum detection means 19, respectively, and each analog signal is sent to the analog signal amplification circuits 20, 21 and The signal is input to the CPU 24 via the A/D converter 23.

【0018】まず、図3に示すステツプS1にて再生方
法のメインルーチンがスタートし、ステツプS2にてク
ライオポンプ(C/P)12が作動中であるかどうか判
断する。ここで、クライオポンプ12が作動中の場合に
はステツプS3にてリセツト待ちを行う。一方、クライ
オポンプ12の作動が停止している場合には、ステツプ
S4に進んで加熱手段(HEATER)30を作動させ
て作動空間13内を加熱する。
First, the main routine of the regeneration method starts in step S1 shown in FIG. 3, and it is determined in step S2 whether the cryopump (C/P) 12 is in operation. Here, if the cryopump 12 is in operation, it waits for reset in step S3. On the other hand, if the operation of the cryopump 12 is stopped, the process proceeds to step S4 and the heating means (HEATER) 30 is activated to heat the inside of the working space 13.

【0019】次にステツプS5において、作動空間13
に配設されたコールドヘツド15の温度及び作動空間1
3の真空度をチエツクする。ここで、加熱手段30によ
り温度がT1(例えば50K)以上となるか、凝縮・凝
固ガスの蒸発が進んで真空度がP1(例えば65Pa)
以上になるまで待ち、この条件を満たすとステツプS6
に進む。このステツプS6では、粗引きポンプ(RP)
32を作動させる。
Next, in step S5, the working space 13
The temperature and working space 1 of the cold head 15 arranged in
Check the degree of vacuum in step 3. Here, either the temperature becomes T1 (for example, 50K) or more by the heating means 30, or the degree of vacuum becomes P1 (for example, 65 Pa) due to the progress of evaporation of the condensed and solidified gas.
Wait until the above conditions are met, and if this condition is met, proceed to step S6.
Proceed to. In this step S6, the roughing pump (RP)
32 is activated.

【0020】次に、ステツプS7において、コールドヘ
ツド15の温度をチエツクし、温度がT2(例えば29
5K)以上ならばステツプ■へと進み、T2以下ならば
ステツプS8へと進む。ここで、いまは再生開始初期で
あり、まだコールドヘツド15の温度はあまり高くなつ
ていないので、ステツプS8に進みバルブ(PGV)3
3を開いて、パージガス源34から作動空間13へと乾
燥窒素等からなるパージガスを供給する。
Next, in step S7, the temperature of the cold head 15 is checked and the temperature is T2 (for example, 29
5K) or more, proceed to step (2), and if it is less than T2, proceed to step S8. At this point, since it is now the early stage of regeneration and the temperature of the cold head 15 has not yet become very high, the process proceeds to step S8, where the valve (PGV) 3
3 is opened, and purge gas consisting of dry nitrogen or the like is supplied from the purge gas source 34 to the working space 13.

【0021】ステツプS9で作動空間13内の真空度を
チエツクし、その真空度がP2(例えば300Pa)以
上となるまで待ち、真空度がP2となるとステツプS1
0へと進んでバルブ33を閉じる。このパージガスの供
給により、作動空間13内での加熱手段30から凝縮・
凝固ガスへの熱伝導効率が高まり凝縮・凝固ガスの蒸発
を促進する。
[0021] In step S9, the degree of vacuum in the working space 13 is checked, and the system waits until the degree of vacuum reaches P2 (for example, 300 Pa) or more, and when the degree of vacuum reaches P2, the process proceeds to step S1.
0 and close the valve 33. By supplying this purge gas, condensation and
Heat transfer efficiency to the solidified gas increases, promoting condensation and evaporation of the solidified gas.

【0022】ステツプS11では、再度コールドヘツド
15の温度をチエツクし、その温度がT3(例えば12
0K)以上T4(例えば265K)以下である場合には
ステツプS12に進むが、ここで、いまは再生開始初期
であり、まだ作動空間13内の温度はあまり高くなつて
いないので、ステツプS13に進む。このステツプS1
3では、バルブ(RV)31を開いて作動空間13と粗
引きポンプ32を連通させることで、作動空間内に蒸発
して気体となつた凝縮・凝固ガスを粗引き(即ち、作動
空間13から排除)する。
In step S11, the temperature of the cold head 15 is checked again, and the temperature is T3 (for example, 12
0K) or more and less than T4 (for example, 265K), the process proceeds to step S12, but since it is now the beginning of the regeneration and the temperature within the working space 13 has not yet become very high, the process proceeds to step S13. . This step S1
3, by opening the valve (RV) 31 and communicating the working space 13 with the roughing pump 32, the condensed and coagulated gas that has evaporated into the working space and become a gas is roughly pumped out (that is, from the working space 13). Exclude.

【0023】そして、ステツプS14にて、再度作動空
間13内の真空度をチエツクし、その真空度がP2以下
となるまで待ち、真空度がP2となるとステツプS15
へと進んで2.5分間この状態を保持した後、ステツプ
S16へと進んでバルブ31を閉じる。
[0023] Then, in step S14, the degree of vacuum in the working space 13 is checked again, and the system waits until the degree of vacuum becomes below P2, and when the degree of vacuum reaches P2, the process proceeds to step S15.
After proceeding to step S16 and maintaining this state for 2.5 minutes, the process proceeds to step S16, where the valve 31 is closed.

【0024】以上のステツプS7からステツプS16の
サイクルを繰り返すうちに、ステツプS11でチエツク
されるコールドヘツド15の温度がT3以上T4以下と
なると、ステツプS12に進んで、パージガスの供給に
より真空度がP2以上となつた状態を1分間保持して、
凝縮・凝固ガスの溶解を促進させる。
While repeating the cycle from step S7 to step S16, if the temperature of the cold head 15 checked in step S11 becomes higher than or equal to T3 and lower than T4, the process proceeds to step S12, and the degree of vacuum is reduced to P2 by supplying purge gas. Hold the above state for 1 minute,
Promotes the dissolution of condensed and solidified gases.

【0025】更に、ステツプS7からステツプS16の
サイクルを繰り返し温度上昇が進むと、ステツプS7に
おいて制御手段24がチエツクするコールドヘツド15
の温度がT2を超え図4に示すステツプ■へと進む。 尚、ステツプ■へと進む直前迄に作動空間13の再生は
実質的に終了し、クライオパネル18に凝着した凝縮・
凝固ガスはほぼ取り除かれている。
Further, as the temperature rises by repeating the cycle from step S7 to step S16, the control means 24 checks the temperature of the cold head 15 in step S7.
When the temperature exceeds T2, the process proceeds to step (2) shown in FIG. It should be noted that the regeneration of the working space 13 has been substantially completed just before proceeding to step (2), and the condensation and condensation that have adhered to the cryopanel 18 have been completely removed.
Most of the solidified gas has been removed.

【0026】さて、ステツプ■では、ステツプS21に
おいて再生確認を行う。この再生確認は図5に示す再生
確認サブルーチンにて行い、そのステツプS51では、
まずバルブ31を開いて、ステツプS52にチエツクす
る作動空間13内の真空度がP3(例えば25Pa)以
下となるまで待ち、真空度がP3となるとステツプS5
3に進んでバルブ31を閉じる。
Now, in step (2), reproduction confirmation is performed in step S21. This playback confirmation is performed in the playback confirmation subroutine shown in FIG. 5, and in step S51,
First, open the valve 31 and wait until the degree of vacuum in the working space 13, which is checked in step S52, becomes below P3 (for example, 25 Pa), and when the degree of vacuum reaches P3, the process goes to step S5.
Proceed to step 3 and close the valve 31.

【0027】この後、ステツプS54において、作動空
間13内の真空度をチエツクし、その真空度がP1以上
ならばステツプS55からNG信号をステツプS21へ
と返す。一方、真空度がP1以下の場合にはステツプS
56へと進み、この状態が5分間経過するまで待つ。但
し、この5分間の待ち時間中に作動空間13の真空度が
P1以上となつた場合には、ステツプS55からNG信
号をステツプS21へと返す。一方、作動空間13内の
真空度がP1以下に保たれたまま5分が経過すると、ス
テツプS56からステツプS57へと進み、OK信号を
ステツプS21へと返す。
Thereafter, in step S54, the degree of vacuum in the working space 13 is checked, and if the degree of vacuum is greater than or equal to P1, an NG signal is returned from step S55 to step S21. On the other hand, if the degree of vacuum is below P1, step S
The process advances to step 56 and waits until this state has elapsed for 5 minutes. However, if the degree of vacuum in the working space 13 becomes equal to or higher than P1 during this 5-minute waiting time, an NG signal is returned from step S55 to step S21. On the other hand, when 5 minutes have passed while the degree of vacuum in the working space 13 is maintained below P1, the process advances from step S56 to step S57, and an OK signal is returned to step S21.

【0028】ステツプS21に戻り、再生確認サブルー
チンからのリターン信号がNGの場合には、ステツプS
22に進み加熱手段30をオフとした後、再度ステツプ
S21にに進んで再生確認を行う。一方、リターン信号
がOKの場合には、ステツプS23へと進んで粗引きポ
ンプ32及び加熱手段30をオフとし、ステツプS24
において全てをオフとする。
Returning to step S21, if the return signal from the reproduction confirmation subroutine is NG, the process returns to step S21.
After the process goes to step S22 and the heating means 30 is turned off, the process goes to step S21 again to confirm the regeneration. On the other hand, if the return signal is OK, the process proceeds to step S23, where the roughing pump 32 and heating means 30 are turned off, and the process proceeds to step S24.
Turn everything off.

【0029】以上により再生は全て完了するので、CP
U23は再生完了信号をステツプS25において出力す
る。
[0029] Since the reproduction is all completed as described above, the CP
U23 outputs a reproduction completion signal in step S25.

【0030】次にステツプS26へと進み、ここでクラ
イオポンプ12がオフとなつている場合には、ステツプ
S27へと進んで作動空間13内の真空度をチエツクし
、その真空度がP1以下である場合には問題が無いので
ステツプS26へと戻る。ところが、作動空間13内の
真空度がアウトガス等の原因により悪化し、ステツプS
27でチエツクする真空度がP1以上になると、ステツ
プS28に進んで再生完了信号をオフにすると共に、ス
テツプS29に進んで再生信号をオンとする。
Next, the process proceeds to step S26, and if the cryopump 12 is turned off, the process proceeds to step S27, where the degree of vacuum in the working space 13 is checked, and if the degree of vacuum is below P1. If there is, there is no problem and the process returns to step S26. However, the degree of vacuum in the working space 13 deteriorates due to outgas and other causes, and the step S
When the degree of vacuum checked in step 27 becomes equal to or higher than P1, the process proceeds to step S28 to turn off the regeneration completion signal, and the process proceeds to step S29 to turn on the regeneration signal.

【0031】この後、ステツプS30では、前回のクラ
イオポンプ12停止から規定時間が経過するまで待つよ
うに、タイムアツプ信号の入力待ちの状態となる。ステ
ツプS30において規定時間が経過し、タイムアツプ信
号が入力されるとステツプS31に進んで粗引きポンプ
32を作動させると共に、ステツプS32でバルブ31
を開いて作動空間13内の気体分子を粗引きする。
Thereafter, in step S30, the system enters a state of waiting for input of a time-up signal, so as to wait until a predetermined time has elapsed since the previous stop of the cryopump 12. When the specified time has elapsed in step S30 and a time-up signal is input, the process proceeds to step S31, where the roughing pump 32 is activated, and the valve 31 is activated in step S32.
is opened to roughly draw out gas molecules in the working space 13.

【0032】そして、ステツプS33で作動空間13内
の真空度がP3以下となるまで待ち、その真空度がP3
以下になるとステツプS34に進んでこの状態を3分間
保持したのち、図6に示すステツプS61に進みバルブ
31を閉じた後に、ステツプS62において全てをオフ
とする。
[0032] Then, in step S33, wait until the degree of vacuum in the working space 13 becomes less than P3.
When the condition is below, the process proceeds to step S34, where this state is maintained for 3 minutes, and then the process proceeds to step S61 shown in FIG. 6, where the valve 31 is closed, and then everything is turned off in step S62.

【0033】次に、ステツプS63にて再生完了信号を
出力して、ステツプS64にてクライオポンプ12の起
動を待ち、ここでクライオポンプ12の作動が確認され
るとステツプS65へと進み、再生完了出力をオフとす
る。尚、ステツプS26においてクライオポンプ12が
作動中の場合には、上述のステツプS27〜ステツプS
34及びステツプS61〜ステツプS64は飛び越され
て、ステツプS26から直接ステツプS65へと進む。
Next, in step S63, a regeneration completion signal is output, and in step S64, the start of the cryopump 12 is waited for. If the operation of the cryopump 12 is confirmed here, the process advances to step S65, and the regeneration is completed. Turns off the output. Note that if the cryopump 12 is in operation in step S26, the steps S27 to S described above are performed.
34 and steps S61 to S64 are skipped, and the process directly proceeds from step S26 to step S65.

【0034】ステツプS65では再生完了信号をオフに
して、ステツプS66へと進み粗引きポンプ32を作動
させた後、ステツプS67にてバルブ31を開く。この
後、ステツプS68において、作動空間13内の温度が
T5(例えば273K)以下になるまで待ち、温度がT
5以下になるとステツプS69に進んでバルブ31を閉
じ、この状態をステツプS70においてW分(例えば3
0分)保持する。このW分間、バルブ31を閉じ粗引き
ポンプ32のみを作動させることで、再生時に粗引きポ
ンプ32がそのオイル内に吸引した水蒸気を外部へと排
出できる。この後、ステツプS71において粗引きポン
プ32を停止した後、ステツプS72にてCPU23は
プログラムの実行を終了する。
In step S65, the regeneration completion signal is turned off, and the process proceeds to step S66, where the roughing pump 32 is operated, and then, in step S67, the valve 31 is opened. After that, in step S68, wait until the temperature in the working space 13 becomes lower than T5 (for example, 273K), and then
When it becomes 5 or less, the process proceeds to step S69, where the valve 31 is closed, and this state is changed to W (for example, 3) in step S70.
0 minutes) Hold. By closing the valve 31 and operating only the roughing pump 32 for this W minutes, the water vapor sucked into the oil by the roughing pump 32 during regeneration can be discharged to the outside. Thereafter, after stopping the roughing pump 32 in step S71, the CPU 23 ends the execution of the program in step S72.

【0035】尚、本実施例では、P2>P1>P3及び
T2>T5>T4>T3>T1の関係を有している。
In this embodiment, the relationships are P2>P1>P3 and T2>T5>T4>T3>T1.

【0036】[0036]

【発明の効果】以上に示した様に本発明では、作動空間
に配設されたコールドヘツドの温度及び作動空間の真空
度がそれぞれ感温手段及び真空度検出手段を介して制御
手段にダイレクトに入力されている。従つて、制御手段
に入力される情報量が接点数に制限されないのでその制
御幅が広がり、作動空間へのパージガス供給にも対応す
ることができる。この結果、作動空間にパージガスが供
給され、加熱手段と凝縮・凝固ガスとの熱交換が促進さ
れることで凝縮・凝固ガスの溶解が円滑に進み、クライ
オポンプの再生時間を短縮できる。
As described above, in the present invention, the temperature of the cold head disposed in the working space and the degree of vacuum of the working space can be directly transmitted to the control means via the temperature sensing means and the vacuum degree detecting means. It has been entered. Therefore, since the amount of information input to the control means is not limited by the number of contacts, the control range is widened, and it is possible to cope with the supply of purge gas to the working space. As a result, the purge gas is supplied to the working space, and heat exchange between the heating means and the condensed/solidified gas is promoted, so that the condensed/solidified gas is smoothly melted, and the regeneration time of the cryopump can be shortened.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明実施例のクライオポンプの再生装置10
の構成図を示す。
FIG. 1: A cryopump regeneration device 10 according to an embodiment of the present invention.
The configuration diagram is shown below.

【図2】図1における制御手段24系統のブロツク図を
示す。
FIG. 2 shows a block diagram of 24 systems of control means in FIG. 1.

【図3】図1における再生方法のフローチヤート■を示
す。
FIG. 3 shows a flowchart (2) of the regeneration method in FIG. 1;

【図4】図1における再生方法のフローチヤート■を示
す。
FIG. 4 shows a flowchart (2) of the regeneration method in FIG. 1;

【図5】図4におけるサブルーチンのフローチヤートを
示す。
FIG. 5 shows a flowchart of the subroutine in FIG. 4;

【図6】図4から続くフローチヤートを示す。FIG. 6 shows a flowchart continued from FIG. 4;

【符号の説明】[Explanation of symbols]

10  クライオポンプの再生装置、 13  作動空間、 14  冷凍手段、 15  コールドヘツド、 18  感温手段、 19  真空度検出手段、 24  制御手段、 30  加熱手段、 31  バルブ(第1弁手段)、 32  粗引きポンプ(粗引手段)、 33  バルブ(第2弁手段)、 34  パージガス源(パージガス供給手段)。 10 Cryopump regeneration device, 13. Working space, 14 Refrigeration means, 15 Cold head, 18 Temperature sensing means, 19 Vacuum degree detection means, 24 Control means, 30 heating means, 31 Valve (first valve means), 32 Roughing pump (roughing means), 33 Valve (second valve means), 34 Purge gas source (purge gas supply means).

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  作動空間と、該作動空間の真空度を検
出する真空度検出手段と、前記作動空間に配設されたコ
ールドヘツドの温度を検出する感温手段と、前記作動空
間の周囲に配設される加熱手段と、前記作動空間と第1
弁手段を介して接続される粗引手段と、前記作動空間と
第2弁手段を介して接続されるパージガス供給手段と、
前記作動空間内に配設される冷凍手段と、前記加熱手段
、粗引手段、パージガス供給手段及び冷凍手段の作動を
制御する制御手段とを有し、前記真空度検出手段及び感
温手段のアナログ信号出力は、それぞれ前記制御手段に
入力されることを特徴とするクライオポンプの再生装置
1. A working space, a vacuum level detection means for detecting the degree of vacuum in the working space, a temperature sensing means for detecting the temperature of a cold head disposed in the working space, and a vacuum detecting means for detecting the temperature of a cold head disposed in the working space; a heating means disposed, and a first
a roughing means connected via a valve means; a purge gas supply means connected to the working space via a second valve means;
A cooling means disposed in the working space, and a control means for controlling the operation of the heating means, roughing means, purge gas supply means, and freezing means, and an analog of the vacuum degree detection means and temperature sensing means. A cryopump regeneration device, wherein each signal output is input to the control means.
JP3067275A 1991-03-29 1991-03-29 Regenerating device for cryopump Pending JPH04303186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3067275A JPH04303186A (en) 1991-03-29 1991-03-29 Regenerating device for cryopump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3067275A JPH04303186A (en) 1991-03-29 1991-03-29 Regenerating device for cryopump

Publications (1)

Publication Number Publication Date
JPH04303186A true JPH04303186A (en) 1992-10-27

Family

ID=13340257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3067275A Pending JPH04303186A (en) 1991-03-29 1991-03-29 Regenerating device for cryopump

Country Status (1)

Country Link
JP (1) JPH04303186A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10512645A (en) * 1995-01-18 1998-12-02 ヘリックス・テクノロジー・コーポレイション Controlled cryopump regeneration pressure
WO2005052369A1 (en) * 2003-11-28 2005-06-09 Sumitomo Heavy Industries, Ltd. Method and apparatus for regenerating water
JP2008215177A (en) * 2007-03-02 2008-09-18 Sumitomo Heavy Ind Ltd Cryopump and method for its regenerative processing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62131983A (en) * 1985-12-05 1987-06-15 Anelva Corp Cryopump
JPH0211870A (en) * 1988-04-13 1990-01-16 Leybold Ag Method and device for inspecting function of cryopump operated by refrigerator
US4918930A (en) * 1988-09-13 1990-04-24 Helix Technology Corporation Electronically controlled cryopump

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62131983A (en) * 1985-12-05 1987-06-15 Anelva Corp Cryopump
JPH0211870A (en) * 1988-04-13 1990-01-16 Leybold Ag Method and device for inspecting function of cryopump operated by refrigerator
US4918930A (en) * 1988-09-13 1990-04-24 Helix Technology Corporation Electronically controlled cryopump

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10512645A (en) * 1995-01-18 1998-12-02 ヘリックス・テクノロジー・コーポレイション Controlled cryopump regeneration pressure
WO2005052369A1 (en) * 2003-11-28 2005-06-09 Sumitomo Heavy Industries, Ltd. Method and apparatus for regenerating water
JPWO2005052369A1 (en) * 2003-11-28 2007-12-06 住友重機械工業株式会社 Water recycling method and apparatus
JP4669787B2 (en) * 2003-11-28 2011-04-13 住友重機械工業株式会社 Water recycling method and apparatus
US7997089B2 (en) 2003-11-28 2011-08-16 Sumitomo Heavy Industries, Ltd. Method and apparatus for regeneration water
JP2008215177A (en) * 2007-03-02 2008-09-18 Sumitomo Heavy Ind Ltd Cryopump and method for its regenerative processing
JP4554628B2 (en) * 2007-03-02 2010-09-29 住友重機械工業株式会社 Cryopump and cryopump regeneration method

Similar Documents

Publication Publication Date Title
US8302409B2 (en) Cryopump and regenerating method of the cryopump
KR950033087A (en) Cryopump
US5088296A (en) Air conditioner system with refrigerant condition detection for refrigerant recovering operation
JPS63161375A (en) Method of filling heat pump device
JPH04303186A (en) Regenerating device for cryopump
US20200263916A1 (en) Refrigeration machine
JP2000346449A (en) Heat pump hot-water supplier
JP2002122362A (en) Heat pump hot water supplier
JP2910849B1 (en) Air conditioner defrost control device
JP3029243B2 (en) Cryopump regeneration method and cryopump
JP2950474B1 (en) Solar powered refrigerator
JPH10122677A (en) Dual refrigerating apparatus
JPH0539974A (en) Cooling device
JPH0893643A (en) Cryopump
JP4583672B2 (en) Operation control device for cooling device
JPH0518615A (en) Refrigerator
JPH08327194A (en) Air conditioner
JP5444815B2 (en) Vending machine control equipment
JPH05296599A (en) Adsorption type heat accumulator and heat accumulation operating control method
JP3028555B2 (en) Refrigerator defrost control device
JPH06159891A (en) Control device for refrigerator
JPH04161776A (en) Defrosting control device of refrigerator
JP2706871B2 (en) Cooling control device for absorption chiller / heater
TWI310206B (en) Directly heat wafer in rtp close-loop status to skip the uncertain transparent phenomena of low temperature of low temperature (<500) by extra pre-heat chamber
JPH11241845A (en) Outdoor machine unit and air conditioner